Speaker
Description
'T Hooft model, or QCD in one-plus-one dimension, is interpolated between the Instant Form Dynamics (IFD) and the Light Front Dynamics (LFD). The interpolation form is defined by introducing an interpolation angle $ \delta$ varying between $0^{\circ}$ (IFD) and $45^{\circ}$ (LFD). The mass gap equation is solved in the interpolation form and the results found to agree with the previously published results in the IFD and LFD forms as $\delta \to 0^{\circ}$ and $\delta \to 45^{\circ}$, respectively. We note that the zero mode in LFD makes up all the contribution to the difference between the bare and constituent quark masses. Wavefunction renormalized quark self energy function is defined, which resolves the previous issue that the quark self energy goes negative for a certain range of momentum for smaller quark masses. Chiral condensate is computed and found to be invariant no matter the $\delta$ value. Solving the bound state equation, meson spectroscopy and their wavefunctions are obtained, and we apply them to the calculation of quasi-PDFs. We note a possibility of using the interpolation angle dependence in addition to the frame dependence in approaching the LFD PDFs.