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We study the structure of scalar field light-front quantization vacuum graphs. In instant-time quantization
both non-vacuum and vacuum graphs can equivalently be described by either the off-shell four-
dimensional Feynman diagram approach or the on-shell three-dimensional Fock space approach, with
this being the case since the relevant Feynman diagrams are given entirely by pole terms. This is also
the case for light-front quantization non-vacuum graphs. However this is not the case for light-front

vacuum sector diagrams, since then there are also circle at infinity contributions to Feynman diagrams.
These non-pole contributions cause light-front vacuum diagrams to be nonzero and to not be given by a
light-front Hamiltonian Fock space analysis. The three-dimensional approach thus fails in the light-front
vacuum sector. In consequence, the closely related infinite momentum frame approach also fails in the

light-front vacuum sector.

© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Since the original work of Dirac [1], there has been continu-
ing interest in light-front (also known as “light-cone” or “front-
form”) quantization of quantum field theories. Comprehensive re-
views can be found in [2-5]. The light-front approach is based on
3-dimensional Hamiltonian field theory quantized at fixed light-
front time x* = x% 4+ x3. The rules for calculations for Light-Front
Hamiltonian QCD for both perturbative and nonperturbative appli-
cations are summarized in [6]. As is the case with the standard
four-dimensional covariant Feynman Lagrangian theory, the light-
front formalism is Poincaré invariant and causal. Observables in
hadron physics such as form factors, structure functions, and dis-
tribution amplitudes are based on the nonperturbative light-front
hadronic wave functions, the eigenfunctions of the QCD Light-Front
Hamiltonian [7,8]. In the case of scattering amplitudes, the co-
variant Feynman and the Light-Front Hamiltonian approaches give
identical results. One can also replicate the calculation rules for
light-front x-ordered perturbation theory using standard time-
ordered perturbation theory based on quantization at fixed time
(also known as instant-time or “instant-form”) by choosing a
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Lorentz frame where the observer moves at infinite momentum
[9-12].

While the light-front non-vacuum (i.e., scattering) sector is well
understood, in the light-front literature there has been a spir-
ited discussion as to the status of perturbative light-front vacuum
graphs (see e.g. [2,11-15]). In the light-front vacuum sector differ-
ing results have been obtained for the off-shell four-dimensional
Feynman diagram approach and the on-shell three-dimensional
Fock space approach, and the literature has not yet settled on
which particular one might have fundamental validity, or identi-
fied what it is that causes differences between the various ap-
proaches. It is the purpose of this paper to address this issue in
the scalar field theory case, and to show that because of circle at
infinity contributions in four-dimensional light-front vacuum Feyn-
man diagrams it is the Feynman approach that one must use as the
light-front Fock space approach is equivalent to the pole term con-
tribution to Feynman diagrams alone. Because of these non-pole
circle at infinity contributions, light-front vacuum diagrams are not
only nonzero, they are equal to instant-time vacuum diagrams,
even though instant-time vacuum Feynman diagrams receive no
circle at infinity contributions. Our result is initially surprising
since the instant-time Fock space analysis correctly describes the
instant-time vacuum sector, and in the infinite momentum frame
the instant-time Fock space procedure transforms into the light-
front Fock space description. However, even though circle at in-
finity contributions are suppressed in the instant-time case, when

0370-2693/© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by
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Equivalence of light-front quantization and instant-time quantization
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Commutation or anticommutation relations quantized at equal instant time and commutation or
anticommutation relations quantized at equal light-front time not only cannot be transformed into each
other, they take completely different forms. While they would thus appear to describe different theories, we
show that this is not in fact the case. By looking not at equal times but at unequal times, we show that
unequal instant-time commutation or anticommutation relations are completely equivalent to unequal light-
front time commutation or anticommutation relations. Light-front quantization and instant-time quantiza-
tion are thus the same and thus describe the same theory, with it being only the restriction to equal times that
makes them look different. However, for fermions there is a caveat, as the light-front anticommutation
relations involve projection operators acting on the fermion fields. Nonetheless, not only can one still derive
fermion unequal light-front time anticommutators starting from unequal instant-time ones, one can even
derive unequal instant-time fermion anticommutators starting from unequal light-front time anticommu-
tators even though the fermion projection operators that are relevant in the light-front case are not invertible.
To establish the equivalence for gauge fields we present a quantization procedure that does not involve the
zero-mode singularities that are commonly encountered in light-front gauge field studies. We also study
time-ordered products of fields, and again show the equivalence despite the fact that there are additional
terms in the fermion light-front case. We establish our results first for free theories, and then to all orders in
interacting theories though comparison of the instant-time and light-front Lehmann representations.
Finally, we compare instant-time Hamiltonians and light-front Hamiltonians and show that in the instant-
time rest frame they give identical results.

DOI: 10.1103/PhysRevD.102.025020

I. INTRODUCTION

In quantum field theory various choices of quantization
are considered. The most common choice is to take
commutation relations of pairs of fields at equal instant
time x° to be specific singular c-number functions. Thus for
a free scalar field with action

IS:/dedxldxzdx3
<3 (D= (019)2~ (020~ (D392~ (L)

for instance, one identifies a canonical conjugate
815/80yp = % = Oy¢p (one can of course add on inter-
action terms to /g, but as long as they contain no derivatives
they do not affect the identification of the canonical

*philip.mannheim@uconn.edu

conjugate), and then quantizes the theory according to
the equal instant-time canonical commutation relation

[p(x0, x X%, x3), Do (x°, y'. ¥, ¥3)]
=i5(x' = y")s(x* = y?)s(x* =), (1.2)

In light-front quantization (see e.g., [1] for a review) one
introduces coordinates x* = x° +x3, a line element
GuX'x = xtx™ = (x1)? = (x*)? with (—g)'/? =1/2, and
a free scalar field action of the form

1 1
Is= 5/ dxtdx"dx*dx~ >

X [20,$0_¢ +20_¢0, p— (91¢)* = (020p)* — m*¢?].
(1.3)
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In this paper we compare light-front quantization and instant-time quantization both
at the level of operators and at the level of their Feynman diagram matrix elements.
At the level of operators light-front quantization and instant-time quantization lead to
equal light-front time commutation (or anticommutation) relations that appear to be
quite different from equal instant-time commutation (or anticommutation) relations.
Despite this we show that at unequal times instant-time and light-front commutation
(or anticommutation) relations actually can be transformed into each other, with it only
being the restriction to equal times that makes the commutation (or anticommutation)
relations appear to be so different. While our results are valid for both bosons and
fermions, for fermions there are subtleties associated with tip of the light cone con-
tributions that need to be taken care of. At the level of Feynman diagrams we show
for non-vacuum Feynman diagrams that the pole terms in four-dimensional light-front
Feynman diagrams reproduce the widely used three-dimensional light-front on-shell
Hamiltonian Fock space formulation in which the light-front energy and light-front
momentum are on shell. Moreover, we show that the contributions of pole terms in
non-vacuum instant-time and non-vacuum light-front Feynman diagrams are equal.
However, because of circle at infinity contributions we show that this equivalence of
pole terms fails for four-dimensional light-front vacuum tadpole diagrams. Then, and
precisely because of these circle at infinity contributions, we show that light-front vac-
uum tadpole diagrams are not only nonzero, they quite remarkably are actually equal to
the pure pole term instant-time vacuum tadpole diagrams. Light-front vacuum diagrams
are not correctly describable by the on-shell Hamiltonian formalism, and thus not by the
closely related infinite momentum frame prescription either. Thus for the light-front
vacuum sector we must use the off-shell Feynman formalism as it contains information
that is not accessible in the on-shell Hamiltonian Fock space approach. We show that
light-front quantization is intrinsically nonlocal, and that for fermions this nonlocality is
present in Ward identities. One can project fermion spinors into so-called good and bad
components, and both of these components contribute in Ward identities. Central to our
analysis is that the transformation from instant-time coordinates and fields to light-front
coordinates and fields is a unitary, spacetime-dependent translation. Consequently, not
only are instant-time quantization and light-front quantization equivalent, because of
general coordinate invariance they are unitarily equivalent.

© 2020 Elsevier B.V. All rights reserved.
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Light-front quantization is the same as instant-time
quantization

Philip D. Mannheim*
Department of Physics, University of Connecticut, Storrs, CT 06269, USA
philip.mannheim@uconn.edu

Commutation or anticommutation relations quantized at equal instant time and commutation or
anticommutation relations quantized at equal light-front time cannot be transformed into each
other. While they would thus appear to describe different theories, we show that this is not in
fact the case. In instant-time quantization unequal instant-time commutation or anticommutation
relations for free scalar, fermion, or gauge boson fields are c-numbers. We show that when these
unequal instant-time commutation or anticommutation relations are evaluated at equal light-front
time they are identical to the equal light-front time commutation or anticommutation relations.
Light-front quantization and instant-time quantization are thus the same and thus describe the
same physics.

Light Cone 2019 - QCD on the light cone: from hadrons to heavy ions
16-20 September 2019
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Abstract We study light-front physics and conformal symmetry, and their interplay both on and off the light
cone. The full symmetry of the light cone is conformal symmetry not just Lorentz symmetry. Spontaneously
breaking conformal symmetry gives masses to particles and takes them off the light cone. Canonical quan-
tization specifies equal-time commutators on the light cone. Equal instant-time and equal light-front-time
commutators look very different, but can be shown to be equivalent by looking at unequal-time commuta-
tors. We discuss the connection of the light-front approach to the infinite momentum frame approach, and
show that vacuum graphs are outside this framework. We show that there is a light-front structure to both
AdS/CFT and the eikonal approximation. While mass generation involves scale-breaking mass scales, we
show that such mass scales can arise via dynamical symmetry breaking in the presence of scale invariant
interactions at a renormalization group fixed point.

1 Minkowski signature predates special relativity

‘While Minkowski signature is central to special relativity and light cone studies, it is of interest to note that
the Minkowski signature predates twentieth-century special relativity having originated in differential geometry in
the nineteenth century. To be specific, consider the 2-dimensional Gauss—Bolyai-Lobachevski geometry with line
element

a?dr?

ds2=ﬁ
a* +r

+r2d6?. (1)

To construct it, we introduce a flat 3-dimensional space with a Minkowski-signatured line element
ds? = da? + dy® — di?, (2
as constrained by the hyperbola
t? — 2% — 9% = a2 (3)
Eliminating ¢ gives

_ (wdz + ydy)?

2 _ g2 2
ds® = dx* + dy 2t tyt

(4)
On introducing polar coordinates x = r cos @, y = rsin § we recover (1):

. r2dr? a?dr? .
ds? = dr? + r2de? — P R s 1 +r2d?. (5)

?e-mail: philip.mannheim@uconn.edu (corresponding author)
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1 OUTLINE

These lectures provide a friendly introduction to light-front quantum field theory. Topics include:

(1) Infinite momentum frame and the light front.

(2) Canonical commutation/anticommutation relations for scalars, fermions and gauge bosons at equal light-
front time.

3) Connection to commutators at equal instant time.
4) Good and bad fermions.
5) Feynman diagrams and Fock space.

6

7) Structure of the light-front Hamiltonian.

(
(
(
(
(
(

)
)
)
) Structure of light front vacuum graphs.
)
)

8) Chiral symmetry breaking in the light front.



2 INFINITE MOMENTUM FRAME

In 1966 Weinberg (Phys. Rev. 150, 1313 (1966)) showed that instant-time quantization perturbation theory
would be simplified in the frame in which an observer moved with an infinite three-momentum with respect
to the center of mass system of a scattering process, i.e., p> = aP where P is large and « is a constant and
P’ =) + () + (7)) + w2 — aP + [(p")* + (p°)* + m?] /2P

P
p’ /P
¢ .l'+
p ptp p p’ p+p,
p+p’
Y
a b c

Specifically, Graph (b) would be suppressed with respect to Graph (a). Graph (c) was not discussed. In Wein-
berg’s case the 2 time axis runs up the diagram and the analysis was made using old-fashioned perturbation
theory. Old-fashioned (i.e. pre-Feynman) perturbation theory is off the energy shell but on the mass shell. (The
Feynman approach is off the mass shell). Graph (b) takes support outside the light cone, and is suppressed at
infinite momentum. Graph (c¢) involves both time orderings, i.e., forward and backward in time.

8



3 INSTANT-TIME FEYNMAN GRAPHS AND OLD-FASHIONED PERTURBATION
THEORY

In the instant-time case one can take an instant-time forward in time Green’s function such as D(z" >

0, instant) = —i(Q7]0(x?) (2, 21, 2%, 2%)(0)|Q) as evaluated in the instant-time vacuum [€27), and expand

the field in terms of instant-time creation and annihilation operators that create and annihilate particles out
of that vacuum as

0 ) = p Byt +ip- ) + dl Byt —if- T 3.1

o) = [ e e B+ ) al () espHB — 5B, (3

where E, = (p*> + m?)Y? and [a(p), a’(5’")] = 83(p— p’). The insertion of ¢(#, 2°) into D(2° > 0, instant)
immediately leads to the on-shell three-dimensional integral

0 0 00 d3 ‘ L
D(z" > 0, instant, Fock) = —Z<2(:>3) /_OO Q—E]Z)B_ZEP”COHP'”’. (3.2)

Alternatively, one can look for solutions to (9,0 + m?)D(z*, instant) = —d%(x), and obtain the off-shell
four-dimensional integral

D(z"instant) =

P 1 d* 1 1
(2m)4 p?—m?+ie (2m)* ) 2E, po—E,+ie po+ E,—ie
with the py integration being along a contour integral in the complex py plane. One can then proceed from
(3.3) to (3.2) by closing the Feynman contour below the real py axis, to yield a contour integral in which the

lower-half py plane circle at infinity makes no contribution when the instant-time 2 is positive, while the pole
term yields (3.2).



Similarly, one can proceed in reverse from (3.2) to (3.3) by writing the theta function as a contour integral
in the complex w plane:

1 00 e—iwxo
0(z") = —— dw

-
2T ) W 1€

(3.4)

so that the pole contribution yields #(z") = 1 when 2° > 0 and yields §(2°) = 0 when 2° < 0. With this
representation of the theta function (3.2) takes the form

—iwzY
D(z" > 0, instant) / / dwS e iEp P E, (3.5)
W + 1€

On setting py = w + E),, we can rewrite (3. )

D(z" > 0, instant) =

1 / d4p e—ipgxo—l—iﬁf

2t | 2B, (po— B, +ic) (3.6)

We recognize (3.6) as the forward in time, positive frequency component of (3.3), and thus establish the
equivalence of the instant-time off-shell four-dimensional Feynman and on-shell three-dimensional Hamiltonian
(Fock space) formalisms, and see that the equivalence occurs because the four-dimensional Feynman contour
is given by on-shell poles alone. Pole dominance thus leads to old-fashioned perturbation theory:.

And this is true in light front as well, with an analogous Fock space description.

But how do we know how to normalize the light-front creation and annihilation commutators?

10
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However, poles is not the whole story. When 2° = 0 (the vacuum bubble case) we obtain

00) = ——— d do—t =~ o=t (3.7)

2l J_ o w+ie 21 2’

with there being a circle at infinity contribution and not just a pole term. For the instant-time case the circle
contribution is suppressed because there are two powers of pg in the denominator of D(2” = 0, instant), viz.
1/((p°)? — (p*)? = (p})? — (p?)* — m?). However, in the light front case there is only one power of p™ or p~, viz
1/(pTp~ — (p')? — (p*)* — m?), and the circle does contribute to D(x™ = 0, front). Surprisingly (Mannheim,
Lowdon and Brodsky 2019), this enables instant-form and light-front vacuum bubbles to be equal.

In the vacuum sector there is four-dimensional information that is not accessible using three-dimensional old
fashioned perturbation theory or three-dimensional Fock space.

The momenta in instant-time and front-form Feynman diagrams are related by a change of variable, and
thus must coincide (Yan 1973). Likewise for path integrals. However that only means that Feynman diagram
poles plus circles at infinity equals poles plus circles, not that poles equal poles and circles equal circles. Also

it means that with p” and p? varying between —oo and oo, then p* and p~ must also vary between —oo and
oo, and not just be positive.

11



4 LIGHT-FRONT VARIABLES

In 1969 Chang and Ma (Phys. Rev. 180, 1506 (1969)) recovered Weinberg’s infinite momentum frame result by working
with the light-front variables. We introduce 27 = 2% + 23, 2= = 2% — 23, p™ = p° + p3, p~ = p” — p?. Under a Lorentz boost
in the z direction with velocity u we obtain

o 2+ ux’ s 2t +ua
T (1_u2)1/2’ T (1_u2)1/2’
1/2 _oN1/2
N (14w _ (1 —w) 4 v
—x 1) rT = RESHIE xrrxT —axtx. (4.1)

Thus a Lorentz boost does NOT take us from the instant-time frame to the light-front frame. Rather, as v — 1 (infinite
momentum frame) both 2° and 2? become infinite. What is preserved is 2 and 2~ though each gets multiplied by a factor,
one of which goes to infinity and the other to zero.

So what form of transformations are they? 2° — 2 4+ 23 = 2%, 23 — 20 — 2% = 2= are TRANSLATIONS. But these
translations are spacetime dependent, i.e., they are LOCAL translations, i.e., they are GENERAL COORDINATE
TRANSFORMATIONS, viz. observers move not just with constant velocity (special relativity) but also can accelerate
(general relativity). Thus as long as we have general coordinate invariance (which we do) instant time quantum field theory
and light-front quantum field theory must be the same theory, though they do not appear to be so. Also they must be
unitarily equivalent. The objective of these lectures is to show how this comes about.

Even for a system at rest the observer can move at high velocity, so the only non-relativistic systems that can exist
in nature must be the non-relativistic limit of relativistic systems. Hence g = 2 for an electron at rest (up to radiative
corrections).

Observers can accelerate in flat space where the Riemann tensor is zero, so still need general coordinate invariance (such

as with polar coordinates). If the Riemann tensor is not zero then we have gravity, with the Einstein equations writing the
second order weak gravity Poisson equation in an accelerating coordinate system.

12



For momenta we have

04 = (00 + ) L+u) ' 0P s (0 — ) 1 —w
p Tp p Tp 1—u y P —DP p —p 1 +u

Setting (1 + u)"/2/(1 —w)Y? = 1/2P, p* = aP, for large P and (p°)?> — (p*)? = ptp~ = m? + (p")? + (p?)?
we obtain

m® + (p')* + (»*) m® + (p')* + (»*)

p0+p3%ﬁzg’ Pepo 2aP 2P = 2o ’

i.e., we recover the momenta used by Weinberg. With this choice a Green’s function as evaluated with a

complex plane p, contour becomes equal to Graph (a) when Graph (a) is evaluated with a complex plane py
contour at large p°.

(4.3)

13



There is a caveat. In the infinite momentum frame case the flow of time is forward in 2", while the flow of
time in the light-front case is posited to be forward in 2™ = 2" + 2?. But for timelike events

(2" — (@°)? =2z > (@) + (2%)* > 0

is positive, where £~ = 2° — 3. Thus

" is positive

Consequently, ™ and 2~ have the same sign. And thus for
)= (zT+27)/2>0
(the sign of 2V is Lorentz invariant for timelike events) it follows that 2™ is positive too.

Thus for timelike events, forward in z* is the same as forward in 2, with the sign of =™
being Lorentz invariant.

14



5 THE TAKEAWAY

o ,
’ 7P
d -’
’ ore P/Q/ o’ p+p’
p+p’
P
-G

b
In their work Chang and Ma showed that ¢
for Graph (a) ™ is positive and all the p~ poles have both p~ and p* positive,
for Graph (b) ™ is negative and all the p~ poles have both p~ and p™ negative,
for Graph (c) =™ is zero and so is p™. But if p* is zero then p~ is infinite. Thus p, = p~/2 is infinite too,
just as it should be since it is the conjugate of x*. (Az*TAp, > h).

However, and this is the key point, all of these statements are true without going to the infinite
momentum frame. They thus can define a strategy for evaluating diagrams as diagrams are segregated by
the sign of the time variable 7. And since 2™ is positive for scattering processes they only involve positive
p~ and p*, with the p~ pole contributions then corresponding to old-fashioned perturbation theory diagrams.
Only needing positive p~ and p* provides enormous computational benefits.

The vacuum Graph (c) is expressly non-zero, something known as early as 1969. However it involves p™ = 0

zero modes, whose evaluation is tricky. Resolved in Mannheim, Lowdon and Brodsky 2019.

But what about the instant-time graphs that are not at infinite momentum. Are they different from or the
same as the light-front graphs. And if they are different, then which ones describe the real world. In Mannheim,
Lowdon and Brodsky (2019) they were shown to be the same, though developments since 1969 would suggest
that this would be far from the case.

15



6 LIGHT-FRONT QUANTUM FIELD THEORY

Instead of replacing instant-time momenta by light-front momenta in Feynman diagrams, we can obtain a
fully-fledged light-front quantum field theory by constructing equal x+ commutators rather than equal x°
commutators. For a scalar field [Neville and Rohrlich, Nuovo Cimento A 1, 625 (1971)]
Scalar field light-front commutators at equal x™"
p(a®, 2t 2% 27), o(at 't Py 7)) = —%é(x_ —y )0zt —yh)o(a® — v,
p(x", 2t 2% 27),20-0(a",y' y? y 7)) = id(at — yh)o(a® — yh)d(a” —y7). (6.1)
Scalar field instant-time commutators at equal 2°
[p(a", 't 2%, 27), (2’ 'y, 7)) = id(t — yh)o(2® — y?)o(a” — y),
[qﬁ(wo,xl,wz,x?’), o, y', %, 4%)] = 0. (6.2)

Gauge field instant-time commutators at equal 2"

(A, (2", 2!, 2%, 2°), 0 A u(x Oyttt = —igwd(xl —yHd(x? — yH)o(a® — o),
[Au(ﬂfo,wl,:cz,:vg),flu( "yt vyt =0 (6.3)
Using gauge fixing, for light-front gauge fields we obtain (Mannheim, Lowdon and Brodsky 2021)

Gauge field light—front commutators at equal x™"
(At a2t a?,27), 20 A,y vy )] = —igw (e’ — yh)d(a? — y*)o(z™ —y7),
Aot ot 2%, 27), Auat Py )] =

ng,e(x_ —y)o(at —yha(x® — ). (6.4)
Analogous results in the non-Abelian case.
The instant-time and light-front commutators are completely different. And for the mo-
ment the light-front normalization while obvious is actually arbitrary.

16



7 INSTANT-TIME AND LIGHT-FRONT ANTI-COMMUTATORS
Fermion instant-time anti-commutators at equal z°

{@ba(x ot 2?1, wﬁ( ,yl,y2,y3)} = 0ugd(z! — y1)o(z* — y2)S(z° — 7). (7.1)

Fermion light-front anti-commutators at equal =™
{[Wlala®, o' o) [l syt 0%y )} = ALgd(a™ =y )a(a" —yh)s(@® — o). (7:2)
[Chang, Root and Yan, Phys. Rev. D 7, 1133 (1973).]
Non-Invertible Projectors
AT =31+£9"%), AT+A =1, (AT’ =A% ATA =0, v ="+ (v)*=0,
Vx) = Ast). (7.3)

Y(+)(z) is a dynamical variable (it obeys a dynamical Dirac equation) and is known as a good fermion, v(_)(z) is a
constrained variable and is known known as a bad fermion. It obeys the constraint

Yyt a2t a) = —% / du"e(z™ —u”) =i’ (701 + 7v°0a) + my iy (a2t 2P w0, (7.4)

with anti-commutation relations of the form

{[@/J(ﬂ]y(fﬂ), [w;f_)uy)} = ge(a™ =y )iy 'O +777°05) — my lued (! — y')a(z® — ), (7.5)

R R R (T I MR

1, J 0 0 0 -
= Tl [_8:1;1 5ol 912 B —l—mQ} /du e(x” —u)e(y” —u)d(a! —yh)d(a? — y?). (7.6)

Thus light-front anti-commutators are completely different from instant-time anti-commutators, they are
non-local and even not invertible.
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8 PROPAGATORS AND TIME-ORDERED PRODUCTS

Things get even worse. The z'-ordered product does not always satisfy the field wave
equation with a delta function source (the propagator equation). This is not a problem for

scalar fields, but for fermions we obtain [Yan, Phys. Rev. D 7, 1780 (1973)]
— {Q[0(z " )s(2")Pa(0) — O(—2)Pa(0)1s(a")]|) = §75,0(z )e(z7)d(z")d(2?)

9 00 o i(p+aprat tpyaitp_aT)
+ / dpdprdpadp

—| 8.1
2m)* ) Yo+ TP Fypr + P02 — m el pa (81)

i.e., a propagator plus a delta function term. This delta function term only contributes at
27 = 0, and thus can only contribute in vacuum graphs.
For gauge fields quantized in the A" = 0 axial gauge we have [Harindranath, arXiv:hep-

ph/9612244]
—i(Q[0(z") A" (2)A"(0) + O(—z ") A”(0) A" (2)]|€2)

dp.dp_dp,dpy e P* n*p” + n"p# 2
_ 2/ p+dp—dpidps (g TP LA A (8.2)
(27)4 p? + i€ n-p (n - p)?
i.e., a propagator plus an n*-dependent term with only non-zero element n, = 1. The

n*-dependent terms are absent in the instant-time case and lead to a zero mode problem at
+_
p" = 0.
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Fortunately, both of the fermion and gauge field problems are readily fixable. The gauge
field n#-dependent term does not appear at all if we use gauge fixing. Rather, if one takes
the action to be of the form

Io / 2w [<LF, P — 1(9,A4")?] = / 2 [~10,4,0"A"] (3.3)

the z™-ordered product is then nicely given by D"’ (p) = g"’/(p? + i€) [Mannheim, Lowdon
and Brodsky 2021], just as in the instant-time z%-ordered case. So no zero mode problem.

For fermions we note that because of Lorentz invariance the vacuum graphs have no
external indices, and so the a and § indices in (8.1) must be contracted with d,5. But 4" is

traceless, and so the delta function term in (8.1) decouples [Mannheim, Lowdon and Brodsky
2021].

We thus see that the instant-time and light-front propagators (and thus Dyson-Wick ex-
pansions) are identical in form, and only differ from each other by a change of integration
variable from p%, p? to p™, p~ in expressions that are Poincare invariant. Thus unlike in
the infinite momentum frame study, now we can identify the two sets of propagators and
Feynman diagrams at all momenta. The two theories are thus equivalent.

But what about the commutators and anti-commutators?
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9 WHERE DID THE SCALAR COMMUTATORS COME FROM?
For a free scalar field with instant time action
I = [ d'dslasdet [(000) ~ @00)" - (@u0) — (000" — '’ (9.1)

one identifies a canonical conjugate d15/50y¢ = 0% = 9y (one can of course add on interaction terms to Ig, but as long as
they contain no derivatives they do not affect the identification of the canonical conjugate), and then quantizes the theory
according to the equal instant-time canonical commutation relation

[p(2", 2t 2%, 2%), (2, 4", o2, y7)) = i6 (2t — y')o (2 — y)a(2® — o). (9:2)
For a free scalar field with light front action
Is = 1 / dr*da'dr’de™3 [20400_¢ + 20_¢0,¢ — (019)” — (020)” — m*¢?] . (9.3)

one identifies a canonical conjugate (—g) '/%615/60.¢ = 0%¢ = 20_¢, and quantizes the theory according to the equal
* commutation relation (Neville and Rohrlich 1971)

[p(z*, 2!, 2%, 27),20_¢(x", y' vy )] = i6(a! — y")o(2® —y?)o(a™ —y). (9.4)

As written, (9.4) is already conceptually different from (9.2) since the light-front conjugate is 20_¢ and not 20, ¢, i.e., not

the derivative with respect to the light-front time, while the instant-time conjugate dy¢ is the derivative with respect to the

L2 27) and O_¢(a™, 4!, 4% y~) are not at the same 7, (9.4) can be integrated to

light-front time x

instant time. Since ¢(x™, x

?

(ot 2t 2% 27), 02"yl yt g )] = —ge(e —y )o@ — )i —y), (9.5)
where ¢(x) = 0(x) — 6(—x). Since the analog instant-time commutation relation is given by
[p(2°, 2t 2%, 2%), (2%, y', %, %)) = 0, (9.6)

instant-time and light-front time quantization appear to be quite different. Similar concerns affect gauge field commutators.
But still the light-front normalization is arbitrary.
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10 WHERE DID THE FERMION ANTI-COMMUTATORS COME FROM?
For a free fermion field with instant-time Dirac action
Ip = /d%&(mﬂ@u —m)y, (10.1)
the canonical conjugate of 1 is 79T, and the canonical anti-commutation relations are of the form
{Wala® 2 0%, 2), 0l 5 y2 ') | = Gasd(@ —y")0(a? = 3" — o),
{wala® 2',a% 2%), v5(a", ' ) } = 0. (10.2)

For the light-front case we set

0 0 0 0 L 0., .3
O = oy + e =0, +0_, 03= ot P =0, —0_, v =79 *v (10.3)
and obtain
Yo+ 70 = (1" +77)0 + (0 —7°)0- =410y 470, (10.4)

with (10.4) serving to introduce 4= = +% £ +3. In terms of 4™ and v~ the Dirac action takes the form
Ip =3 / dotda' de?da= i [in (77 0y + 770 + 401 +782) — 2 ml. (10.5)

With this action the light-front time canonical conjugate of v is i1)"y%y*. In the construction of the light-front fermion
sector we find a rather sharp distinction with the instant-time fermion sector. First, unlike v and 3, which obey (7°)* =1,
(73)? = =1, v" and v~ obey (y")? =0, (v7)? = 0, to thus both be non-invertible divisors of zero. Secondly, the quantities

AT =397 =514, AT =5 =51 -19") (10.6)
obey the projector algebra and allow us to introduce good and bad fermions of the form
AT+A =1, A" =A"=AM, (A )P=A" =T, ATA =0, ¢Yuy=A"Y, Py =A% (10.7)
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We identify the conjugate of v as 2i¢g+), where ng = [@DT]H) = PTAT = [ATy]T = [¢(+)]T. Since the conjugate is a good

fermion, in the anti-commutator of ¢» with its conjugate only the good component of ¢ will contribute since ATA~ = 0, with
the equal light-front time canonical anti-commutator being found to be of the form (Chang, Root and Yan 1973) )
{[w(-l-)]oz(x—’—v xla 1‘2, 33_), [¢g+)]ﬂ($+7 yla y27 y_)} = A(—x’—ﬁ(s(gj_ - y_)é(IJ - y1)5($2 T y2) (108)

In this construction the bad fermion 1 _) has no canonical conjugate and is thus not a dynamical variable. To understand
this in more detail we manipulate the Dirac equation (iyTd, + iy~ 0_ + iy'0) + 1720, — m)yp = 0. We first multiply on the
left by ~° to obtain

210, (1) + 200_1py + 1y 04101 + 4202)1 — mAy%y = 0. (10.9)
Next we multiply (10.9) by A~ on the left and also separately multiply it by AT on the left to obtain the two equations
20_py = [~ (v'00 +7°02) + m W), 2000 = [~y (v 0+ 7°02) + ma ). (10.10)

Since the 0_1)_) equation contains no time derivatives, 1)) is thus a constrained variable, consistent with it having no
conjugate. Through the use of the inverse propagator () '(z7) = e(x™)/2 we can rewrite the d_t_) equation in (10.9) as

doatatatan) = o [ duele™ = w010+ 20) + T (oo, a0,
pell = 5 [ duele™ = w2 + ml] 1 (10.11

and recognize 1(_y as obeying a constraint condition that is nonlocal. It is because 1(_) obeys such a nonlocal constraint
that it is known as a bad fermion. Since it is a constrained variable it does not appear in any fundamental anti-commutation
relation. Nonetheless, one can still use (10.8) and (10.11) to construct a {@D(_),@Dg_)} anti-commutator.
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In this way we obtain (Mannheim, Lowdon and Brodsky 2019)

0 0
()0t 1 2 . — T + .1 .2 -
{ax_ « (l‘ 7$ 7x 7$ )7 ay_ W(_)]ﬁ(x 7y Jy 7y )}

1 o 0 0 0
=3l |7 - o™ —y )i’ —yh)o(z® — v 10.12
4 of [ oxl 8:{;1 81’2 8$2 +m ] 6(1’ Yy )6($ Y )5(x Y )7 ( 0 )

R NI HEARTNR Y

1 [ 909 90 S
16 a8 [_3331@3;1 T 92 on2 +m2] /du e(z” —u)e(y” —u)d(zt — yh)o(2® — y?). (10.13)

As we see, the equal " bad fermion sector {wé_)(ﬁ, xl x? x7), [wg_)]g(ﬂ, Yt 2, y‘)} anti-commutator is non-vanishing,

with its nonlocal nature being apparent. However this non-locality is restricted to the light cone since with 2+ = y*, 2! = y?,
2? = 32 the quantity (7 —y")(z™ —y~) — (2! — y)? — (22 — y?)? is zero for any value of x~ — y~. As we also see, the
equal light-front time fermion sector anti-commutators given in (10.8), (10.12) and (10.13) not only look different from their
instant-time counterparts given in (10.2), because of the presence of the non-invertible good and bad projection operators
they appear to be altogether inequivalent to their instant-time counterparts.

But still the light-front normalization is arbitrary.

To reconcile everything we will look at UNEQU AL time commutators and anti-commutators. But first a Dirac equation
curiosity, Fock space, and the light-front Hamiltonian.
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11 A DIRAC EQUATION CURIOSITY

In writing down the Dirac equation Dirac did not start with the covariant

(i7°0, + i7" 0, — m)y = 0, (11.1)
but instead started with

100 + ia® O — Bmap = 0. (11.2)

These equations are equivalent since (11.1) and (11.2) can be derived from each other by multiplying through by 3 = +°
and setting v* = Ba®. In the Dirac basis for the gamma matrices one takes 79 to be diagonal and has

I 0 0 o 0 o 0 I
0 _ _ ko k ko ko k 5 _
Y = bp = <0 —I)’ ap = (Uk O)’ p = Ppap = (—Uk 0>7 D = (I 0)- (11.3)

In light-front coordinates the covariant Dirac equation takes the form
(17T 04 4+ iy O_ 4+ iy 0y + iy?0y — m)yp = 0, (11.4)

where v = 7% 4+3. However there is no light-front analog of (11.2), since (y7)? and (y~)? are zero, to thus not be invertible.
Thus even though the invertible 4 and 72 obey (7%)? = 1, (7?)? = —1, the non-invertible v+ and v~ are divisors of zero.
Consequently, one cannot multiply the light-front (11.4) by v and obtain a light-front analog of (11.2). Since 4% and v~
are divisors of zero, there is no similarity transformation that can effect SY'S~1 = 4+, §435~! = 4~ and there thus are
intrinsic differences between light-front fermions and instant-time fermions. Moreover, it is because v+ and v~ are divisors
of zero that (11.4) breaks up into good and fermions, with AT = (1/2)7%y* being projection operators, i.e., being operators

that also are not invertible.

Finally, we note that even though v and 7~ are themselves divisors of zero, the products v*y~ and v~ are not, with
combination vy~ + v~y evaluating to 4. In consequence, ivt0, + iy~ 0_ squares to —40,0_, with the Klein-Gordon
equation in the form [40,0_ — (01)* — (92)* + m?|yp = 0 then following from (11.4).
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12 WEYL BASIS FOR THE DIRAC GAMMA MATRICES

In working with the A* and A~ projection operators it would be very convenient if we could find a basis for the gamma
matrices in which AT and A~ are diagonal. It turns out that there is such a basis, the one Weyl used to diagonalize v°. The
Weyl basis 74, is constructed from the Dirac basis 7} via the similarity transform

T = (1 = )b 7a(l +759D): (12.1)
This yields
0 —1 0 o o 0 I 0
0o _ k k k k 5 _
Ay =1 =1) [5 (LEm7D)] 51 +5p) =5 (1 Ew7w) - (12.3)

In this basis we find that not only is 72 diagonal, Ay, and Ay, are diagonal too. They take the form

1 000 0000
0000 0100
+ -

AW_ 00O0O0]’ AW_ 0010])’ (12'4)

0001 0000

and effect

() () () 0

0 | e {125
AL |2 = . A = . 12.5
Wl | T o] A e | T e (12:5)

Py Py Py 0

Hence in the Weyl basis we can treat the good and bad fermions as two-component spinors.
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13 INSTANT-TIME AND LIGHT-FRONT SCALAR FOCK SPACE EXPANSIONS

The normalization of the commutation relations fixes the normalization of [a, a'] commutators
[p(a", 2", 2%, 2%), Bop(a”, y' 7 7)) = i0(a' — y')o(a” — y)d(a” — ).
(P2, 2t 2%, 27),20-0(a",y',y y 7)) = id(a' — y')a(a® — y)d(a” —y7). (13.1)

In solutions to the field equations the instant-time scalar field Fock space expansion with E> = pi + p3 + p3 + m” is of form

3 -
oatat %) = o [l B B, () =S (132)

Contains —oo < p3 < oo, well-behaved at p3 = 0.

In solutions to the field equations the light-front scalar field Fock space expansion with F} 2= (p1)? + (p2)* + m? is of form

dp_
gb(aﬂ',gjl’gﬂ’x = 27r 3/2/ dpl/ dp2/ 1/2

L2 - - 1 2
> |:€—2(pr+/4])+19$ +pr1at+pox )CL( 7 Fpa: J4p_+p_x”+prat+paa?) T(

p17p27p—)+€( ap p17p27p—) )

a(p). ol ()] = 36(0- — 1 )6(pn — 2,)6(p2 — 25) (1)

Singular at p_ = 0, undefined at z* =0, p_ =0, (p_ =p*/2, p. =p~/2).

Contains 0 < p_ < oo only, Light-Front Hamiltonian approach restricts to p_ > 0, py < o0.

Thus we go beyond the Light-Front Hamiltonian if have processes with p_ = 0. This happens in the vacuum sector where
the tadpole is —i(2|(0)¢(0)|2) with z+ = 0. If we bring zero four-momentum into the cross in the vacuum tadpole then
the only allowed momentum in loop has p_ = 0. If we exclude p_ = 0 then tadpole is zero. This is a potential solution to
the cosmological constant problem. But it fails since we have to deal with the indeterminacy of z*/p_ at = =0, p_ = 0.
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14 INSTANT-TIME AND LIGHT-FRONT FERMION FOCK SPACE EXPANSIONS

The instant time anti-commutation relations are of the form
[gala, ot a2, 2%), 0l o2 0) | = Basd(a — )0 — y2)5(° — o). (14.1)

In solutions to the field equations the instant-time fermion field Fock space expansion with E> = pt + p5 4 p3 +m? is of form

3 m \ /2 , .
) =X [t () B d ol e (142)

where s denotes the spin projection, where the Dirac spinors u(p, s) and v(p, s) obey (p — m)u(p, s) = 0, (p +m)v(p, s) =0,
and where the non-trivial creation and annihilation operator anti-commutation relations are of the form

{b(p,5),0' (7, 8)} = 6500 (P = 1), {d(@,s),d' (7, 5)} = 6500 (5 — ). (14.3)

The light-front anti-commutation relations for the good fermions (the ones with canonical conjugates) are of the form

{Wlala® 2 a® 27), [l st ' %y )} = ALd(am —y )o(a" —yh)o(a® — o) (14.4)

and the Dirac equation is of the form
(i7+a+ + i’y_ﬁ_ + 7:7181 + i7282 - m)¢ = 07 uJ([+) (p7 S)“(—F) (p7 S/) = 2p—5s,s’; UL,) (p7 S)’U(+) (p7 S,) = 2p—6s,8’ (145)

In solutions to the Dirac equation the light-front fermion field Fock space expansion with F} = (p1)* + (p2)* +m? is of form

Z/ dpl/ dpg/ dp 3/2 1)1/2 [b(p, s)u(p, s)e % + d (P)v(p, s)et P, (14.6)

where s denotes the spin projection, where the Dirac spinors u(p, s) and v(p, s) obey (p —m)u(p, s) = 0, (p +m)v(p,s) = 0,
and where the non-trivial creation and annihilation operator anti-commutation relations are of the form

{67, 5),b"(7, )} = 65.00(p— — p)6(p1 — P)S(p2 — Ph),  {d(P,s),d" (7, 8')} = 6s.06(p— — p_)0(p1 — P1)S(p2 — ph). (14.7)
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15 THE LIGHT-FRONT HAMILTONIAN
The light-front scalar field action is of the form
Iy = / d'z(—g)*10,00"¢ =1 / dz*dz~dz'dz*3[0, 00" ¢ + O_¢0~ ¢ + 0190 ¢ + 020 ¢]

— / d'z(—g)*30,00"¢ = 1 / dz*da~dz'dz* 1204 ¢0_¢ + 20_¢d. ¢ — 019019 — DagpDag)], (15.1)
where 0, = 0¢/0zt, 0_ = 0¢/0x~, 0Y¢p = 20_¢ = 20¢/0x~, 0~ ¢ = 20,¢ = 20¢/0x". With light-front metric ds? =
gudatdz” = (1/2)dzdz™ + (1/2)dz~dzt — (dz')? — (dx?)* we define

1 I i
Tw/ = (_9)1/2 59“1/ = u¢ay¢ - g,uz/%a d)aong (152)

and obtain
T, (front) = 3[07¢0s¢ — 0~ ¢0_¢ — 0'¢d1p — PO,
T (front) = 07 ¢0_¢, T* (front) = 0tpdip, T ,(front) = 0" pDa0. (15.3)

However, since 07¢ = ¢g""0,¢ = 20_¢, 0+¢ = g+,0'¢ = (1/2)0~ ¢, we find that 0t 0.9 — 0 ¢0_¢ = 0. Thus we can
replace (15.3) by

T, (front) = 1[01¢01¢ + 020029,
T+ (front) = 20_¢0_¢, T (front) =20 _¢d¢p, T (front) = 20_¢da¢. (15.4)

With this T, we fix the overall normalization of the light-front commutators as given earlier via

p,=1 / do~da'dz*T",, [P, ¢] = —i0.¢ (15.5)

A similar calculation in the fermion case then yields the pure good fermion (Mannheim, Lowdon and Brodsky 2019)

P, = / dy~dy'dy* | ()0, ) (), [P sy (2)] = =i0,tb ) (@) (15.6)
to then fix the overall normalization of the good fermion anti-commutators given earlier.
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16 UNEQUAL TIME COMMUTATORS AND ANTI-COMMUTATORS

Following Mannheim (2020):
UNEQUAL TIME Scalar instant-time commutator

iMNz—y) = [p(2%, 2", 2%, 2%),0(y", ", v", )]

et @

R
_ /(%)32])(6 ple=) _ girle—)

B~y — T ) = 06—y + 1T = )
27 2|7 — ]
i
= —oe(@’ =)ol = ") = (@ =y = (@ =) = (2 =), (16.1)
Since it holds at ALL times, it also holds at EQUAL light front time.

Substitute z° = (z" +27)/2, 2 = (z* —27)/2, YW = (y"+y)/2, v’ = (y" —y)/2:
Az —y) = —id%(ﬁ +am =yt =y )ol(zT =y )T -y ) — (a' =y = (¥ —97)7]. (16.2)

ZA(QZ’ o y)|x+:y+ - [¢($+, xla IQ, JI_), ¢($+7 y17 y27 y_)} = —%.E(QZ_ o y_>5(331 o y1)5($2 o y2) (163)

At 27 =y" UNEQUAL instant-time commutator is EQUAL light-front time commutator

Light-front quantization is instant-time quantization, and does not need to be indepen-
dently postulated.

29



UNEQUAL TIME Abelian gauge field instant-time commutator

(A (2, 2t 2%, 2%), Ay’ vt v )] = iguw Al — y)
7
= —gguw(ﬂ?o —")o[(a")? — (2')® — (2%)* — (2%)7]. (16.4)
Leads to
_ _ 1 _ _
[AV(:C+7 xlv 5132, X )7 AM(ZC+7 y17 y2> Y )] = Zglwe(x —Y )(5($1 o yl)é(x2 o y2>- (16'5)

At 27 = y* UNEQUAL instant-time commutator is EQUAL light-front time commutator
Similar result holds for non-Abelian gauge field.
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17 FERMION UNEQUAL INSTANT-TIME ANTI-COMMUTATOR

In analog to our discussion of the scalar field given above, we now derive the light-front equal z* anti-commutators by
starting from the unequal instant-time fermion relation

{@Z)a(xo,xl,ﬁ,x?’),w;(yo,yl,y2,y3)} = [(i’y“’yoaﬂ] b iA(x —y), (17.1)
where
ANz —y) = —%6[%(93* +am =y =y )ol(eT —y )T —yT) — (2 —y)? = (2" — 7)) (17.2)

is the unequal instant time scalar field commutator. At this point we are treating fermions as standard 4-component spinors,
and the unequal time fermion anti-commutator is non-local (it contains derivatives of the spatial coordinate delta functions).
We can get something local if we can isolate the £~ derivative term. So project out everything else.

We multiply (17.1) by AT = (1/2)(1 +~°y%) = (1/2)7°y" on both the right- and the left-hand sides. Noting that

ATAPAT =0, ATYIAAT =0, ATHYHOAT =0, ATH AT =0, ATy 7°AT = 2AT,

’70(9() + ’7383 = 70(@+ + 8_) + 73(84_ — 0_) = ’7—’_84_ + ’y_@_, (173)
from the right-hand side of (17.1) we then obtain
AL (48, +m)7"] AT —y)Ays = 20A ;0 iA(IT;x — y). (17.4)

We now substitute 2° = (z7 +27)/2, 2 = (" —27)/2, y* = (" +v7)/2, ¥ = (y* — y~)/2, and on the light cone use of
(17.2) enables us to rewrite the right-hand side of (17.4) as

21\ T ﬂz’A(IT; (x —1y)*=0)

B Qg =
— 20y | e b a =y =l e ) = (@ P -
L L (T T I (T S 0
+2iA [—idé(x* tam =yt =y )@ =y )@ -y )T —y) = (@ —y) (0 - y2)2] : (17.5)



At ozt = y* (17.5) takes the form

22’A;rﬁa;i_z’A(IT; (x —y)* =0)

= Algo(x™ — y)o(xt —y)o(x? — y?). (17.6)

Equating with the good fermion projection of the left-hand side of (17.1) thus yields
AL <¢y(x+, L e Tl T e N CA TR s Vi LM C A el x‘))A%
- {[¢(+)(Q§'+, xla 1'2, ZU_)]Q, [¢Er+)]/3(x+7 yla y27 y_)} = A;ﬁé(aj_ o y_)(S(I'l o y1)5($2 T y2) (177)

We recognize (17.7) as the good fermion equal light-front time anti-commutation relation derived earlier. Thus as noted
in Harindranath 1996, Mannheim, Lowdon and Brodsky 2019, Mannheim 2020, the good fermion equal light-front time
anti-commutation relation follows from the equal-time instant-time fermion anti-commutation relation.

Projecting with A~ on the left and A" on the right gives

{W’H)]V(@a [wi_)}a@)} = se(@™ =y )iV V' +7777) —my Lozt —yh)o(a® — y?). (17.8)
Projecting with A~ on both right and left gives

(el a2t o) Wl vt ) }

! o [ 0 9 0 9 + mﬂ /du_e(x_ —u )e(y” —u)o(zt —yh)o(x® — o). (17.9)

_ A |- _
1 oxloxl  0x?0x?

At 27 = yT UNEQUAL instant-time anti-commutator is EQUAL light-front time anti-commutator.
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18 THE TAKEAWAY

Light-front quantization is instant-time quantization, and does not need to
be independently postulated. The seemingly different structure between
EQUAL instant-time and EQUAL light-front time commutators is actually
a consequence of the structure of UNEQUAL instant-time time commuta-
tors and anti-commutators as restricted to equal 2" or equal z™*.

Now the transformation 2+ = 2" + 2%, v = 2 — 2% is not a Lorentz trans-

formation but a translation, i.e., a general coordinate transformation. But
for theories that are Poincare invariant this is a symmetry. Thus:

GENERAL RULE: ANY TWO DIRECTIONS OF QUANTIZATION
THAT CAN BE CONNECTED BY A GENERAL COORDINATE TRANS-
FORMATION DESCRIBE THE SAME THEORY.

BUT IN THE QUANTUM THEORY TRANSLATIONS ARE UNITARY
TRANSFORMATIONS. THUS INSTANT-TIME AND LIGHT-FRONT
THEORIES ARE UNITARILY EQUIVALENT, AND ARE THUS ONE
AND THE SAME THEORY.
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19 UNITARY EQUIVALENCE VIA TRANSLATION INVARIANCE

So far the discussion has only dealt with free theory commutators, and they just happen to be c-numbers.
However, for interacting theories we can only discuss matrix elements. With

[P, ¢] = —id,0, [P, P =0 (19.1)
to all orders in perturbation theory because of Poincare invariance, we introduce
U(Py, Ps) = exp(iz® Py) exp(iz’ Ps). (19.2)
It effects

Up(IT:2°, 2t 2%, =2 ) Ut = ¢p(IT; 2" + 2%, 2, 22, 2° — 2%) = ¢(LF: 2zt 2t 2% 27)

(19.3)
Then with a light-front vacuum of the form |Q2p) = U|€2;) we obtain
—i(Q|[p(IT; 2°, 2, 22, —2?), p(0)]|Q) = —i(Q|UTU[G(IT; 2°, 2!, ?, —2?), (0 UTU )
= il B(LF 2t o, 2%, 1), 6(0)]0), (19.4

to all orders in perturbation theory. We thus establish the unitary equivalence of matrix elements of instant-time
and light-front commutators to all orders.
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The same equivalence holds for the all-order Lehmann representations. For the instant-time case we have

(QUSIT:2). T ))0) = 55 [ doplo?, 1) [ dactan)ala? = e
= / Ooda2p(a2,IT)z'A(]T, FREE:x —1y,0%), (19.5)
where :
plq*, IT)0 273254 — q)[(QeO)p)*,  Pulp) = pylop), (19.6)

as written in instant-time momentum elgenstates.

For the light-front case we have

(QUBLF:2) o LF i) = s [ drplo L) [ ataeta,)o(a? = o) e,
= /000 do*p(c*, LF)iA(LF, FREE;x — vy, 07, (19.7)

where

p(qyu, LF)

= q)[(Qe(0)lpy) " = pl¢*, LF)0(gy), (19.8)

as written in light-front momentum elgenstates. Then with

Ulpt) = P4, Ulps) = Ip%),  Ulpi) = [p1),  Ulpg) = [p) (19.9)

we obtain the all-order

Qllo(IT; 2), p(IT; y)|[2) = (QU[P(LE; ), S(LE; y)][€2). (19.10)
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With the all-order momentum operators having real and complete eigenspectra we have the all-order
PIT) = [P IT))pp(IT)(p"(IT)|, Bu(LF) =) [p"(LF))pj(LF){p"(LF)|. (19.11)
With eigenvalues not changing under a unitary transformation, with U(Py, Py) = exp(iz®Py) exp(iz'Ps),
[Py, P)) =0, we obtain
Py(IT) = URITYU™ = U Y |p"(IT))pi (" (IT)|U
= > 1P (L) (Pl + p)(p"(LF)| = Py(LF) + P_(LF). (19.12)
Given (19.11) and (19.12), there initially appears to be a mismatch between the eigenstates of Py(IT) and
P, (LF). However, for any timelike set of instant-time momentum eigenvalues we can Lorentz boost py, po
and ps to zero, to yield
P1 = 07 P2 = O? pP3 = 07 Po = m. (1913)
If we impose this same p; = 0, po = 0, p3 = 0 condition on the light-front momentum eigenvalues we would
set p. = p_, p* = 4p>. = m?, and thus obtain
p=0, p=0, pr=p., p=2pr=m, p=g¢"p,=m, p =g'p.=m (19.14)

Thus in the instant-time rest frame the cigenvalues of the contravariant P°(IT) and P~(LF) coincide. In
this sense then instant-time and light-front Hamiltonians are equivalent. And non-relativistic in the light-front
case still means p3 =0, i.e., p. =p_, and not p_ =p* /2 =0.

Having now established the equivalence of commutators and the equivalence of Hamiltonian operators, we now
proceed to establish the same equivalence for both free and interacting instant-time and light-front Green’s
functions.
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20 EQUIVALENCE OF INSTANT AND FRONT PROPAGATORS AND TADPOLES

®

Construct tadpole as z# — 0 limit of propagator (not two-point function), i.e., use z* as a
regulator.

. 1 e—ip-x
D(s) = ~i(2B(0)p(x)p(0) + O(~o)s )OI = 15 o / dp e 0 =X oo =x" (200
D(at = 0) = (o000 = 3 [ dlpr— 202)
(27)4 p? —m?2 +ie
D 1 PR o~ i(poa+prat +paa+p3a?)
Instant) =
(':U 71nS an ) (27_‘_)4/ pO pl p2 pS (p0)2 . <p1)2 . (p2)2 . (p3)2 . m2 _|_ ’1:67
D ¢ 9 PR o ip+at+prattpaattp_a”)
1) = _
(", front) <27r>4/ Ty o By Sy Eppc g
1 1
D(z" = 0. instant) = dpodpdpod
(@ =0, instant) <27r>4/ PP P = (e = i€’
2 1
D(x" = 0. front) = dp_dpdp-dp_ ) 20.3
(@ =0, front) <zw>4/ D 0 — (paff — i 1 e (203

For all of these Feynman contours there are only poles, except D(z" = 0, front), for which
the circle at infinity in the complex p, plane is not suppressed.
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21 THE NON-VACUUM INSTANT-TIME CASE

In the instant-time case the Feynman integral is readily performed since it is just pole terms and for the
forward D(z" > 0, instant) = —i(Q;|0(z")p(2°, 21, 2%, 2%)$(0)|Q;) we obtain

D(2" > 0,instant) = D(z” > 0, instant, pole)

= T / e T = <§) HP (m(z2)'/?). (21.1)
—00 D
Insertion of the Fock space expansion for ¢(x°, !, 22, 23) yields
: < By .
D(z" > 0, instant, Fock) = —@;)3 /OO Q—é;e_lprOpr' (21.2)

We recognize (21.2) as (21.1), to thus establish the equivalence of the instant-time Feynman
and Fock space prescriptions.
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22 THE NON-VACUUM LIGHT-FRONT CASE

In the light-front case poles in the complex p, plane occur at

(p1)” + (p2)” +m”

dp_ '
Poles with p_ > 07 thus all lie below the real p, axis and have positive EZ’), while poles with p_ < 07 all lie
above the real p, axis and have negative E]’?. For z* > 0, closing the p, contour below the real axis (which for

™ > 0 suppresses the circle at infinity contribution) then restricts to poles with E, >0,p- > 0%. However,

in order to evaluate the pole terms one has to deal with the fact that the pole at p_ = 0™ has E]g = 0.
Momentarily exclude the region around p_ = 0, and thus only consider poles below the real p, axis that have p_ > 4.
Evaluating the contour integral in the lower half of the complex p. plane thus gives

2 o dp_ 00 00 . ~
D(I+ > 0’ fI‘Ont, pole) - _ (2 2)3 / 4p / dp1/ dpze—Z(prJr-i-pfx +p1attper?)—ext /Ap_

n 0 P— J - —00

1

T /OO dp_6_ip*m_+i[(m1)2+(x2>2]l?f/x+—im2$+/4p7—6x+/4p,
]

pe=Ey———, E=

' (22.1)

 Am2gt
1 = —ip_a?/zt —im?at —ex™
=~ /5 dp_e -/ [Ap-—e™[Ap- (22.2)
If we now set & = 2™ /4p_, we obtain
1 ot /48 doa _; » 2
D(z* > 0, front, pole) = — — e dasiomTmoc, 22.3
(x™ > 0, front, pole) 167r2/0 " (22.3)

In (22.3) we can now take the limit § — 0, 27 /45 — oo without encountering any ambiguity AS LONG AS z* IS
NONZERO, and with 2T > 0 thus obtain

D(z* > 0, front, pole) = — ! / Tde i paian—ac _ L (17 1/2}1(2)(771(332)1/2) (22.4)
’ ’ 1672 J, a2 8 \ 22 1 ' '
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Comparing with (21.1) we see that D(z* > 0,instant) and D(z* > 0, front) are equal.

1 .2

Inserting the Fock space expansion for ¢(xt, z', 2% 27) gives precisely the same result, and thus we obtain

D(z° > 0,instant) = D(2" > 0, instant, pole) = D(2° > 0, instant, Fock)
= D(z" > 0,front) = D(z" > 0, front, pole) = D(z" > 0, front, Fock). (22.5)

General rule: the Feynman and Fock space prescriptions will coincide whenever the only contribution to

Feynman contours is poles. Thus for 27 > 0 the Feynman and Light-Front Hamiltonian approaches coincide.

But what about ™ = 0?
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23 THE INSTANT-TIME VACUUM CASE

In the instant-time case one can readily set x* to zero, and obtain

1

1
dpodp1dpad :
2n)’ | vt (p0)” = (p1)” = (p2)” = (ps)” = + i
= D(z" = 0,instant, pole) = D(z" = 0, instant, Fock)

i > d3p 1 “da o
_ _ —iam —ae 23.1
(27)3 /_oo 2E, 1672 /0 a2® (23.1)

D(z" = 0, instant) =
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24 THE LIGHT-FRONT VACUUM CASE - POLE AND FOCK SPACE CONTRIBU-

TIONS
In the light-front case we set x* to zero and evaluate
D(x“—Ofront)—L/d dp1d dp- ! (24.1)
| eyt ) A G T G e i |
Again we need to take care of the p_ = 0 region, so we again introduce the § cutoff at small p_. On closing below the real

p. axis the only poles are those with p_ > 0, and for them we obtain a pole contribution of the form

dp_
D(z" = 0, front, pole) = / dp1/ dpg/ P : (24.2)

4p_

with the residue at the pole being a constant, i.e., not depending on [(p1)? + (p2)? +m?]/4p_. Then on setting p_ = 1/a, we
are able to let p_ go to zero, to obtain

1/ dCY
D(z" = 0, front, pole) = ~T6r 3/ dp1/ dpQ/ = 16 2

For the Fock space prescription we set
) 3/2 / dp1/ dpg/ 1/2 la, + a;], (24.4)

and on inserting ¢(0) into —i(Q2|$(0)4(0)]|€2) obtain

da

dp1 dp2 (24.3)

2
D(z* = 0, front, Fock) ! / dpl/ dpQ/ . D(z* = 0, front, pole). (24.5)
P

Comparing with (24.2) we again see the equivalence of the pole and Fock space prescriptions.
However, something is wrong. We are evaluating the m-dependent D(x* = 0, front) as given in (24.1), and yet we obtain
an answer that does not depend on m at all. What went wrong is that we left out the circle at infinity.
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25 THE LIGHT-FRONT VACUUM CASE - CIRCLE AT INFINITY CONTRIBUTION

To evaluate the circle at infinity contribution we introduce the regulator

1 o]
= —i | dae'™Atie), 25.1
(A + ZE) ¢ /0 ae ( )

For p_ > 0 the regulator converges on the UPPER half circle, and there are no poles at all. We obtain

D :c“ =0 p > 0, front upper circle)

dp

dpQ

d 2
87T3 dp / o —zam ae/ ZR629d964zap Re?

dOz B - 6( diop_Re? —4zap Re? )
87T3/ dp / iam®—aq

dpl ZRezedG / dovei@p-Re—(p1)* = (p2)* —m?+ie)

s

diop_ 0
/ / dOz —zam2 e (6—4204p R 47ap R)
~ 8 4diop_
da >_qcSin(dap_R)
d —iam : 25.2
4 / b / dap_ ( )

Then, on letting R go to infinity we obtain

1 e *d L9
D(az" = 0,p_ > 0, front, upper circle) = —— dp_/ 2% giam O (4ap-)
47 «

1 o & dOé . 2 1 & dOé . 2
o d _ _ —iam 70465 4 _ _ _ _ —iam 70&6. 253
snz ) P /O a’ Gap-)=—55 | 52° (25.3)

We thus establish the centrality of p. = 0 modes.

Similarly, for p_ < 0 close on the LOWER. half circle, and again there are no poles. We obtain
D(z" = 0,p_ > 0, front, upper circle) = D(a* = 0,p_ < 0, front, lower circle), (25.4)
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and thus
D(z" = 0, front) = D(2* = 0,p_ > 0, front, upper circle) + D(z" = 0, p_ < 0, front, lower circle)
1 /OO dQ —iamz—ae (25 5)
167'('2 0 062

Now not only is there now an m dependence, we obtain

D(z" = 0, front) = D(z* = 0, instant). (25.6)

So again, light-front quantization is instant-time quantization. And even though there is only a circle
at infinity contribution in the light front case, it is this circle at infinity that enables the light-front and
instant-time vacuum graphs to be the same.
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26 RECONCILING THE FOCK SPACE AND FEYNMAN CALCULATIONS

To avoid p_ = 0 difficulties we use the regulator on the real p, axis, and set

D(z", front, regulator)

- QZ / o +/ dp: / dps / dp-e !0 ) / dovei®pep—— (1)~ (2)? -2 i)
0
= T o / dp / dps / dp_e™ "t mapr) / dove' =P =l =i 540y )
(27T> —00 —00 0 0

0 00
dp_e_i(pxwlxlﬂwg)/ doe’ P =) =m* i 5 g0 gt (26.1)
—00 0

dp1 dp>
—0o0 —00

On changing the signs of p_, p; and py in the last integral and setting Fp2 equal to the positive (p1)? + (p2)? + m? we obtain

D(z", front, regulator)

2 i . 5
! / dp1/ dp2/ 4p ilp—a”Fpiw +p2x)/ dae™ CEHO/P-5(0 — o /4p )
- 0
d — — 1 2 o . 2 -
27r / dpl/ dp2/ e!(p-v tpz Hm)/ doze”+(Fp_“>/4p‘5(Oz+:U+/4p7)
0

229 / dpl/ dpQ/ Z];_ i(FJat [Ap_+p_x™+pra +poa’+izte/dp )

2 0 dp_ . p2
1 / dp1/ dpg/ p z (F, xt Jdp_+p_x"+prattpor—ixte/dp_ )7 (262)
27T 4p_

and note that the structure of (26.2) is such that for = > 0 (forward in time) one only has positive energy propaga-
tion, while for 7 < 0 (backward in tlme) one only has negative energy propagation. With the insertion into D(x*) =

—i{Q[0(xT)d(x)p(0) + O(—xT)p(0)(x)]|€2) of the Fock space expansion for ¢(x#) precisely leading to (26.2), we recognize
(26.2) as the z# # 0 D(a", front, Fock).
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Now if we set 2 = 0 in (26.2) we would appear to obtain the m-independent D(z* = 0, front, Fock) given in (24.5).
However, we cannot take the x* — 0 limit since the quantity 27 /4p_ is undefined if p_ is zero, and p_ = 0 is included in
the integration range. Hence, just as discussed in regard to (22.3), the limit is singular.

To obtain a limit that is not singular we note that we can set z# to zero in (26.1) as there the limit is well-defined, and
this leads to

:z:” = 0 front regulator

dp1 dpg dp dae ~(P1)*=(p2)" _m2+“)5(4ozp )
2" G0~ (p1)2— (p2)? ~m?tie)
— dp1 dpz dp P 6(p-), (26.3)
and again see the centrality of p. = 0 modes. If we do the momentum integrations we obtain the m-dependent
1 “da
D(z" = 0, front, regulator) = — 62 / a—(;e_w‘mQ_ae. (26.4)

We recognize (26.4) as being of the same form as the m-dependent D(x# = 0,front) given in (25.5). We thus have to
conclude that the limit 2 — 0 of (26.2) is not (24.5) but is (26.4) instead, and that
1 “da o

D(z" = 0,front) = D(2* = 0, instant) = 1672 0 Ee*mm e (26.5)

Setting p_ = 0 and then 2% = 0 is not the same as setting 2™ = 0 and then p_ = 0.

Thus because of singularities we first have to point split, and when we do so we find that it is the m-dependent
(26.4) that is the correct value for the light-front vacuum graph. And it is equal to the instant-time vacuum
graph.
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27 RELATIVISTIC EIKONALIZATION AND THE LIGHT FRONT

For eikonalization of a light wave one defines A, = ¢,e'’ and takes the eikonal phase to obey

dx
_ d_qﬂ —k,, k=0, (27.1)

where ¢ is an affine parameter that measures distance along the light ray (the normal to the propagating

0,T

wavefront). But if we set T = [ ! k,dxz", we would have T' = 0. If momentarily we nonetheless do set
T = [* k,dz", then for k, = (k, 0,0, %) we would have

(O + 03)T = 0, (27.2)
which we recognize as a light-front constraint. Now in light-front coordinates we have
1 1
kkt =4k ok — ki — k3, 0, = 5(80 +3), 0= §(ao — 33) (27.3)

Now we can be on the light cone if k. = k1 = ky = 0, with £_ unconstrained. Thus we can now set

T = / k_dx™, (27.4)

a quantity that is non-zero on the light cone. Since T" does not depend on ™ it still obeys 0,7 = 0.

The eikonalized ray thus travels on a light-front trajectory and not on an instant-time one (Mannheim, Class.
Quant. Grav 39, 245001 (2022), arXiv:2105.08556 [gr-qc]), with the trajectory being the normal to the wave
front of the propagating light wave.
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28 Light-front axial-vector Ward identity

Since the standard discussion of dynamical symmetry breaking only involves Feynman diagrams (non-trivial solutions to the
Schwinger-Dyson, Bethe-Salpeter and vacuum energy equations), the outcome is the same in both instant-time quantization
and light-front quantization, though in the light-front case we need to include the circle at infinity contributions to the
tadpole graph. While the same spontaneously broken symmetry outcome must also occur in the axial vector Ward identity,
the way that it does so in the light-front case is somewhat different from the way it does so in the instant-time case. This
is because of the role played by the light-front bad fermions.

To see the issues involved we analyze the components of the axial-vector current A* = ¢py*~y%. In light-front components
A+ = QwT 75¢ is written in terms of good fermions alone, A~ = 2wT 5@& is written in terms of bad fermions alone, and

@DH yiyoe and A? = 4pT~942454) contain both good and bad fermlons We take the axial-vector current to be conserved
SO that 0L AT +0_A~ + O A + 9,A* = 0. While the axial charge Q° = (1/2) [ dz~da'dz?AT = [da~ dxld:z:2¢<+) "
only contains good fermions, its light-front time derivative 9,Q° = —(1/2) [ dz~dz'dz?*(0-A~ + 0, At 4+ 9, A%) involves both
good and bad fermions. Since ¢y obeys the nonlocal ¥y = —(i/2)(9-) =i (v'01 + +*0) + m~ ¢4y given in (7.4), to
secure the light-front time independence of Q° requires that the fermion fields be more convergent asymptotically than in
the instant-time case. In addition, the scalar and pseudoscalar fermion bilinears are of the form

P =9l ) Y e, i =9l i + 9L Y, (28.1)

and thus they both contain both good and bad fermions.
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Noting that generically we have
A'BC'D — C'DA'B = AN(BCT + CTB)D — CY(DAT + ATD)B — (A'Ct + CTANBD + CTAY(BD + DB),  (28.2)

on using the equal light-front time anticommutators given earlier we obtain

Q% (x)in Y (x)] = / dy™dy' dy’ [0 () V) (), W] @V Ve (@) + il (@77 b (@)]
= il (@) (@) + il (@ P () = ()i (). (28.3)
Thus despite the presence of both good and bad fermions, they organize themselves to give [Q°, ()i (z)] = i) () (),

i.e., to give precisely the same form as in the instant-time case.
We introduce the vacuum matrix element of the light-front time-ordered product

(Q[O(x7) A" ()9 (0)ir1(0) + O(=27 )1 (0)in P (0) A (2)]|€2)
Since there is only one associated momentum vector in Fourier space, we can set

1

(Q0(2) A" (2)1(0)ir*1(0) + O(=aF)1h(0)iy 1 (0) A (2)]|2) = 2r)?

[ ey r ), (28.4)

where F'(p?) is a scalar function. With ,A" = 0 we apply 9, and then [ d'z to (28.4) to obtain
1

(2n)’

3(z)(QI[AT (), (0)in*(0)]]€2) = / d'pe? P’ F(p®), (28.5)

i/d4p54(p)p2F(p) = (QI[@"(z" = 0),9(0)ir*(0)]|2) = i (0)(0)]). (28.6)
Thus if 9,A" = 0 and |Q2) is such that (2] (0)1(0)|2) # 0, Q° must not annihilate the vacuum, and F(p) must contain a

pole at p? = 0. This then is how the Goldstone theorem is satisfied in the light-front case, with the bad fermions playing a
central role.
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29 THE MORAL OF THE STORY

When we let p_ — 0 we are letting p, = [(p1)? + (p2)? + m?]/4p_ — oo,
However x7 is the conjugate of p,, and thus as p, — oo, 7 — 0.
The p_ — 0 and the 7 — 0 limits are thus intertwined.

If we stay away from 27 = 0 and restrict to 7 > 0 and thus p_ > 0 as in the Light-Front Hamiltonian approach, there is
no difficulty as there are only poles and nothing is singular, with the forward scattering on-shell Light-Front Hamiltonian
approach thus being validated.

ll\_/

However this does become a concern for tadpole graphs as they have x* = 0, since we need both 0(z*) and 0(—=x
time orderings in the limit, with (Q|[0(z")p(x)p(0) + 0(—2)P(0)p(x)]|Q2) — (2][F(07)p(0)d(0) + 6(07)p(0)p(0)]|€2
(2[6(0)0(0)[$2).

If we compare

>

I dpodp1dpod o1 (Por’+p17! +p22®+p3a’)
D instant) =
(2", instant) 27) 4/ Podp1ap2 p3 (p0)?2 — (p1)? — (p2)% — (p3)2 — m? + ic’
D(z" f 2 dp., dpidpsd o—ilpsat+piattpoa?+p_z”)
0 — - 29.1
(«*, front) D+ap1ap2ap Apip — (p1)% — (p2)% — m2 +ic’ ( )
D(z" = 0,instant) = / dpodp1dp2dps :
’ (2m)? (P0)* = (p1)* = (P2)* — (p3)* — m* + i€’
2 1
D(z" =0,front) = —— [ dpidpidpadp- 29.2
(@ =0, front) (27r)4/ O p — () — (p2)? — 2 + i€ 292

we can transform each instant-time graph into each corresponding light-front graph by a change of variable. Thus they must
be equal. However, that does not mean that pole equals pole or that circle equals circle, only that pole plus circle equals

pole plus circle, as it is only on the full closed contour that the integrals are equal.
The transformation 2% — 20+ 23, 23 — 2% — 22 is a spacetime-dependent general coordinate transformation (not a Lorentz

transformation), and thus by the general coordinate invariance of the fundamental interactions it must be the case that
LIGHT-FRONT QUANTIZATION IS INSTANT-TIME QUANTIZATION, JUST ONE THEORY.
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30 INFINITE MOMENTUM FRAME CONSIDERATIONS

Under a Lorentz boost with velocity u in the 3-direction the contravariant and covariant components of a
general four-vector A* transform as

AO + UA3 A3 + UAO AO - uA3 Ag - UA()
0 3
A — 1= ) A — 1= ) Ay — 1= ) Az — 1= ) (30.1)
If we set (1 — u) = €2/2, then with € small, to leading order we obtain
AV + A3 A3+ AY Ay — A A3 — A
A ST 00, Ao L0, Ay =T 0%, Ay B0 0,
€ € € €
(A%)? — (A% = ATA™ — ATA™, (30.2)
where AT = AY 4= A% This leads to
+ 3
5 D" 2p- 2p—  dp®  dp-
—=—, Fk 30.3
PoTsTo Bt oo (30.3)

where B, = [(p3)? + (p1)? + (p2)? +ml)1/2,
On transforming to the infinite momentum frame we obtain

. o0 d3
D(z" = 0, instant, Fock) = D(x" = 0, instant, pole) = (2;)3 /OOQ—E];
> dp_
dp1 dp2 2p D(z" = 0, front, Fock) = D(x" = 0, front, pole).  (30.4)
jo
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. < i
D(z" = 0, instant, pole) = — ! /

dp_
2} / dp1/ dpg/ 2123_ D(z" = 0, front, pole)  (30.5)

and as such, the infinite momentum frame is doing what it is supposed to do, namely it is transforming an

_>_

instant-time on-shell graph into a light-front on-shell graph. However, this is not the correct answer as it does
not depend on m. As we showed in (26.5) the correct answer is the m-dependent
1 “da o

D(z" =0, front) = D(2" = 0, instant) = — —e el .
("' = 0, front) (2! = 0, instant) 672 /. wh (30.6)

Thus in this respect not only is the on-shell prescription failing for light-front vacuum graphs, so is the infinite
momentum frame prescription.

We thus have two puzzles: How could the limit in (30.5) lose its m dependence to begin with if it is a Lorentz
transformation. And second how do we recover the m dependence anyway.

For the first puzzle we note that since the mass-dependent quantity dps/2FE), is Lorentz invariant, under a
Lorentz transformation with a velocity less than the velocity of light it must transform into itself and thus
must remain mass dependent. However, in the infinite momentum frame it transforms into a quantity dp_ /2p_
that is mass independent. This is because velocity less than the velocity of light and velocity equal to the velocity
of light are inequivalent, since an observer that is able to travel at less than the velocity of light is not able to
travel at the velocity of light. Lorentz transformations at the velocity of light are different than those at less
than the velocity of light, and at the velocity of light observers (viz. observers on the light cone) can lose any
trace of mass.
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The resolution to the second puzzle lies in the contribution of the circle at infinity to the Feynman contour. In
the instant-time case the integral

dpodps

/ (p0)2 - (p3)2 — (p1)2 - (p2)2 —m? +ie

is suppressed on the circle at infinity in the complex py plane (p3 being finite), and only poles contribute.
However, when one goes to the infinite momentum frame in the instant-time case dps also becomes infinite
(p* = mu/(1 — v*)/?) and the circle contribution is no longer suppressed. Specifically, on the instant-time
circle at infinity, the term that is of relevance behaves as

/ Rie"dfdps
R2e20 — (p3)?’

(30.7)

(30.8)

and on setting € = 1/R in the infinite momentum frame limit, as per (30.3) the circle term behaves as the
unsuppressed

Riedf Rdp_ B ie?dfdp_
R2e2i9 _ R2p2_ - e2if _ p2_ ‘
Thus in the instant-time case one cannot ignore the circle at infinity in the infinite momentum frame even
though one can ignore it for observers moving with finite momentum. Consequently, the initial reduction from

the instant-time Feynman diagram to the on-shell instant-time Hamiltonian prescription is not valid in the
infinite momentum frame, and one has to do the full four-dimensional Feynman contour integral instead.

(30.9)
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31 INTERACTIONS

Two c-number approaches: path integrals and Feynman diagrams. Path integrals involve
integrals of classical variables in coordinate space. Feynman diagrams involve integrals of
classical variables in momentum space. For both we can transform from instant-time to
light-front coordinate and momentum variables using general coordinate transformations.
Thus if underlying theory and its renormalization procedure are general coordinate invariant
the equivalence of instant-time and light-front Green’s functions is established.

However, there is a caveat. For Feynman diagrams we need to start out with fully covariant
four-dimensional contour integrals if we want to establish the equivalence. We can obscure
the equivalence if we do the pole integrations in the complex frequency plane first, as then we
would have on-shell three-dimensional integrals. Also we would then have a zero momentum
mode problem. We can avoid this by not doing the frequency integrations until after we
have introduced the exponential regulators.

That the zero mode problem must be avoidable is apparent from the path integral approach
as it is purely in coordinate space and involves no zero momentum modes at all.
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32 MASSIVE FIELDS — SCALAR INSTANT-TIME CASE

INIT;x—y) = [p(a, 2!, 2%, 2 yyyy]
= / dp1/ dp2/ dps 32E <_’E( VHPET) e'E”@O_yO)_iﬁ(f_m). (32.1)

Here p3 ranges from —oo to co and integrand is Well—behaved at p3 = 0.

im (m 211/2
INIT; (z—y)*>0) = Ee(xo - yo)J ([( (G E ])1/]2 ),
AT (=P =0) = ——e(a’ = )0lw — ),
iAIT; (z —y)* <0) = 0. (32.2)

Discontinuous at m = 0, go off shell and write a contour integral in py since €(t) = 0(t) — 6(—t) and (¢) are distributions
with

1 e Wi 1 [ et
0(t) = ~5 dww e o - dww e (32.3)
with ¢ # 0 suppressing circle at infinity. As we will see, in ¢ = 0 vacuum case, no suppression. Get 6(0) = 1/2.
IAIT;z —y) = —Q—M@ dp1/ dpz/ dp3j{dpo
y [9(56 e 20 4+ y0)er ) f(a — ey — g(—al 4 el y)] (32.4)
(po)? — (2?3) (pl) (pz) m2 + i€ (p0)? = (p3)? — (p1)? — (p2)* — m? — ie '
Introduce exponential regulator, with the ie term suppressing the o = oo contribution when A is real
/OO daexplia(A + ie)] = —,i, (32.5)
0 1A
Obtain
INIT; 2z —y) = _L6($0 ) /OO d_a [e—i(;v—y)2/4a—iam2—ae X ei(x—y)2/4a+iam2—ae:| _ (32.6)
42 o 4a?
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33 MASSIVE FIELDS - SCALAR LIGHT-FRONT CASE

IALF;x —y) = o™, 2t 0 27),0y" v v y7)]
L dp1dpy / " b (e~ HE G =) Aptp- (7 =y )i (g 4@ =y)] il ) Ap - (a7 g )4y e =]
0

 4n3 4dp_
(33.1)
Here p_ only ranges from 0 to oo and integrand is singular at p_ = 0. So put p_ into the exponential.
IA(LF; 2 —y) = _%4_73/ dpl/ dp2/ dp- %d@r
<SU+ _ y e~ T+ y -y) 9(£E+ _ y+)€ip-(x—y) _ 9(—SU+ + y—l—)e—ip-(x—y)
X 2 2 2 2 _
4p+p— (p1) (pz) —m + i€ Apip— — (1) — (p2)* — m? —ie
_ Z + + * da —i(z—y)?/da—iam?—ae i(x—y)?/da+iam? —ae
: ' Ji(m[(x —y))"?) _im o Ti(m[(a - y)Y)?)
A(LE: (1 — )2 _ Mmoo+ Yl _
t ( ’ (‘T y) > 0) 477_6('1' y ) [(I’ o y)2]1/2 47‘_6(1’ y ) [(ZU o y)2]1/2 )
IA(LF; (x =) = 0) = ——e(a” = y")o[(x — )] = ——e(e” —y )ol(a —y)’),
s s
iA(LF; (z —y)? < 0)=0. (33.3)
1 & dOé : 2 : 2 . 2 . 2
A(LF: 7 — _ - .- Reand [ —i(z—y)?/da—iam?*—ae i(x—y)*/da+iam —ae}
ALF =) = —gela” =) [ g [e te ,
ZA(IT T — y) _ _Le(xo . yO) /OO d_Oé |:e—i(:z:—y)2/4o¢—iozm2—oze + ei(x—y)2/4a+iozm2—oze} . (334)
, 47T 0 40(2

Substitute 2° = (2" +27)/2, 23 = (z" —27)/2, " = (y" +y7)/2, ¥ = (y" —y7)/2, so that (z —y)? = (2" —¢°)* — (2% —
)2 — (2t -y ) — (22 —y?)? = (2" —y ") (2™ —y7) — (zt —y')? — (2® — y?)? the instant-time iA(IT; x — y) transforms into
the light-front ¢{A(LF; x —y). We have thus achieved our main objective, showing that iA(IT;x —y) and iA(LEF; x —y) are
related by a coordinate transformation, and are thus COMPLETELY EQUIVALENT.
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34 MASSIVE FERMION FIELDS

For instant-time case need FOUR-component fermion

{%(w ' 2?, 2%), 0yt o y)}

= [(Woﬁo + iy 08 4 iy O 4 in? 05 + m) 70] of iA(IT; x — ). (34.1)
For light-front case again need FOUR-component fermion
{tala®, 2 2%, 27), 0Tyt % y) )
= [(iv"0} + iy 0" + iy Of +iv°05 +m) "] oy ALF: x — y). (34.2)

Thus can derive unequal light-front time anti-commutators from unequal instant-time anti-
commutators. PROVIDED INCLUDE GOOD AND BAD FERMIONS

But what happened to projected fermion anti-commutators. We now derive them by pro-
jecting (34.2).
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0

{[w(+)]04($+’ ZCl, 56'2, ‘CB_)7 [qvbzer)]ﬁ(y—I_? yla ?JQ, y_)} — 2A;525)72A<LF Xr — ), (343)

9
{[olalz® 2 2% 27), Wl sy v vy )} = 2 i —iA(LF; @ — y). (344)

{[Wlala®, et 2 27) [0, s,y vy )} = ALgdla™ —y)dlat —yh)o(a® — ).

(34.5)
{—¢ (a: ot xt x), 0 [TN ]B(y Lyt y )}
oy~
B 1 0 0 o 0 o O
22/\0454 [ agjl 8331 — 03;2 83:'2 ] aTZA(LF Xr — y> (346)
i, _, 9 -
(g et otan), gl v )
L[009S e
_4AW[ 9l ] 83:25’332+m]5<37 yo)o(x” —y )o(x” —y). (34.7)

= ge(a” =y )iy YO +7705) — may Lued(at — yh)o(a® — ), (34.8)
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