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The program of this work:

Gauss’'s Law in temporal
) & Yan ng-Mills Theory:
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III) Transforming the QCD Hamiltonian to a
representation in which the interactions be-
tween the quarks and the ‘pure gauge’' compo-

1S between quarks — a non-
nalog to the Coulomb interaction in




an unitarily transform the “Gauss’s

G = 8;M;(r) + jo(r),
to 9;M;(r), find perturbative states for which
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and then unitarily transform back

0;M;(r)—06;M;(r) + jo(r) and |n)—|v)

to obtain the states that implement Gauss’s
Law. Alternatively, we can view 9;I1;(r) as the
form that the Gauss's Law operator takes in a

transformed representation, and transform all
operators and states in a similar way. Result:

QED in a representation in which Gauss's Law
iIs implemented and the Hamiltonian is ex-
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and 9;M;(r) are unitarily equivalent.

M2(r] = 0, but
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[Qa(r),gb(r’)] = igf°Ge(r)6(r — '), so that

Gga(r) and §;M%(r) can not be unitarily equiv-
alent | In QCD,

Ge(r) = 6;N&(r) + gf*°A (r)ﬂ°(r) +Jo(r)>

wiith ~af
WILTE Jo\1d

We will define J¢(r) = gfe®cAb(r)MS(r) (the
“pure glue” color charge density) and
.vg(r) = Jg(r) —{—jg(r). THEREFORE:

To find states that implement the non-Abelian
Gauss’s law, we must solve for them “by hand”.




SOLVING THE 'PURE GLUE' GAUSS'S LAW :
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Fourler transform of §;M%(r), and Jg(k) is the
Fourier transform of the “pure glue” color
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THIS IS A KIND OF AN OPERATOR DIF-
FERENTIAL EQUATION THAT WE MUST
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is, essentially, an operator derivative of W.




(where X%(r) = [—A%(r)] and where a?(r)
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components of the gauge field Af(r) respec-
tively).
WE OBSERVE THAT
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NOTICE THAT: the first line of the right-

hand side of this equation is exactly = _Jg(k)
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This equation raises the question: Would exp[.A;]
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commutator “debris” as it moves..

We have the following remedies for this prob-

lem :
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We define the ordered product || exp(Ay) ] ,
in which the n*" order term, ||(41)" ]|, repre-

expression, as is required. But the result of
commuting || exp(Ay) || , with % (k) is not the
formation of J§(K) to the left of | exp(A1) |,

as required. Only faﬁ’Y fdrp—"kr Aﬂ(r\ forms
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Further unwanted terms will be generated as
M) (r) is commuted, term by term, to the ex-
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only linear in the canonical momentum [$(r);
we represent it as A = ifdr A)(r) M)(r), where
AJ(r) is the series
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LEMMA: [|[exp(A), M1 (D]]] = ||14, M) ()] exp(.

We must construct the series representation
of A/(r) so that
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We now replace the missing [bg‘g(k
the left-hand-side of this equation to form
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hand side of the equation, and extend the
‘soft’ equality to an equation, valid for any

operator-valued field, V7(r) for which we are
free to, but not rpmnrpd to substitute I'l;y(r)
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8JVJ’Y(r) = (%.ﬂ](f) =0,

the operator equation reduces to the ‘soft’
equality on the preceding page.

nNntc
presents

Here /\A‘("n)( ) re

(m(") = [[ Y*"™(r) =) -yl |

m=1

where y ( ) —

ffn‘?V denotes the chain of structure ¢onstants
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and B(n) denotes the nt® Bernoulli number.
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whose nt" order term, A'(V Y (r)V.I(r), is
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( ( ) is the explicitly known inhomogeneous
ter in the equation:
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The equation that defines A°(r) does so im-
plicitly, in the form of a highly non-linear in-
tegral equation, in which Ajc-(r) recurs in to

. N ] bl | L | _* __ 8 _ - - . 4AB Ve N\ 1 »
arbitrarily high powers in B¢ ,.(r) and, to ar-
bitrarily high powers, in M?m(r).
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.A (r) GIVEN BY THIS NONLINEAR INTE-
GRAL EQUATION SATISFIES THE RECUR-
SIVE EQUATION THAT GUARANTEES THE

IMPLEMENTATION OF THE NON-ABELIAN
GAUSS'S
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What are the first few orders of Zj(r) ?
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C

Ve
o

ecoeu

Attachiné quarks to gluons — the basic idea:
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where Ue

3
L)

[éa(r)w

N

r) are in the “ordinary” or

P Ay
(

and ¢

)

‘/‘(r
C-representation.

where




Alternativelvy we can trancfarm +n the A vroan
{9 ALV Riyy YV LU LT diiornviiil LU LI JV 1T
P T SV U By o~ Py U P
resentation, in whnich
O A —1/ (DU
CANAY) c Y\r)uc,

and the gauge transformation Oxr(r) — (’) f(r)
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It is easy to see that the spinor field ¥ (r) is
gauge-invariant in the N representation, be-
cause (r) and G(r’) trivially commute. To
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where
Ve(r) = exp ( —-z‘gifé"(r)g) exp (—igX* ()5
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gau gauge field,
we note that the gauge-invariant gauge field
Ye(r) = Ve(r) ¢(r) itself is related to ¢¥(r) by
a gauge transformation, because there is an

exp —ztgza?ﬁ such that
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When the Hamiltonian for QED in the tempo-
ral gauge is transformed from the C to the N/
representation, the only remaining dynamical
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eiectromagnetic field are the ones between
the electrons and the gauge-invariant excita-
tions of the gauge field — which, in QED,
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T he interactions which, in the original C repre-
sentation, were mediated by the longitudinal,
gauge-dependent parts of the gaugé field —
the interactions mediated by the exchange of
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longitu ghosts” — appear in the
N representation as the non-local Coulomb

interaction given by




Here, we extend this approach to the non-
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excitations of the “bare” quark field ¥(r) are
gauge-invariant, and therefore already include
the gauge-dependent gauge field components

required to obey Gauss’s law | The inter
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1ese components of the gauge
fields and quarks therefore will no longer ap-
pear explicitly in the Hamiltonian in the N
representation, but will be replaced by non-
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We note the QCD Hamiltonian in the C rep-
resentation:
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Transforming to the N representation:

For O — Op we need Oy = L{gl@c‘b{c, SO
that the part of the Hamiltonian that involves
the spinor (quark) field transforms to
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The transformed Hamiltonian turns out to be
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for QED
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ro leading order in 1/4n|r—r'|, — QeQg/4TR;
van der Waals corrections are higher order.

Instead of jg(r) in [drdr' —————~=, we get
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Suppose the variation in the coefficient of

jo(xz) is gradual enough so that the series

D
haves like a multiple of Q. Since @ is the
generator of rotations in SU(3), its matrix el-
ements for singlet states should vanish.

r




