CHEP Joint International Workshop: Detector Development for High Energy Physics and Various Applications & 7th Luminescence Materials Workshop

Scintillators For Neutron Detection

Nguyen Duy Quang

Dalat Nuclear Research Institute, Dalat, Vietnam.

E-mail: duyquang1691@gmail.com

Feb 12-14, 2025, Jeongseon, Korea

- 1. Neutron Particle and It's Properties
- 2. Neutron Detection Principle
- 3. Scintillators for Thermal Neutron Detection
- 4. Scintillators for Fast Neutron Detection
- 5. Future Research

1. Neutron Particle and It's Properties

- The neutron is a subatomic particle, that has no electric charge, and a mass slightly greater than that of a proton.
- Protons and neutrons constitute the nuclei of atoms.

$$n^0 \rightarrow p^+ + e^- + \overline{\nu}_e$$

Lifetime:

- Bottle method (cold neutron): 877.75 s
- Beam method (hot neutron) : 887.7 s Reason = unknow!

Mass	$1.675 \times 10^{-27} \text{ kg}$		
Charge	0		
Spin	1/2		
Magnetic moment	$-1.913\mu_{N}$, $(\mu_{N} = 5.051 \times 10^{-27} \text{ JT}^{-1} \text{ is the nuclear magneton})$		

2. Neutron detection principle

Neutral charge => Direct detection is impossible, need converter via nuclear reactions

Thermal neutron detection

(barns) S

Cross Section (N

5

10

Incident Energy (MeV)

15

10

Incident Energy (MeV)

15

5

15

Incident Energy (MeV)

20

3. Scintillators for thermal neutron detection

- ³He(n,p)
- ⁶Li(n,t)
- ¹⁰B(n,α)
- ¹¹³Cd(n,γ)
- ²³⁵U(n, fission)

- ~5316 barns, natural abundance ~1.37 ppm.
- ~938 barns, natural abundance ~7.6 %.
- ~3844 barns, natural abundance ~19.8 %.
- ~19960 barns, natural abundance ~12.2 %.
- ~587 barns, natural abundance ~0.72 %.
- □ ⁶Li-based scintillators: LiF/ZnS:Ag, LiI:Ag, Cs₂LiYCl₆:Ce, LiCaAlF₆, NaIL, lithium-6 glass scintillators.
- \square ¹⁰B-based scintillators: Borosilicate glass scintillators, B₂O₃/ZnS:Ag, boron-loaded plastic scintillators.

Li-glass SG101

Boron-loaded plastic scintillators EJ-254

LiI:Ag

LiF/ZnS:Ag EJ-600

Moderated Cf-252

Type of particles	FOM	
Gamma – neutron	1.3	

Also sensitive to epithermal and fast neutrons

https://doi.org/10.1016/j.jcrysgro.2024.127692

4. Scintillators for fast neutron detection

	Stilbene (C ₁₄ H ₁₂)	CLYC	LaCl ₃	CaF ₂	SrCl ₂
Principle	¹ H(n,n) ¹ H	³⁵ Cl(n,p) ³⁵ S, ³⁵ Cl(n,α) ³² P	³⁵ Cl(n,p) ³⁵ S, ³⁵ Cl(n,α) ³² P	⁴⁰ Ca(n,p) ⁴⁰ K ⁴⁰ Ca(n,α) ³⁷ Ar	³⁵ Cl(n,p) ³⁵ S, ³⁵ Cl(n,α) ³² P
Main Advanta ges	 Non-hygroscopic Good PSD Large reaction cross-section 	 Good PSD Fast/thermal neutron detection 	 Good PSD Proton/alpha discrimination 	 Non-hygroscopic Rel. short decay Rel. large reaction cross-section 	o Rel. short decayo Good resolution
Main Disadva ntages	FragileUnfolding required	 Hygroscopic Low proton/alpha discrimination 	 Hygroscopic Long decay time 	 Low resolution Low discrimination performance 	 Hygroscopic Low discrimination performance

4.1 Stilbene

Figure 4.3: FOM value at 75 keVee in this work (left) in comparison with reported data at different scintillation lengths

4.2 CaF₂

Feb 12-14, 2025

4.3 SrCl₂

Feb 12-14, 2025

5. Future Research

- □ Scintillation materials (Detectors and Dosimeters)
- New Li-based scintillators
- CaF₂: neutron detection performance at low energy
- LaCl₃: Response function, spectrum unfolding
- Stilbene and Plastic scintillators: Response function and unfolding performance
- New CI-based scintillators
- Detector development and Application
- Spectrometers: neutron, muon, gamma, etc.
- Radiography: neutron, muon, X-ray, etc.
- Physics
- Cross-section
- Mechanism

Thank you for your attention!