CHEP Joint International Workshop: Detector Development for High Energy Physics and Various Applications & 7th Luminescence Materials Workshop 11. Feb. 2025 – 14. Feb. 2025, Jeongseon, High-1 Resort

The Center for High Energy Physics, Kyungpook National University

Prospects for the Global Rare Anomalous Nuclear Decay Experiment (GRANDE)

On behalf of the GRANDE Collaboration

Presented by: Nguyen Thanh Luan The Center for High Energy Physics (CHEP), Kyungpook National University

Dark Matter Search with Radioactive sources

- □ Axion-like particle or dark photon searches with M1 and E1, E2 transitions of nuclear decay
- \Box Decay process: Coupling is proportional to ϵ^2 not ϵ^4 (Accelerator, Reactor)
- □ Tabletop-scale experiment (much lower cost)
- □ Source-detector technique (radioactive doping in fast scintillator)
- □ Time-delayed coincidence method to eliminate backgrounds in the case of isomeric states

- Activity limitations
- \Box 4 π veto
- □ Need for a "zero-background" experiment (Underground lab)

- Underground experiment at the Yemi Underground Lab with low-background shielding
- Radioactive source embedded in a crystal scintillator (CeBr₃: fast, high light yield, low background)
- \Box 4 π VETO with BGO
- □ Aim for a zero-background condition
- □ Measurement of Rare EC process, rare beta, and alpha decay with isomer gamma emission

Invisible Axion Search in 139 La M1 Transition

M. Minowa, Y. Inoue, and T. Asanuma

Department of Physics, Faculty of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113, Japan

M. Imamura

Institute for Nuclear Study, University of Tokyo, 3-2-1 Midori-cho, Tanashi-shi, Tokyo 188, Japan (Received 8 July 1993)

A search for invisible axions is carried out by looking for invisible M1 transitions in ${}^{139}\text{La}(5/2^+ \rightarrow 7/2^+)$ with a transition energy of 166 keV. A limit to the branching ratio of axion emission to that of γ emission is obtained to be $\Gamma_a/\Gamma_{\gamma} < 1.21 \times 10^{-6}$ at the 95% confidence level. Hadronic axions heavier than 26.7 keV are excluded by this upper limit. It is also concluded that the branching ratio of the second forbidden electron capture decay of ${}^{139}\text{Ce}$ into the ground state of ${}^{139}\text{La}(7/2^+)$ is less than 9.7×10^{-7} at the 95% confidence level.

PACS numbers: 14.80.Gt, 23.20.Lv, 24.80.-x, 27.60.+j

 $\Gamma_a/\Gamma_\gamma < 1.21 \times 10^{-6}$ at the 95%

Constraints for Rare Electron-Capture Decays Mimicking Detection of Dark-Matter Particles in Nuclear Transitions

Aagrah Agnihotri[®] and Jouni Suhonen^{®†} University of Jyväskylä, Department of Physics, P.O. Box 35, FI-40014 Jyväskylä, Finland

Hong Joo Kim[‡] Department of Physics, Kyungpook National University, Daegu 41566, Republic of Korea

(Received 30 May 2024; revised 24 September 2024; accepted 5 November 2024; published 2 December 2024)

We give for the first time theoretical estimates of unknown rare electron-capture (EC) decay branchings of ⁴⁴Ti, ⁵⁷Co, and ¹³⁹Ce, relevant for searches of (exotic) dark-matter particles. The nuclear-structure calculations have been done exploiting the nuclear shell model with well-established Hamiltonians and an advanced theory of β decay. In the absence of experimental measurements of these rare branches, these estimates are of utmost importance for terrestrial searches of dark-matter particles, such as axionic dark matter in the form of axionlike particles, anapole dark matter, and dark photons in nuclear transitions. Predictions are made for EC-decay rates of second-forbidden unique and second-forbidden nonunique EC transitions that can potentially mimic dark-matter-particle detection in dedicated underground experiments designed to observe the absence of the corresponding nuclear electromagnetic transitions.

DOI: 10.1103/PhysRevLett.133.232501

GRANDE 1st brick!

Constraints for Rare Electron-Capture Decays Mimicking Detection of Dark-Matter Particles in Nuclear Transitions

Aagrah Agnihotrio and Jouni Suhoneno University of Jyväskylä, Department of Physics, P.O. Box 35, FI-40014 Jyväskylä, Finland

Hong Joo Kim^{®*} Department of Physics, Kyungpook National University, Daegu 41566, Republic of Korea

(Received 30 May 2024; revised 24 September 2024; accepted 5 November 2024; published 2 December 2024)

We give for the first time theoretical estimates of unknown rare electron-capture (EC) decay branchings of ⁴⁴Ti, ⁵⁷Co, and ¹³⁹Ce, relevant for searches of (exotic) dark-matter particles. The nuclear-structure calculations have been done exploiting the nuclear shell model with well-established Hamiltonians and an advanced theory of β decay. In the absence of experimental measurements of these rare branches, these estimates are of utmost importance for terrestrial searches of dark-matter particles, such as axionic dark matter in the form of axionlike particles, anapole dark matter, and dark photons in nuclear transitions. Predictions are made for EC-decay rates of second-forbidden unique and second-forbidden nonunique EC transitions that can potentially mimic dark-matter-particle detection in dedicated underground experiments designed to observe the absence of the corresponding nuclear electromagnetic transitions.

DOI: 10.1103/PhysRevLett.133.232501

Major possibilities for dark matter particle searches through EC transitions

 $59.1(3) \text{ Y} \qquad \begin{array}{c} 0_{1}^{+} & 0.0 \\ \hline 59.1(3) \text{ Y} & \begin{array}{c} 0_{1}^{+} & 0.0 \\ \hline 44 \text{ Ti} \\ Q_{EC} = 0.267 \\ \hline 99.3(3)\% \\ \hline 1_{1}^{-} & 0.068 \text{ 154.8(8)} \\ \hline 2_{1}^{+} & 0.0 \\ \hline 44 \text{ Sc} \end{array} \qquad \begin{array}{c} \text{ns} \\ 0.7(3)\% \\ \hline 2?\% \end{array}$

#1 M1 5/2⁺₁ → 7/2⁺₁: 165.86 keV K_α X-ray: ~33 keV

#1 M1 $5/2_{1}^{-} \rightarrow 3/2_{1}^{-}$: 122.06 keV M1 $3/2_{1}^{-} \rightarrow 1/2_{1}^{-}$: 14.4 keV K X-ray: ~6 keV #2 E2 $5/2_{1}^{-} \rightarrow 1/2_{1}^{-}$: 136.47 keV K X-ray: ~6 keV

#1 M1 $0_{1}^{-} \rightarrow 1_{1}^{-}$: 78.33 keV E1 $1_{1}^{-} \rightarrow 2_{1}^{+}$: 67.87 keV K_a X-ray: 4 keV

#2

M2 0⁻₁ → 2⁺₁: 146.212 keV K_α X-ray: 4 keV

Yemi Underground Lab (Center for Underground Physics, IBS) GRANDE 2nd brick!

GRANDE 3rd brick!

The GRANDE Collaboration

- **Kyungpook National University, KOREA**
- **Center for Underground Physics, KOREA**
- **University of Jyväskylä, Finland**
- **University of the Aegean, Greece**
- Nakhon Pathom Rajabhat University, Thailand
- **University of Chiangmai, Thailand**

GRANDE Track

Source-as-Detector Experiment

Table-top experiment

CeBr₃ advantages : Fast decay time, high light yield, good energy resolution Disadvantages : very hygroscopic, internal background

 $CeBr_3$:¹³⁹Ce CeBr_3:⁵⁷Co CeBr_3:⁴⁴Ti

BGO veto

Detector schematic

Crystal growth using the Bridgman method

Targets:

- **Crack-free**
- □ High radioactive
- Low internal background
- **High light yield**
- **Size handle**

Pure CeBr₃ internal background @ Yemi

(a) (c) Al case CeBr₃ PMT (b) Al case CeBr. F.J200 PMT

Suitable for double beta decay search

PHYSICAL REVIEW C 105, 045801 (2022)

Constraints on partial half-lives of ¹³⁶Ce and ¹³⁸Ce double electron captures

B Lehnert Nuclear Science Division, Lawrence Berkelev National Laboratory, Berkelev, California 94720, USA

> M. Hult[®], G. Lutter[®], G. Marissens, S. Oberstedt[®], and H. Stroh European Commission, Joint Research Centre, 2440 Geel, Belgium

J. Kotila[®] Finnish Institute for Educational Research, University of Jyväskylä, P.O. Box 35, FI-40014 Jyväskylä, Finland; Department of Physics, University of Jyväskylä, P.O. Box 35, FI-40014 Jyväskylä, Finland; and Center for Theoretical Physics, Sloane Physics Laboratory, Yale University, New Haven, Connecticut 06520-8120, USA

A. Oberstedt @ Extreme Light Infrastructure - Nuclear Physics (ELI-NP). Horia Hulubei National Institute for Physics and Nuclear Engineering (IFIN-HH). 077125 Bucharest-Magurele, Romania

> K. Zuber O Institute for Nuclear and Particle Physics, TU Dresden, 01069 Dresden, Germany

(Received 15 November 2021; accepted 8 March 2022; published 4 April 2022)

The y-ray emissions from a radiopure cerium-bromide crystal with a mass of 4381 g were measured for a total of 497.4 d by means of high-resolution y-ray spectrometry in the HADES underground laboratory at a depth of 500 m.w.e. A search for $0/2\nu\epsilon\epsilon$ and $0/2\nu\epsilon\beta^+$ double beta decay transitions of ¹³⁶Ce and ¹³⁸Ce was performed using Bayesian analysis techniques. No signals were observed for a total of 35 investigated decay modes. 90% credibility limits were set in the order of 1018-1019 yr. Existing constraints from a cerium oxide powder measurement were tested with a different cerium compound and half-life limits could be improved for most of the decay modes. The most likely accessible decay mode of the ¹³⁶Ce $2v\epsilon\epsilon$ transition into the 0^+_1 state of 136Ba results in a new best 90% credibility limit of 5.0 × 1018 yr.

DOI: 10.1103/PhysRevC.105.04580

P Belli et al., J. Phys. G: Nucl. Part. Phys. 38 (2011) 015103 (15pp)

Good background condition @ Yemi

CeBr₃:¹³⁹Ce + BGO veto

1200 V

50000 60000 ADC Total Charge

50000 600 ADC Total Charge

40000

40000

30000

R12669 – SEL (Hamamatsu Photonics) low BG PMT gain effect

CeBr₃:¹³⁹Ce + BGO veto **BGO** tail No BGO tail CeBr₃+BGO CeBr₃ CeBr₃+BGO 500 450 150 130 120 110 400 450 ADC Time Channel 450 ADC Time Channe ADC Time Channe

CeBr₃:⁵⁷Co

- $\Box \quad CeBr_3:^{57}Co\ crystal\ can\ reach\ the\ 6\ keV\ range$
- ⁵⁷Co activity in CeBr3:⁵⁷Co needs to be increased

CeBr₃:⁵⁷Co cascade decay

GRANDE Track

GRANDE

Dark Matter Search with Radioactive sources

□ Measurement of Rare EC process, rare beta, and alpha decay with isomer gamma emission

The challenges (We are in R&D)

- □ High-quality scintillator development
- **Radioactive source**
- **Detector fabrication improvement**
- Data acquisition improvement
- Data analysis development
- □ Simulation and theoretical modeling

Welcome new ideas and contributions

Welcome to GRANDE Collaboration!

Thank you for your listening!