

Metal-oxides borate glasses doped with Nd³⁺ for photonic applications

Eakgapon Kaewnuam

Muban Chombueng Rajabhat University

Supakit Yonphan, Petch Borisut, Jakrapong Kaewkhao

Center of Excellence in Glass Technology and Materials Science (CEGM), Nakhon Pathom Rajabhat University

Pham Hong Minh

Vietnam Academy of Science and Technology

Nd:YAG laser

Nd:Y₃Al₅O₁₂

Optical Tweezers

- surface laser head cut edge nozzle
- NiTi-sheet-

Particle

Aluminium garnet compound family

 $A_3(B,C)_5O_{12}$: Until present

Possible A element = Y, Lu, Gd or mixing between them Possible B & C element = Al, Ga or mixing between them

Multi-component garnet

Aluminium garnet compound family

 $A_3(B,C)_5O_{12}$: Until present

Possible A element = Y, Lu, Gd or mixing between them Possible B & C element = Al, Ga or mixing between them

Doped with $Nd^{3+} \rightarrow$ Strong luminescence for laser / photonic

Light Amplification by Stimulated Emission of Radiation

Bulk material

Crystalline A ₂ O ₃	vert base icals Glassy A ₂ O ₃						
Single-crystal	Glass						
Crystalline structure	Amorphous structure						
Obvious electronic bandgap	Unclear electronic bandgap						
Difficult for preparation	Easy for preparation						
Can prepare in limited size and shape	Can prepare in various sizes and shapes with same properties						
Chemical ratio is strict and fixed	Wide range of chemical ratio						
High production cost	Low production cost						

Light Amplification by Stimulated Emission of Radiation

https://www.schott.com/en-gb/solutions-magazine/edition-1-2022/from-light-to-laser

Strong luminescence properties of Ln³⁺

Ln ³⁺	Emission	τ	
Sm ³⁺	Red-Orange	ms	
Dy ³⁺	Yellow-Blue, White	ms	
Eu ³⁺	Red	ms	
Nd ³⁺	NIR, $\lambda/2$ to Green	μs	
Er ³⁺	NIR, Up-conversion to Red	ms	
Tb ³⁺	Green	ms	
Ce ³⁺	Blue	ns	

Intra 4f-4f transition Forbidden, but stable, Support by asymmetric ligand

Inter 4f-5d transition Allowed, but easy to disturb

GaLuAlYB:Ce glass composition

 $10Gd_2O_3 - 15Al_2O_3 - 15Ga_2O_3 - 10Y_2O_3 - (50-x)B_2O_3 - xNd_2O_3$

Adapted metal oxide from multi-component garnet family $x = 0, 0.05, 0.1, 0.5, 1, 2, 3, 4 \mod \%$

Excellent glass former

- High transparency
- High chemical durability
- Non-hygroscopic
- Easy to form network
- Good Ln³⁺ solubility

Strong NIR luminescence

- Popular in solid-state laser
- Can be converted to green laser
- Not fast decay time

Glass preparation (melt - quenching)

Characterization Instrument

UV-VIS-NIR Spectrophotometer (UV-3600, Shimadzu)

Abbe refractometer (Atago, NAR-1T)

ρ; Archimedes principle

4-digit sensitive microbalance (Denver, Pb214)

NIR PL spectra and decay curves

Parameter	Name	Indication or meaning
$f_{exp/cal}$	Oscillator strength	The experimental/calculated transition strength of Ln ³⁺ under photon absorption
Ω_2	J-O parameter	 Asymmetric environment surround Ln³⁺ Covalency between Ln³⁺ and ligand
$\Omega_4\&\Omega_6$		Viscosity and rigidity of glass
A_R $\left(A_T = \sum A_R\right)$	Radiative transition probability	The transition probability (rate) of Ln ³⁺ cause photon emission
β	Branching ratio	Emission ratio and lasing power
$\sigma_{ m se}$	Stimulated emission cross-section	 Stimulated emission probability Laser threshold (energy used to start the lasing action) Gain laser application (ratio of output/input energy)
$ au_{ m R}$	Radiative life time	Time of pure radiative transition
$ au_{ m exp}$	Experimental life time	Time of radiative combined with non-radiative transition

Molecular mass (M_T) , Density (ρ) & Refractive index (n)

Molar volume (V_M), polarizability (α_m), Nd-Nd distance (r_i)

Molar volume (V_M), polarizability (α_m), Nd-Nd distance (r_i)

 $\mathbf{x} = 2$

 $\mathbf{x} = 3$

 $\mathbf{x} = 4$

 $\mathbf{x} = 1$

in glass with $x \ge 1 \mod \%$

J-O analysis of GdYAlGaBNd1 glass (Absorption spectra)

Absorption	Transition	GdYAl	aBNd1	$\Omega_2 = 6.44 \text{ x } 10^{-20} \text{ cm}^2$				
wavelength	${}^{4}\mathrm{I}_{9/2} \rightarrow$	f_{exp}	f_{cal}	$\Omega_4 = 5.91$:	$x \ 10^{-20} \ \mathrm{cm}^2$			
(nm)		(x10 -6)	(x10 -6)	$\Omega_6 = 9.12$	$x \ 10^{-20} \ \mathrm{cm}^2$			
431	$^{2}P_{1/2}$	0.80	0.82	0				
461	${}^{4}G_{11/2}$	0.82	0.37					
475	${}^{2}\mathrm{K}_{15/2}$	2.26	0.54	$\chi = \Omega_4 / \Omega_4$	$_{6} = 0.65$			
515	${}^{4}G_{9/2}$	4.54	2.43					
526	${}^{4}G_{7/2}$	5.42	5.51	417 41				
583	${}^{4}G_{5/2}$	23.89	23.86	$\Gamma_{3/2} \rightarrow \Gamma_{11/2}$				
681	${}^{4}F_{9/2}$	0.89	0.99	$\lambda_{\rm em} = 1064 \ \rm nm$	${}^{4}F_{3/2} \rightarrow {}^{4}I_{9/2}$			
747	${}^{4}F_{7/2}$	8.95	9.00		$\lambda = 915 \text{ nm}$			
806	${}^{4}F_{5/2}$	9.78	10.18		$n_{\rm em} = 715$ mm			
875	$_{4}F_{3/2}$	3.05	3.47	A COLORED				
	σ _{rms}	0.8	39	THEFT				
				STE				

Comparison of J-O parameters

	Ω ((x10 ⁻²⁰ cm ²		D		
Glass	Ω_2	Ω_4	Ω_6	X	NUI.	
GdYAlGaBNd1	6.44	5.91	9.12	0.65	This work	
Hoya LHG-80	3.60	5.00	5.50	0.91	A. Jose, et al. 2022	
Schott LG-770	4.30	5.00	5.60	0.89	A. Jose, et al. 2022	
Kigre Q88	3.30	5.10	5.60	0.91	A. Jose, et al. 2022	
PbFBaFAlB:Nd	5.77	3.68	4.01	0.91	P.R. Rani, et al. 2021	
PbGe:Nd	5.61	6.34	6.42	0.99	A. Herrera, et al. 2021	
NaKFCaFAlCaP:Nd	7.35	6.89	9.70	0.71	J. Rajagukguk, et al. 2019	
BaZnLiFNaFLiB:Nd	8.68	7.97	12.75	0.62	G. Lakshminarayana, et al. 2022	
NbKZnFLiFSi:Nd	10.26	6.38	6.06	1.05	D. Ramachari, et al. 2014	

Photoluminescence (PL) spectra

PL decay time

J-O analysis of GdYAlGaBNd1 glass (Emission spectra)

Comparison of radiative parameters

Glass	Δλ _{eff} (cm)	σ _{se} (×10 ⁻²⁰ cm ²)	$\frac{\Delta\lambda_{\rm eff}\times\sigma_{\rm se}}{(\times10^{-25}{\rm cm}^3)}$	τ _{exp} (μs)	$\frac{I_{\rm s}}{(\times 10^8{\rm W/m^2})}$	η (%)	
GdYAlGaBNd1	45.39	4.05	1.84	74.18	6.22	41.82	
Hoya LHG-80	23.90	4.20	1.00	-	-	-	
Schott LG-770	25.40	3.90	0.99	-	-	-	
Kigre Q88	21.90	4.00	0.88	-	-	-	
PbFBaFA1B:Nd	34.80	7.23	2.52	245	1.04	90.00	
PbGe:Nd	37.33	4.52	1.69	88	4.64	64.00	
NaKFCaFAlCaP:Nd	33.22	4.92	1.63	200	1.87	98.92	
BaZnLiFNaFLiB:Nd	32.46	2.60	0.84	62	11.44	17.00	
NbKZnFLiFSi:Nd	38.00	4.30	1.63	135	3.18	78.00	

Character of GdYAlGaBNd1 glass

- $\succ \text{ Wide } \Delta \lambda_{\text{eff}} \text{ and } \Delta \lambda_{\text{eff}} \times \sigma_{\text{se}}$
- \succ Fair σ_{se} and I_s
- > Quite Short τ_{exp}

Approach to applications

- Potential optical amplifier
- Interesting laser medium

Point to improve

> Upgrade η

Conclusion

- > Nd_2O_3 addition \rightarrow more density but less refractive index
- \blacktriangleright Overview behavior: Nd₂O₃ is glass modifier for GdYAlGaB glass
- GdYAlGaBNd glass is weak paraelectric material
- > The optimum Nd_2O_3 concentration : 1 mol%
- Strong absorption at 806 nm produces the strong luminescence at 1064 nm with decay time \sim 74 μ s
- Judd-Ofelt analysis: potential amplifier for laser and optical telecomunication

Acknowledgement

- Muban Chombueng Rajabhat University (MCRU)
- Center of Excellence in Glass Technology and Materials Science (CEGM) Nakhon Pathom Rajabhat University (NPRU)
- This work has been supported by Thailand Science Research and Innovation (TSRI) in project No. 194462 (2024).

Thank you

Luminescence materials for photonics

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	
1	1 ¹ H Hydrogen 1.00794	Atomic # Symbol Name Atomic Mass	С	Solid				Metals			Nonmet	als						2 2 He Helium 4.002802	К
2	3 ² Li Lithium 6.941	4 2 Be Beryllium 9.012182	Hç H	Liquid Gas		Alkali me	Alkaline earth mel	Lanthanoid	Transition metals	Poor met	Uther nonmetal	Noble ga	5 ² B Boron 10.811	6 ² C Carbon 12.0107	7 25 N Nitrogen 14.0087	8 26 O Oxygen 15.9994	9 27 F Fluorine 18.9984032	10 28 Ne Neon 20.1797	K L
3	11 28 Na Sodium 22.98976928	12 28 Mg Magnesium 24.3050	Rf	Unknow	'n	tals	l <mark>als</mark>	Actinoids	_	als	S	Ses	13 28 Al Aluminium 26.9815386	14 28 Si Silicon 28.0855	15 28 P Phosphorus 30.973762	16 28 S Sulfur 32.065	17 28 Cl Chlorine 35.453	18 28 Ar Argon 39.948	K L M
4	19 28 K 1 Potassium 39.0983	20 28 Calcium 40.078	21 28 29 2 Scandium 44.955912	22 28 Ti 10 2 Titanium 47.867	23 V Vanadium 50.9415	24 28 24 8 Cr 1 Chromium 51.9961	25 Mn Manganese 54.938045	² ³ ² ² ² ¹⁴ ² ¹⁴ ² ¹⁴ ²	27 28 C0 Cobalt 58.933195	28 Ni ^{Nickel} 58.6934	² ² ² ² ² ² ¹⁰ ¹⁰ ¹⁰ ¹⁰ ¹⁰ ¹⁰ ¹⁰ ¹⁰	30 28 Zn 2 Zinc 65.38	31 28 Ga Gallium 69.723	32 28 Gemanium 72.64	33 2 As ¹⁸ Arsenic 74.92180	34 28 Selenium 78.96	35 28 Br 7 Bromine 79.904	36 28 Kr Krypton 83.798	K L M N
5	37 28 Rb 18 Rubidium 85.4678	38 2 Sr 2 Strontium 87.62	39 2 Y 2 Yttrium 88.90585	40 28 Zr 10 21 21 21 21 21 21 21 21 21 21	41 Nb Niobium 92.90838	42 28 Mo 13 Molybdenum 95.96	43 Tc Technetium (97.9072)	² ⁸ ⁸ ¹ ¹ ¹⁸ ¹⁸ ¹⁸ ¹⁵ ¹⁵ ¹⁰ ^{101.07}	45 28 Rh 102.90550 28 18 16 1 1	46 Pd Palladium 108.42	47 28 47 8 47 8 18 18 18 18 18 18 19 107.8682	48 28 Cd 18 Cadmium 112.411	49 28 In 18 Indium 114.818	50 28 Sn 18 18 18 18 18 18 18 18 18 18	51 28 Sb 18 Antimony 121.760	52 28 Te 18 18 18 6 7 18 18 6 7 8 18 18 6 7 8 18 18 18 18 18 18 18 18 18 18 18 18 1	53 28 18 18 18 10 10 128.90447	54 28 Xe 18 Xenon 131.293	K L M N O
6	55 2 Cs 18 Caesium 1 132.9054519	56 2 Ba 18 8 8 8 8 18 18 18 18 18 18 18 18 18 18	57–71	72 28 Hf 32 Hafnium 2 178.49	73 Ta Tantalum 180.94788	² ² ² ² ² ² ² ¹⁰ ¹⁰ ¹⁰ ¹⁰ ¹⁰ ¹⁰ ¹⁰ ¹⁰	75 Re Rhenium 188.207	² ⁸ ⁸ ² ² ² ² ² ² ² ² ² ²	77 28 Ir 18 18 18 18 12 15 192.217	78 Pt Platinum 195.084	² ⁸ ² 7 1 Gold 196.966569	80 2 80 8 Hg 18 18 18 22 18 200.59	81 28 TI 32 Thallium 3 204.3833	82 2 Pb 32 Lead 4 207.2	83 2 Bi 32 Bismuth 208.98040	84 2 Polonium (208.9824)	85 2 At 32 Astatine 7 (209.9871)	86 28 Rn 32 Radon (222.0176)	KLMNOP
7	87 2 87 18 82 52 18 18 18 18 18 18 18 18 18 18	88 2 Ra 32 Radium 2 (228)	89–103	104 2 Rf 32 Rutherfordium 10 (281)	105 Db Dubnium (262)	2 106 2 2 Sg 32 2 Seaborgium 2 (288)	107 Bh Bohrium (284)	² ⁸ ⁸ ⁸ ¹⁰⁸ ⁸ ¹⁸ ¹⁸ ¹² ¹² ¹⁸ ¹⁸ ²² ¹² ¹⁸ ¹⁸ ²² ²² ¹⁸ ¹⁸ ²² ²³² ²² ¹⁴ ¹⁸ ¹⁸ ²² ²² ²² ¹⁸ ¹⁸ ²² ²² ²² ²² ²² ²² ²² ²	109 28 Mt 32 Meitnerium 15 (288)	110 Ds Damstadium (271)	2 111 2 8 2 Rg 32 2 Roentgenium 1 (272)	112 2 Uuunbium 18 (285) 22	113 Uut Ununtrium (284) 28 20 18 22 32 32 13 32 32 32 32 32 32 32 32 32 3	$\begin{array}{c} 114 & {}^2_8 \\ \textbf{Uuq} & {}^{18}_{32} \\ {}^{18}_{32} \\ {}^{22}_{32} \\ {}^{(289)} \end{array}$	115 28 Uup 32 Ununpentium 18 (288)	116 2 Uuh 32 Ununhexium 16 (292)	117 Uus Unurseptum	118 Uuo Ununoctium (294)	KLMNOPQ
				I	⁻ or elen	nents wit	h no sta	ıble isoto	pes, the	mass r	number o	f the iso	tope wit	h the lon	gest hal	f-life is <mark>i</mark> r	n parentl	neses.	
57 L Lar 138	a 10 910 thanure 190547	58 Ce Carlum 140.116	59 Pr Paseodymiu 140.90765	60 m 2 Neody 144.24	mum 2	1 maile states and the second	62 Sm Samarium 150.35	63 Europium 151.964	64 Gadolni 157.25	um 15	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	66 Dy Dysprealum 162.500	67 Ho Holmium 164,93032	68 Er 167.259	69 10 10 10 10 10 10 10 10 10 10	m 93421	70 10 10 10 10 10 10 10 10 10 10 10 10 10	71 Lu Lutetium 174.9008	++ m to the men
		one com		89 2 Act 32 Actinium 9 (227)	90 Th Thorium 232.03806	91 2 Protactinium 2 231.03588	92 U 1 Uranium 238.02891	² ⁸ ⁸ ⁸ ⁸ ⁸ ⁸ ⁸ ⁸	94 2 Pu 32 Plutonium 2 (244)	95 Am Americium (243)	2 96 2 8 2 Cm 22 2 Curium 2 (247)	97 2 Bk 32 Berkelium 2 (247)	98 2 Cf 32 Californium 2 (251)	99 2 ES 32 Einsteinium 8 (252)	100 2 Fm 32 5 5 5 5 5 5 5 5 5 5 5 5 5	101 2 Md 32 Mendelevium 2 (258)	102 2 No 32 Nobelium 2 (259)	103 28 Lr 322 Lawrencium 29 (262)	NUT FOR A MANAGEMENT

[1]

Aluminium garnet compound family

A₃(**B**,**C**)₅O₁₂ : Until present

Possible A element = Y, Lu, Gd, Sc or mixing between them Possible B & C element = Al, Ga, Sc or mixing between them

Multi-component garnet

Luminescence glass material

Luminescence glass material

Glass defect

R,RA,RB = Network Formers = Si, B, P, Ge, Al, ...

C = Monovalent Network Modifying Cation = H,Li,Na,K,...

Glass preparation (melt - quenching)

