

Tb³⁺ Doped Silicoborate Glass Scintillator for High Resolution Synchrotron X-Rays Imaging Application

Nuttawadee Intachai, Ph.D.

Center of Radiation Research and Medical Imaging Department of Radiologic Technology Faculty of Associated Medical Sciences, Chiang Mai University

N. Intachai¹, S. Kothan^{1*}, N. Wantana^{2,3}, F. Khrongchaiyapum^{2,3}, S. Kaewjaeng¹, P. Pakawanit⁴, N. Vittayakorn⁵, P. Kanjanaboos⁶, N. Phuphathanaphong⁶, H.J. Kim⁷, and J. Kaewkhao^{2,3**}

Table of contents

Research Background & Motivation

- Methodology
- Research Results

V Summary

Page

7

8 17

Research Background & Motivation

Figure 1: (a) Schematic illustration of an X-ray imaging system. **(b)** The development of X-ray radiography with the evolution of X-ray detectors.

Radiography is a medical imaging technique that uses X-rays to create images of the internal structures of the body.

- It is commonly used for diagnostic purposes to visualize bones, organs, and tissues.
- The X-ray machine emits a controlled amount of radiation, which passes through the body and is captured on a film or digital detector on the other side.

Research (2021), Article ID 9892152, https://doi.org/10.34133/2021/9892152

Research Background & Motivation

Detector in General Radiography

General Radiography

• Flat Panel Detector

Scintillators – is a materials that spontaneously emit light at wavelengths within or near the visible region of the electromagnetic spectrum upon exposure to ionizing radiation

Types of scintillator

Types of scintillator	Advantages	Disadvantages	
• Gas scintillator ³ He	Excellent γ/neutron discrimination	Expensive	
Single-crystal scintillators	High light yield	Difficult to grow	
Plastic scintillators	Easy to form	Low light output	
	 Can be variety of size and shapes 		
• Glass scintillators	 Doped with composition or lanthanide ions into the glass matrix; improve radiation absorption & tune emission wavelengths 	 Quite fragile and easily damaged Light output weak; added activator to solve 	

https://www.cappa.ie/photonic-applications/ https://ams.com/how-flat-panel-detectors-work

Research Background & Motivation

Lanthanides in the periodic table with atomic number and weight

58	59	60	61	62	63	64	65	66	67	68	69	70	71
Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
140.115	140.9076	144.24	(145)	150.36	151.965	157.25	158.9253	162.50	164.9303	167.26	168.9342	173.04	174.967

Wavelengths of the main emissive transitions of the trivalent lanthanide (Ln^{3+}) coordination compounds in the near-UV to NIR range.

Dopants, which serve as activators

create the energy gap in luminescence center resulting to..

- ✓ Increase efficiency
- Control emission characteristics
- ✓ Enhance luminescence properties

Fig. 6. Schematic diagram scintillating mechanism for ABSG:xTb glasses, where VB denotes valance band and CB denotes conduction band.

J. David Musgraves, et al., Springer Handbook of Glass, 2019, https://doi.org/10.1007/978-3-319-93728-1 Palvi Gupta, et al., 2015, Mater. Res. Express, https://doi.org/ 10.1088/2053-1591/2/7/076202 WenJun Huang, et al., Ceramics International 48 (2022) 17178–17184, doi.org/10.1016/j.ceramint.2022.02.274

- To develop Tb³⁺ doped silicoborate glass to be used as a glass scintillator.
- To investigate the physical, optical, luminescence properties of Tb³⁺ doped silicoborate glass.
- To study the possibility of glass to be used as a scintillator, carried out based on the "Synchrotron radiation X-ray tomographic microscopy (SRXTM)" technique.

Methodology

Glass formula: xTb_2O_3 : $40Na_2O$: $7.5Gd_2O_3$: $5SiO_2$: $(47.5-x)B_2O_3$ (x = 0, 1, 2 and 3 mol%)

Glass sample

Dimension:

1x1.5x0.3 cm³

Cutting and

Polishing

/ 3 hrs.

PLQY

X-ray imaging

Physical and optical property

Density and molar volume

Fig.1. Density and Molar volume of xTb:7.5Gd glasses

Absorption spectra measured by UV-Vis-NIR spectrometer

Fig.2. Vis-NIR absorption spectra of xTb:7.5Gd glasses

- > **Density and molar volume** increases with Tb_2O_3 concentrations increasing; B_2O_3 components were replaced by Tb_2O_3 .
- > Tb³⁺ can absorption the light at Vis and NIR region. Absorption spectra of these wavelengths increased with increasing concentration of Tb₂O₃.

Luminescence property

Photoluminescence spectra measured by Agilent Cary Eclipse fluorescence spectrometer

Fig.3. Excitation spectra of xTb:7.5Gd glasses under λ_{Em} = 544 nm

Fig.4. Emission spectra of xTb:7.5Gd glasses under λ_{Fx} = 228 nm

➤ The emission spectra under 228 nm excitation showed the strong green emission peaks at 544 nm corresponding to ${}^{5}D_{4} \rightarrow {}^{7}F_{5}$ transition in 3.0 mol% of Tb³⁺-doped glass.

Luminescence property

Fig.5. Emission spectra of xTb:7.5Gd glasses under λ_{Ex} = 275 nm (a) and 378 nm (b)

➤ The additional peak centering at 311 nm describes the Gd^{3+} transition emission under ${}^{6}P_{7/2} \rightarrow {}^{8}S_{7/2}$ while the additional peak at 623 nm is the half-harmonic of 275 nm.

Experimental photoluminescence quantum yield (PLQY)

 Photoluminescence quantum yield was utilized by spectrofluorometer with an excitation source of a xenon lamp and K-integrating sphere

Table 1

The experimental photoluminescence quantum yield (PLQY) of xEu:7.5Gd glasses under λ_{Ex} = 378 nm at the wavelength of 400 – 650 nm.

Glass	Experimental PLQY (%)	Abs Error	Re Error
1Tb:7.5Gd	22.65	-	-
2Tb:7.5Gd	26.79	0.108	0.004
3Tb:7.5Gd	30.85	0.081	0.003

This represents high-quality luminescence materials and indicates efficient light emission for a given amount of absorbed energy.

X-ray excitation spectra

X-ray induced luminescence spectra irradiated by X-ray, setting as 50 kV and 30 mA at NPRU, Thailand

The emission intensity at ⁵D₄ increases with adding Tb₂O₃ concentrations while ⁵D₃ decreased

X-ray excitation spectra and CIE chromaticity diagram

Comparing the total integrated area of 3Tb:7.5Gd glass and BGO

The color of emitted light investigated by the International Commission on Illumination (CIE 1931), using emission data

Fig.7. X-ray excitation spectra of 3Tb:7.5Gd compared with BGO

Fig.8. CIE chromaticity of xTb:7.5Gd glasses

Decay curves and Energy transfer efficiency

Decay curves

Fig.9. Decay time of the xTb:7.5Gd glasses, excitation at (a) 228 nm (b) 275 nm (c) 378 nm and (d) X-rays excitation.

• Energy transfer efficiency (η_{ET})

$$\eta_{ET} = 1 - \frac{\tau_{Gd-Tb}}{\tau_{Gd}}$$

 τ_{Gd-Tb} = the decay time of the donor (Gd³⁺) in the presence of the acceptor (Tb³⁺)

 τ_{Gd} = the decay time of the donor in the absence of the acceptor

<u>Table 2</u> The emission decay time (τ) under λ_{Ex} =275 nm, λ_{Em} =311 nm and energy transfer efficiency (η_{ET}) for xTb:7.5Gd glasses

Glass sample	τ (ms)	η _{ετ} (%)	
(τ _{Gd})			
0Tb:7.5Gd	2.567	-	
(τ _{Gd-Tb})			
1Tb:7.5Gd	1.854	28	
2Tb:7.5Gd	1.675	35	
3Tb:7.5Gd	1.883	27	

X-ray imaging ;Experiment at BL1.2W: X-ray Imaging & X-ray Tomographic Microscopy (XTM), Synchrotron Light Research Center, Nakhon Ratchasima, Thailand

Figure 3 Experimental hutch of BL1.2W (commissioning mode).

X-ray imaging

Spatial resolution can be expressed using spatial frequency, which describes the number of line pairs in a certain length (lp/mm).

Fig.12. Line pair pattern (a) and the 2D X-ray image of line pair pattern at 10 lp/mm (b) and plot profile (c) of 3Tb:7.5Gd glass as a scintillator.

% Contrast =
$$\begin{bmatrix} I_{max} - I_{min} \\ I_{max} + I_{min} \end{bmatrix}$$

where I_{max} is the maximum intensity of gray value and I_{min} is the minimum intensity gray value

Yu Yu Kachurin et al 2021 J. Phys.: Conf. Ser. 2127 012021 http://qualitycontrol3.weebly.com/limiting-spatial-resolution.html

Developed glass is heavy up to 3.01 g/cm³.

property

- Glass performs the enhanced non-bridging oxygen with increment of Tb₂O₃ content.
- Tb³⁺ doped glass absorbs photons in Vis and NIR region.

- property
- ➢ PL and RL under all excitation makes the strongest emission of Tb³⁺ at 544 nm (⁵D₄ →⁷F₅) in 3.0 mol% doped glass.
- PLQY of 3Tb:7.5Gd was 30.85%
- Photoluminescence decay curve of Eu³⁺ is in millisecond order.

- Special resolution of X-ray imaging is 10 lp/mm
- Possibility to be a glass scintillator, confirmed by X-ray imaging

Acknowledgment

Associate Prof. Dr. Suchart Kothan Associate Prof. Dr. Jakrapong Kaewkhao

Lecturer at NPRU : Dr. Nuanthip Wantana Researcher at SLRI : Dr. Phakkhananan Pakawanit

