Development of flexible radiation detector based of nanomaterials

2025. 02. 12.

Jeong Min Park

Korea Atomic Energy Research Institute

01 Overview & Key element technology

02 Experiments & results

03 Conclusion

>> Development trend of radiation detector

Advantages of nano-materials based radiation detector

• Low noise, high sensitivity, miniaturization, low power consumption, large area expansion

>> Overview

- Goal
 - Develop a high resolution, flexible radiation detector based on nano-materials for medical and environmental applications

Xey element technology

Development of flexible radiation detector based of nanomaterials

Active layers:: CsPbBr₃ nanocrystal

Synthesis of CsPbBr₃ nanocrystal for radiation detector

Synthesis \rightarrow Purification \rightarrow Concentration : 0.5 g/ml CsPbBr₃ Nanocrystals

- CsPbBr₃ nanocrystals were synthesized using the hot injection method
- The photoluminescence spectrum showed emission peak at 518 nm

Development of flexible radiation detector based of nanomaterials

Active layers:: CsPbBr₃ nanocrystal

Synthesis of CsPbBr₃ nanocrystal for radiation detector

⊘ TEM/EDS analysis

CsPbBr₃ nanocrystals were uniformly synthesized with sizes of 9-17 nm and a lattice spacing of 4.3 Å

• EDS analysis confirmed successful synthesis without impurities

*TEM: Transmission Electron Microscopy

EDS: Energy-Dispersive X-ray Spectroscopy

Active layers:: CsPbBr₃ nanocrystal

Improvement of optical properties

⊘ CsPbBr₃ nanocrystal powder

- Removal of impurities (Purification/washing)
- ② Powder obtained through vacuum filtration and drying
- Obtaining CsPbBr₃ nanocrystal powder : Enhances ease of polymer processing and improves material properties

⊘ Improvement of Optical Properties

CsPbBr₃ nanocrystal powder under 365 nm excitation

Comparison of CsPbBr₃ nanocrystal (a) solution and (b) powder radioluminescence

KAERI

- The synthesized CsPbBr₃ was purified and converted into a powder form to facilitate sample preparation
- The CsPbBr₃ powder showed ~4.5 times higher radioluminescence intensity than solution

*Polydimethylsiloxane

Process element technology for device:: Nanomaterial + PDMS*

Nanomaterial-PDMS polymer composite film fabrication

S Nanomaterial-PDMS polymer composite film (Molding process)

CsPbBr₃ nanocrystal-PDMS polymer composite film

Pr doped phosphor-PDMS polymer composite film

- CsPbBr₃ nanocrystal/Pr doped phosphor-PDMS polymer composite films were fabricated using PDMS polymer through a molding process
 - Pr3: LuGd₂Al₅O₁₂ + Pr₂O₃, Pr5: Lu₂GdAl₃Ga₂O₁₂ + Pr₂O₃, Pr6: Lu₂GdAl₅O₁₂ + Pr₂O₃

Process element technology for device:: Nanomaterial + PDMS

Radioluminescence of nanomaterial-PDMS polymer composite films

SX-ray excited radioluminescence of nanomaterials-PDMS polymer composite films

*Korean Association for Radiation Application

ISO certified X-ray generator (KARA*)

Photograph of luminescence

Luminescence spectra of nanocrystal/Pr doped phosphor-PDMS polymer composite films

- X-ray excited radioluminescence spectra were measured at KARA
 - Voltage: 30-60 kV, Current: 30 mA
- The emission spectra showed similar peaks w/ CsPbBr3 nanocrystal and Pr doped phosphor

KAERI

*Polymethyl Methacrylate

Process element technology for device::CsPbBr₃-PMMA*

Nanocrystal-PMMA polymer composite film fabrication

⊘ CsPbBr₃-PMMA polymer composite film (Molding process)

**relative to the PMMA polymer concentration

4 inch CsPbBr3 nanocrystal-PMMA polymer composite film

	Sample A	Sample B	Sample C	Sample D	Sample E
As					
365 nm UV					•
**CsPbBr ₃ (wt%)	50	50	50	100	100
PPO (g/mL)	none	0.025	0.025	0.025	none
Thick. (mm)	0.3	0.3	0.1	1.3	1.3

Concentration CsPbBr, nanocrystal-PMMA polymer composite film

· Fabrication of nanocrystal-PMMA polymer composite film with varying composition and thickness

• Nanocrystal-polymer composite film was fabricated using PMMA polymer through a molding process

• The sample with high CsPbBr₃ concentration and no PPO showed the brightest luminescence under 365 nm UV light

Process element technology for device::CsPbBr₃-PMMA

Radioluminescence of CsPbBr₃-PMMA polymer composite films

- To optimize processing conditions, luminescence properties were measured with an X-ray generator @KARA
 - The samples were irradiated with 60 kV, 30 mA X-rays, and luminescence intensity was measured using spectrometer (FLAME-T, Ocean optics)
- The CsPbBr₃-PMMA film (Sample E) showed highest luminescence intensity
 - 100 wt% CsPbBr₃, No PPO, 1.3 mm thickness

X-ray responsiveness properties::CsPbBr₃-PMMA

⊘ 16 ch. X-ray image

X-ray responsiveness of CsPbBr₃-PMMA composite film coupled photodiode

⊘ Sensitivity

Sensitivity of CsPbBr₃-PMMA film (Sample E) coupled photodiode

- 16 channel X-ray image of CsPbBr₃-PMMA film coupled APD w/ 5 mm W
- Sensitivity of the CsPbBr₃-PMMA film coupled a PD (SD3590-08, Hamamatsu) was measured under 1.84 R X-rays
 - The charge generated by the PD was measured, and the sensitivity was 0.509 μ C/R·cm²
- 16 ch. X-ray imaging of the CsPbBr₃-PMMA film coupled a APD (S15249, Hamamatsu) was measured
 - When half of the detector was blocked w/ 5 mm tungsten and exposed to X-rays, the CsPbBr3-PMMA film coupled APD demonstrated a responsive characteristic to X-rays.

*Polyvinylidene Fluoride

Process element technology for device::CsPbBr₃-PVDF*

Nanocrystal-PVDF polymer composite film fabrication

⊘ CsPbBr₃-PVDF polymer composite film (Electrospinning spray coating method)

tip and collector plate

CsPbBr₃ nanocrystal-PVDF polymer composite film

- 2.5 wt% CsPbBr3-PVDF nanofiber composite was coated onto a flexible metal foil (25 cm x 25 cm) using electrospinning coating technology
- The film exhibited luminescence under 365 nm UV light
- The electrospinning coating method confirmed the potential of coating substrates of various types, size, and shapes

Process element technology for device::Flexible PCB

Flexible PCB w/ 64 channel photodetectors

S Flexible PCB w/ 64ch. photodetectors

Design and image of F-PCB w/ 64 ch. Si PIN device

Sending properties

Bending test of F-PCB w/ 64 ch. PD (1,000 cycles)

Ń

- The F-PCBs w/ 64 ch. Si PIN and APD were developed, respectively
 - Dark current was under 10 nA
- After conducting a bending test w/ 10 mm displacement for 1,000 cycles, the dark current characteristics remained unchanged

X-ray responsiveness properties::CsPbBr₃-PVDF w/ F-PCB

CsPbBr₃-PVDF polymer composite film coupled F-PCB

⊘ CsPbBr₃-PVDF composite film coupled F-PCB

Images of CsPbBr3-PVDF film coupled F-PCB (Si PIN)

Images of CsPbBr3-PVDF film coupled F-PCB w/ DAQ system

64 channel X-ray images of CsPbBr3-PVDF film coupled F-PCB (Si PIN)

- 50 wt% CsPbBr3-PVDF nanofiber composite was applied onto a F-PCB w/ 64 ch. Si PIN using the electrospinning coating method
- 10 mm thick lead phantom was placed in front of the sensor, and images were obtained under 30 mA, 50 kV/60 kV X-rays

⊗ 64 ch. X-ray image

X-ray responsiveness properties::CsPbBr₃-PVDF w/ F-PCB

CsPbBr₃-PVDF polymer composite film coupled F-PCB

X-ray responsivity of CsPbBr₃-PVDF film coupled 64 ch. F-PCB (Si PIN)

17

- To determine the detection limit, the X-ray voltage was fixed at 60 kV, and the current was adjusted from 1 mA to 25 mA
- X-ray dose on the detector was calculated using SpekCalc program. The X-ray dose was changed from 0.53 mGy to 13.46 mGy
- The CsPbBr3-PVDF film coupled 64 ch. F-PCB Si PIN showed possibility to detect X-rays at doses as low as 2. 69 mGy (60 kV, 5 mA)

>> Conclusion

- Flexible films were fabricated by combining CsPbBr₃ nanocrystals w/ various polymers
- The X-ray sensitivity of the CsPbBr₃-PMMA composite film, produced via a molding process, was approximately 0.509 μ C/R·cm²
- The CsPbBr₃-PVDF composite was coated on a 64 ch. F-PCB (Si PIN) using electrospinning coating method
 - Phantom images were acquired under 30 mA, 60 kV/50 kV X-ray conditions
 - The CsPbBr₃-PVDF film coupled 64 ch. F-PCB (Si PIN) was expected to detect X-rays at dose as low as 2.36 mGy (5 mA, 60 kV)
 - The CsPbBr₃-PVDF film coupled F-PCB (APD) is anticipated to capture high-quality images even at low X-ray doses

>> Radiation Equipment Fabrication Center

Photolithography zone (100 class)

Thermal process, deposition, etching, wet zone (1,000 class)

Crystal growth and purification room

Characteristics evaluation room

Thank you

TOTAL : 0.7 msv DOSE: 0.25 msv

>> Trends of research & technology

• Flexible Electronics: Display- Commercialization in progress

Optic/Chemical sensor-Early stage research in progress

Nano-material Radiation Sensor: Direct type-Early stage research in progress

Indirect type-Rapid increase in research paper publications

>> Coating technology

Optimization of nanomaterial coating technology and flexible substrate process conditions

Sample 1

Simprovement of LBL (layer-by-layer) Coating Technique

- 13 layers of PbS QD coating (1 layer thickness : ~25 nm)
- Confirmed precise coating conditions for PbS QDs, allowing compatibility with oxide and metal layers for device integration
- Acc.V Magn WD | 200 nm 10.0 kV 250000x5.0 KAIST Sample 2 178.8 nm 184.5 nm 183.7 nm 179.4 nm 173.6 r Acc.V Magn WD ∃ 500 nm 10.0 kV 125000x 5.0 KAIST

SEM images of LBL coated multilayer films w/ PbS QDs

• 240 nm target thick.

Thick, variation

280 nm target thick.
Thick. Variation

average 2.3 %

· 한국원자력연구원 Karea Atomic Energy Research Institute 222

Thickness variation within ±5%