Development of Phosphate Glass doped with Barium for Radiation Shielding

Assoc. Prof. Dr. Siriprapa Kaewjaeng

Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University

General X-ray

Mammography

CT Scan

Dental

National Council on Radiation Protection and Measurements

NCRP 103

As Low As Reasonably Achieveable

https://www.matichon.co.th/wpcontent/uploads/2018/03/%E0%B8%A0% E0%B8%9B-%E0%B9%84%E0%B8%95%E0%B8%A7%E0

%B8%B2%E0%B8%A2.jpg

http://www.x-

https://www.siamchemi.com/wpcontent/uploads/2017/04/%E0%B9%81%E0 %B8%A3%E0%B9%88%E0%B8%95%E0%B8% B0%E0%B8%81%E0%B8%B1%E0%B9%88%E 0%B8%A7.jpg

> https://www.health2click.com/wpcontent/uploads/2018/07

https://cosmoneochayawut.f iles.wordpress.com/2016/05 /00.jpg?w=1400

4	Atomio													Pnictogens	Chalcogens	Halogens	2
Hydrog	en Name Weight	С	Solid	Solid		Metals				Monm	etals					273	Helium
3 Lithium 6.94	4 Be Berylliun 9.0122	Hg	Liquid Gas		netais Vikali met	Actine es	noids	ransition netals	illoids ⁹ ost-trans	Reactive	loble gas	5 B Boron 10.81	6 C Carbon 12.011	7 N Nitrogen 14.007	8 O Oxygen 15.999	9 F Fluorine 18.998	10 Ne Neon 20.180
11 Na Sodium 22.990	12 Mg Magnesiu 24.305	Rf	Unkno	wn	als	arth			ition		es	13 Aluminium 26.982	14 Si Silicon 28.085	15 P Phosphorus 30.974	16 S Sulfur 32.06	17 Cl Chlorine 35.45	18 Ar Argon 39.948
19 K Potassiu 39.098	20 Ca Calcium 40.078	21 Sc Scandiur 44.956	22 Ti Titanium 47.867	23 V Vanadium 50.942	24 Cr Chromium 51.996	25 Mn Manganese 54.938	26 Fe Iron 55.845	27 Co Cobalt 58.933	28 Ni Nickel 58.693	29 Cu Copper 63.546	30 Zn Zinc 65.38	31 Gallium 69.723	32 Ge Germanium 72.630	33 As Arsenic 74.922	34 Se Selenium 78.971	35 Br Bromine 79.904	36 Kr Krypton 83.798
37 Rb Rubidiu 85.468	38 Sr Strontiun 87.62	39 Y Yttrium 88.906	40 Zr Zirconium 91.224	41 Nb Niobium 92.906	42 Mo Molybdenur 95.95	43 TC Technetium (98)	44 Ru Ruthenium 101.07	45 Rh Rhodium 102.91	46 Pd Palladiur 106.42	47 Ag Silver 107.87	48 Cd Cadmium 112.41	49 In Indium 114.82	50 Sn Tin 118.71	51 Sb Antimony 121.76	52 Te Tellurium 127.60	53 Iodine 126.90	54 Xe Xenon 131.29
55 CS Caesiur 132.91	56 Ba Bariur 137.3	7-71	72 Hf Hafnium 178.49	73 Ta Tantalum 180.95	74 W Tungste 183.84	e n enium 6.21	76 OS Osmium 190.23	77 I r Iridium 192.22	78 Pt Platinum 195.08	79 Au Gold 196.97	80 Hg Mercury 200.59	81 TI Thalliur 204.38	82 Pb Lead 207.2	83 Bi Bismuth	O lonium 19)	85 At Astatine (210)	86 Rn Radon (222)
87 Fr Franciu (223)	88 Ra Radium (226)	89–103	104 Rf Rutherfordiu (267)	105 Db Dubnium (268)	106 Sg Seaborgium (269)	107 Bh Bohrium (270)	108 HS Hassium (277)	109 Mt Meitnerium (278)	110 DS Darmstadt (281)	111 Rg Roentgeniu (282)	112 Cn Copernicius (285)	113 Nh Nihonium (286)	114 Fl Flerovium (289)	115 MC Moscovium (290)	116 LV Livermorium (293)	117 TS Tennessine (294)	118 Og Oganesson (294)
		For elements with no stable isotopes, the mass number of the isotope with the longest half-life is in parentheses.															
			Ptable® is a registered trademark of Michael Dayah. Last updated Jun 29, 2020														
			57 La Lanthanum 138.91	8 Ce erium 40.12	59 Pr Praseodymi 140.91	60 Nd Neodymium 144.24	61 Pm Promethium (145)	62 Sm Samarium 150.36	63 Eu Europiun 151.96	64 Gd Gadolinium 157.25	65 Tb Terbium 158.93	66 Dy Dysprosiu 162 50	67 HO Holmium 164.93	68 Er Erbium 167.26	69 Tm Thulium 168.93	70 Yb Ytterbium 173.05	71 Lu Lutetium 174.97
			89 AC Actinium (227)	90 Th Thorium 232 04	91 Pa Protactinium 231.04	92 U Uranium 238.03	93 Np Neptunium (237)	94 Pu Plutonium (244)	95 Am Americium (243)	96 Cm Curium (247)	97 Bk Berkeliun (247)	98 Cf Californium (251)	99 Es Einsteinium (252)	100 Fm Fermium (257)	101 Md Mendelevius (258)	102 No Nobelium (259)	103 Lr Lawrencium (266)

Glass Formula

 P_2O_5 -NaF-ZnF₂-AlF₃-BaO

High Atomic Number (Z = 56)

Low toxicity

High Density

Enhance Radiation Absorption

P_2O_5 -NaF-ZnF₂-AlF₃

High Transparency

High Reflective index

Colorless

Strong structure

Thermal stability

Chemical stability

The glass samples with composition $70P_2O_5$ -15NaF-5ZnF₂-10AlF₃XBaO (where x = 0, 3, 9 and 15 mol%)

Chemical compositions using in glass composition

Preparing 20 g. following by glass composition

Melting at 1150 °C for 1.5 hrs. MUR 11, 18

The glass samples with composition $70P_2O_5-15NaF-5ZnF_2-10AlF_3$.XBaO (where x = 0, 3, 9 and 15 mol%)

70P₂O₅-15NaF-5ZnF₂-10AlF₃-XBaO

(where x = 0, 3, 9 and 15 mol%)

5NaF

5ZnF₂

10AIF₃

xBaO

Radiation Characterization

Linear Attenuation Coefficient (µ)

Half Value Layer (HVL)

Mean Free Path (MFP)

5 HVL Compare with standard materials at 120 kp

20

Lead equivalent thickness

 μ_{glass} $imes d_{glass}$ d_{lead} μ_{lead}

 μ Linear attenuation coefficient d Thickness

