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The Unruh Effect
The Unruh effect: Accelerated observers can detect particles which are unobservable to inertial 
observers. Occurs even if the accelerated observer is in vacuum. 

S. A. Fulling, PRD 7 2850 (1973); 
P. C. W. Davies, J. Phys. A 8 609 (1975); 
W. G. Unruh, PRD 14 870 (1976). 

Formal reason: The proper time of an accelerated observers is different from the time of an inertial 
observer and unrelated by Lorentz transformations.  

For each choice of time there is a different vacuum. (Unless time are related by Lorentz transfo.) 
The vacuum attached to an inertial frame appears populated by real particles to an accelerated 
observer (whose own vacuum is empty, by definition). 

Importance: by Einstein’s equivalence principle, the Unruh effect ≡ Hawking’s black hole radiation. 
(acceleration = gravitational force ≡ spacetime curvature)  

Doorway to quantum gravitation; 

Interpretation: If a vacuum loop’s pair of virtual particles occurs near an event horizon, one of the 
particles may fall beyond the event horizon and the pair annihilation is prevented: one particle 
becomes real (taking energy from the Black Hole (Hawking radiation) or from the frame acceleration (Unruh effect)).
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The Unruh Effect
LF quantization:  ⇒ trivial vacuum (aside from possible zero-modes).  
No loops of virtual particle with non-zero momenta.

p+ ≥ 0

A. Deur 06/18/2024 ILCAC seminar

What about the Unhru effect in LF quantization?
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Field decomposition
In frame  (with vacuum ): 
Field decomposition in positive and negative frequency modes: 

                                   , with   

For IF: ,  
For LF: .  

In another frame  (with vacuum ): 

                                    

If no unambiguous separation of + and - modes in different frames, then  
                 

             ⇒     but . 
            i.e.,  

If the frames are related by a Lorentz boost (viz inertial frames): 

 for IF, 

 for LF 

xμ |0⟩

ϕ = ∫ dp( ̂ap fp + ̂a†
p f*p ) fp ∝ eipμxμ

fp ∝ e−i(ωt−pz)

fp+ ∝ e− i
2 (p−x++p+x−)

x′ μ |0′ ⟩

ϕ = ∫ dp′ ( )

b̂p′ = α ̂ap + β ̂a†
p

b̂p′ |0⟩ = 0 b̂p′ |0′ ⟩ = (α ̂ap + β ̂a†
p) |0′ ⟩ = ̂a†

p |0′ ⟩ ∝ |p⟩
b̂p′ |0′ ⟩ ∝ |p⟩ ≠ 0

∂fp
∂t′ 

= − iω′ fp

∂fp+

∂x+′ = −
i
2

p−′ fp+

annihilation   creation operators
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                                   , with   
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fp+ ∝ e− i
2 (p−x++p+x−)

x′ μ |0′ ⟩

ϕ = ∫ dp′ (b̂p′ f′ p′ + b̂†
p′ f′ p′ 

*)

b̂p′ = α ̂ap + β ̂a†
p β ≠ 0

b̂p′ |0′ ⟩ = 0 b̂p′ |0⟩ = (α ̂ap + β ̂a†
p) |0⟩ = ̂a†

p |0⟩ ∝ |p⟩
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∂t′ 

= − iω′ fp

∂fp+

∂x+′ = −
i
2

p−′ fp+

Unruh effect 
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Inertial frames

c =
 1

z

t

Instant form
c =

 1

z

t

Front form

Inertial  
frame

x−

x+

Inertial frame

Accelerated frame
Accelerated 

 frame

, with   

If the frames are related by a Lorentz boost (viz inertial frames): 
   ⇒   .   : No Unruh effect. 

 for IF, 

 for LF 

ϕ = ∫ dp( ̂ap fp + ̂a†
p f*p ) fp ∝ eipμxμ

fp ∝ eipμxμ = ei(ωt−pz) = ei(ω′ t′ −p′ z′ ) = e− i
2 (p−x++p+x−) ̂ap = b̂p′ β = 0

∂fp
∂t′ 

= − iω′ fp

∂fp+

∂x+′ = −
i
2

p−′ fp+
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Accelerated 

 frame

, with   

If the frames are related by a Lorentz boost (viz inertial frames): 
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 for LF 

ϕ = ∫ dp( ̂ap fp + ̂a†
p f*p ) fp ∝ eipμxμ

fp ∝ eipμxμ = ei(ωt−pz) = ei(ω′ t′ −p′ z′ ) = e− i
2 (p−x++p+x−) ̂ap = b̂p′ β = 0

∂fp
∂t′ 

= [ ∂t
∂t′ 

∂t +
∂z
∂t′ 

∂z] fp = i [ω cosh θ − p sinh θ] fp = − iω′ fp

∂fp+

∂x+′ = −
i
2

p−′ fp+

Frequencies in the boosted frame are boosted frequencies. 
⇒ unambiguous separation of positive and negative modes. 
No Unruh effect in inertial frames, as it should be. 
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Accelerating frames
Acceleration: succession of boosts with changing rapidity, e.g.,  or :  θ(t) = ut θ(x+) = ux+

c =
 1

z

t

Instant form
c =

 1

z

t

Front form

Inertial  
frame

x−

x+

Inertial frame

Accelerated frame
Accelerated 

 frame

θ(t)
θ(t)

θ(t)
θ(t)

θ(t)

θ(t)

÷ eθ(x+)

× eθ(x+)

× eθ(x+)

× eθ(x+)

× eθ(x+)

÷ eθ(x+)

÷ eθ(x+)

÷ eθ(x+)
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 , with   for IF, 

 , with for LF 

∂fp
∂t′ 

= − i [ω′ +∂t′ θ(ωz − tp)] fp ∂t′ θ(t) = u sech(ut)/[1 − uz + ut tanh(ut)]

∂fp+

∂x+′ 
= −

i
2 [p−′ + ∂x+′ θ(x−p+ − x+p−)] fp+

Accelerating frames
Acceleration: succession of boosts with changing rapidity, e.g.,  or :  θ(t) = ut θ(x+) = ux+

c =
 1

z

t

Instant form
c =

 1

z

t

Front form

Inertial  
frame

x−

x+

Inertial frame

Accelerated frame
Accelerated 

 frame

θ(t)
θ(t)

θ(t)
θ(t)

θ(t)

θ(t)

÷ eθ(x+)

× eθ(x+)

× eθ(x+)

× eθ(x+)

× eθ(x+)

÷ eθ(x+)

÷ eθ(x+)

÷ eθ(x+)

Time-dependent space-time mixing ⇒ ambiguous 
separation of + and - modes ⇒  ⇒ Unruh effectβ ≠ 0

Not Lorentz invariant.
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 , with   for IF, 

 , with for LF 

∂fp
∂t′ 

= − i [ω′ +∂t′ θ(ωz − tp)] fp ∂t′ θ(t) = u sech(ut)/[1 − uz + ut tanh(ut)]

∂fp+

∂x+′ 
= −

i
2 [p−′ +∂x+′ θ(x−p+ − x+p−)] fp+ ∂x+′ θ(x+) = υe−υx+/[1 + υx+]

Accelerating frames
Acceleration: succession of boosts with changing rapidity, e.g.,  or :  θ(t) = ut θ(x+) = ux+

c =
 1

z

t

Instant form
c =

 1

z

t

Front form

Inertial  
frame

x−

x+

Inertial frame

Accelerated frame
Accelerated 

 frame

θ(t)
θ(t)

θ(t)
θ(t)

θ(t)

θ(t)

÷ eθ(x+)

× eθ(x+)

× eθ(x+)

× eθ(x+)

× eθ(x+)

÷ eθ(x+)

÷ eθ(x+)

÷ eθ(x+)

 only time-dependent. Space ⟂ time always ⇒ unambiguous 
separation of + and - modes ⇒  ⇒ No Unruh effect
∂x+′ θ

β = 0

Time-dependent space-time mixing ⇒ ambiguous 
separation of + and - modes ⇒  ⇒ Unruh effectβ ≠ 0

Not Lorentz invariant.
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Connection to commutation relations & vacuum structure
Canonical quantization done at constant proper time. 
Heisenberg uncertainty principle originates from commutation 
relations  
  ⇒ Uncertainty principle operates at equal time.  
  ⇒ complex IF vacuum. 

If events  and  at times  and  are spacelike-separated,  
time-ordering of  and  is frame-dependent.  
In some frames, <  and Z-graphs appear. They contribute 
negative probabilities.  
⇒ Need disconnected vacuum loops to balance the negative 
probabilities.  

Accelerated frames: virtual particles may borrow 4-momentum 
from acceleration process and become observable: Unruh 
effect.

ℰ1 ℰ2 t1 t2
ℰ1 ℰ2
t1 t2

1
1

t2

z

2

∆
t

Spacelike Spacelike 
region region

regionTimelike 

2

ε

ε

+ +

ϕ

ϕ

ϕ

ϕ

ϕ

ϕ

ϕ

ϕ

Z−graph vacuum loop
Direct propagation

Instant−form Front−form

z

Spacelike Spacelike 
region region

regionTimelike 

2τ

1ε

τ

x −

2ε

x −{∆

{

Direct propagation

t

t1

1

t1

t2

2t

ϕ

τ

τ2
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 ⇒ Uncertainty principle: equal time.  
 ⇒ Trivial LF vacuum. 

Boost or acceleration: rescales axes without 
reorienting them ⇒ uncertainty principle 
always operates along . 

 and  are always timelike-separated: No 
vacuum loops.  
This persists in an accelerated LF frame: no 
Unruh effect. 

Also: Momentum conservation ⇒ no vacuum loops: LF 
particles must have . Vacuum  ⇒ one of 
the particles of the vacuum loop would have , 
which is forbidden.

x−

ℰ1 ℰ2

p+ ≥ 0 p+ = 0
p+ < 0
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Standard derivation (Unruh 1976)
S. M. Carroll, Spacetime and Geometry: An Introduction to General Relativity, Cambridge University Press 

z

t

x−

x+
Acceleration: 
• Hyperboloid in IF:   

• Hyperbola in LF:  

t2(ρ) = z2(ρ) − α2

τ(ρ) =
1

α2x−(ρ)
(  is a parameter)ρ
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Standard derivation (Unruh 1976)
S. M. Carroll, Spacetime and Geometry: An Introduction to General Relativity, Cambridge University Press 

z

t

x−

ξ

x+

η
⇒ define new coordinate system : 

 

 

 

 

(ξ, η)

z =
1
a

eaξ cosh(aη)

t =
1
a

eaξ sinh(aη)

x− =
1
a

ea(−η+ξ)

x+ =
1
a

ea(η+ξ)

Acceleration: 
• Hyperboloid in IF:   

• Hyperbola in LF:  

t2(ρ) = z2(ρ) − α2

τ(ρ) =
1

α2x−(ρ)

}IF

}LF

: Rindler space; : Rindler time 
Acceleration: “Orbit” in Rindler spacetime ( =const.,  evolves) 

The coordinates above cover only Region I.  
Other coordinates needed for regionIV: 

ξ η
ξ η

(  is a parameter)ρ
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z

t

x−

ξ

x+

η
⇒ define new coordinate system : 

 

 

 

 

(ξ, η)

z =
1
a

eaξ cosh(aη)

t =
1
a

eaξ sinh(aη)

x− =
1
a

ea(−η+ξ)

x+ =
1
a

ea(η+ξ)

Acceleration: 
• Hyperboloid in IF:   

• Hyperbola in LF:  

t2(ρ) = z2(ρ) − α2

τ(ρ) =
1

α2x−(ρ)
(  is a parameter)ρ

}IF

}LF

: Rindler space; : Rindler time 
Acceleration: “Orbit” in Rindler spacetime ( =const.,  evolves) 

The coordinates above cover only Region I.  
Other coordinates needed for regionIV: 

ξ η
ξ η

I



25
A. Deur 06/18/2024 ILCAC seminar

Standard derivation (Unruh 1976)
S. M. Carroll, Spacetime and Geometry: An Introduction to General Relativity, Cambridge University Press 

z

t

x−

ξ

x+

η
⇒ define new coordinate system : 

 

 

 

 

(ξ, η)

z =
1
a

eaξ cosh(aη)

t =
1
a

eaξ sinh(aη)

x− =
1
a

ea(−η+ξ)

x+ =
1
a

ea(η+ξ)

Acceleration: 
• Hyperboloid in IF:   

• Hyperbola in LF:  

t2(ρ) = z2(ρ) − α2

τ(ρ) =
1

α2x−(ρ)
(  is a parameter)ρ

}IF

}LF

: Rindler space; : Rindler time 
Acceleration: “Orbit” in Rindler spacetime ( =const.,  evolves) 

The coordinates above cover only Region I.  
Other coordinates needed for region IV: 

ξ η
ξ η

I

II

IV

III

;   

;   

z = −
1
a

eaξ cosh(aη) t = −
1
a

eaξ sinh(aη)

x− = −
1
a

ea(−η+ξ) x+ = −
1
a

ea(η+ξ)
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Standard derivation (Unruh 1976)
S. M. Carroll, Spacetime and Geometry: An Introduction to General Relativity, Cambridge University Press 

z

t

x−

I

II

IV

III

ξ

x+

η

In Rindler space-time, the field is decomposed using 
regions I and IV Rindler modes: 

  

In Minkowski (=inertial) frame  (IF) or  (LF), 
no spacetime partion ⇒ the field is decomposed as usual: 

  (IF)  

  (LF) 

Then we have the definition of the vacua: 
 ;  ; 

ϕ = ∫ dp(b̂(I)
p g(I)

p +b̂(I)†
p g(I)*

p +b̂(IV)
p g(IV)

p +b̂(IV)†
p g(IV)*

p )

(t, z) (x+, x−)

ϕ = ∫ dp( ̂ap fp + ̂a†
p f*p )

ϕ = ∫ dp+( ̂ap+ fp+ + ̂a†
p+ f*p+)

b̂(I)
p |0⟩R = 0 = b̂(IV)

p |0⟩R ̂ap |0⟩M,IF = 0 ̂ap+ |0⟩M,LF = 0
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Standard derivation (Unruh 1976)
S. M. Carroll, Spacetime and Geometry: An Introduction to General Relativity, Cambridge University Press 

z

t

x−

I

II

IV

III

ξ

x+

η

In Rindler space-time, the field is decomposed using 
regions I and IV Rindler modes: 

  

In Minkowski (=inertial) frame  (IF) or  (LF), 
no spacetime partition ⇒ the field is decomposed as usual: 

  (IF)  

  (LF) 

Then we have the definition of the vacua: 
 ;  ; 

ϕ = ∫ dp(b̂(I)
p g(I)

p +b̂(I)†
p g(I)*

p +b̂(IV)
p g(IV)

p +b̂(IV)†
p g(IV)*

p )

(t, z) (x+, x−)

ϕ = ∫ dp( ̂ap fp + ̂a†
p f*p )

ϕ = ∫ dp+( ̂ap+ fp+ + ̂a†
p+ f*p+)

b̂(I)
p |0⟩R = 0 = b̂(IV)

p |0⟩R ̂ap |0⟩M,IF = 0 ̂ap+ |0⟩M,LF = 0
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Standard derivation (Unruh 1976)
S. M. Carroll, Spacetime and Geometry: An Introduction to General Relativity, Cambridge University Press 

z

t

x−

I

II

IV

III

ξ

x+

η

In Rindler space-time, the field is decomposed using 
regions I and IV Rindler modes: 

  

In Minkowski (=inertial) frame  (IF) or  (LF), 
no spacetime partition ⇒ the field is decomposed as usual: 

  (IF)  

  (LF) 

Then we have the definition of the vacua: 
 ;  ; 

ϕ = ∫ dp(b̂(I)
p g(I)

p +b̂(I)†
p g(I)*

p +b̂(IV)
p g(IV)

p +b̂(IV)†
p g(IV)*

p )

(t, z) (x+, x−)

ϕ = ∫ dp( ̂ap fp + ̂a†
p f*p )

ϕ = ∫ dp+( ̂ap+ fp+ + ̂a†
p+ f*p+)

b̂(I)
p |0⟩R = 0 = b̂(IV)

p |0⟩R ̂ap |0⟩M,IF = 0 ̂ap+ |0⟩M,LF = 0
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Standard derivation (Unruh 1976)
S. M. Carroll, Spacetime and Geometry: An Introduction to General Relativity, Cambridge University Press 

z

t

x−

I

II

IV

III

ξ

x+

η

In Rindler space-time, the field is decomposed using 
regions I and IV Rindler modes: 

  

In Minkowski (=inertial) frame  (IF) or  (LF), 
no spacetime partition ⇒ the field is decomposed as usual: 

  (IF)  

  (LF) 

Then we have the definition of the vacua: 
 ;  ; 

ϕ = ∫ dp(b̂(I)
p g(I)

p +b̂(I)†
p g(I)*

p +b̂(IV)
p g(IV)

p +b̂(IV)†
p g(IV)*

p )

(t, z) (x+, x−)

ϕ = ∫ dp( ̂ap fp + ̂a†
p f*p )

ϕ = ∫ dp+( ̂ap+ fp+ + ̂a†
p+ f*p+)

b̂(I)
p |0⟩R = 0 = b̂(IV)

p |0⟩R ̂ap |0⟩M,IF = 0 ̂ap+ |0⟩M,LF = 0

To derive his effect, Unruh combined Rindler modes so that they match the spacetime dependence of Minkowski 
modes. 
⇒ Rindler mode combinations  (IF) or  (LF) whose annihilation operators  (or ) 
annihilate  (or ). 

  

 

h(I)
p , h(IV)

p h(I)
p , h(IV)

p ̂c(I,IV)
p ̂c(I,IV)

p
|0⟩M,IF |0⟩M,LF

h(I)
p =

1

2 sinh( πω
a )

(eπω/2ag(I)
p + e−πω/2ag(IV)*

−p )

h(I)
p = g(I)

p
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Standard derivation (Unruh 1976)
S. M. Carroll, Spacetime and Geometry: An Introduction to General Relativity, Cambridge University Press 

z

t

x−

I

II

IV

III

ξ

x+

η

To derive his effect, Unruh combined Rindler modes so that they match the spacetime dependence of Minkowski 
modes. 
⇒ Rindler mode combinations  (IF) or  (LF) whose annihilation operators  (or ) 
annihilate  (or ). 

  

 

h(I)
p , h(IV)

p h(I)
p , h(IV)

p ̂c(I,IV)
p ̂c(I,IV)

p
|0⟩M,IF |0⟩M,LF

h(I)
p =

1

2 sinh( πω
a )

(eπω/2ag(I)
p + e−πω/2ag(IV)*

−p )

h(I)
p = g(I)

p

In Rindler space-time, the field is decomposed using 
regions I and IV Rindler modes: 

  

In Minkowski (=inertial) frame  (IF) or  (LF), 
no spacetime partition ⇒ the field is decomposed as usual: 

  (IF)  

  (LF) 

Then we have the definition of the vacua: 
 ;  ; 

ϕ = ∫ dp(b̂(I)
p g(I)

p +b̂(I)†
p g(I)*

p +b̂(IV)
p g(IV)

p +b̂(IV)†
p g(IV)*

p )

(t, z) (x+, x−)

ϕ = ∫ dp( ̂ap fp + ̂a†
p f*p )

ϕ = ∫ dp+( ̂ap+ fp+ + ̂a†
p+ f*p+)

b̂(I)
p |0⟩R = 0 = b̂(IV)

p |0⟩R ̂ap |0⟩M,IF = 0 ̂ap+ |0⟩M,LF = 0

 (  is the field frequency and a the acceleration.) ω
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Standard derivation (Unruh 1976)
S. M. Carroll, Spacetime and Geometry: An Introduction to General Relativity, Cambridge University Press 

z

t

x−

I

II

IV

III

ξ

x+

η

To derive his effect, Unruh combined Rindler modes so that they match the spacetime dependence of Minkowski 
modes. 
⇒ Rindler mode combinations  (IF) or  (LF) whose annihilation operators  (or ) 
annihilate  (or ). 

  

 

h(I)
p , h(IV)

p h(I)
p , h(IV)

p ̂c(I,IV)
p ̂c(I,IV)

p
|0⟩M,IF |0⟩M,LF

h(I)
p =

1

2 sinh( πω
a )

(eπω/2ag(I)
p + e−πω/2ag(IV)*

−p )

h(I)
p = g(I)

p

In Rindler space-time, the field is decomposed using 
regions I and IV Rindler modes: 

  

In Minkowski (=inertial) frame  (IF) or  (LF), 
no spacetime partition ⇒ the field is decomposed as usual: 

  (IF)  

  (LF) 

Then we have the definition of the vacua: 
 ;  ; 

ϕ = ∫ dp(b̂(I)
p g(I)

p +b̂(I)†
p g(I)*

p +b̂(IV)
p g(IV)

p +b̂(IV)†
p g(IV)*

p )

(t, z) (x+, x−)

ϕ = ∫ dp( ̂ap fp + ̂a†
p f*p )

ϕ = ∫ dp+( ̂ap+ fp+ + ̂a†
p+ f*p+)

b̂(I)
p |0⟩R = 0 = b̂(IV)

p |0⟩R ̂ap |0⟩M,IF = 0 ̂ap+ |0⟩M,LF = 0

 (  is the field frequency and a the acceleration.) ω

No  because it would require   (same reason why there is no LF 
vacuum loops).

g(VI)*
p p+ < 0
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Standard derivation (Unruh 1976)
S. M. Carroll, Spacetime and Geometry: An Introduction to General Relativity, Cambridge University Press 

z

t

x−

I

II

IV

III

ξ

x+

η

To derive his effect, Unruh combined Rindler modes so that they match the spacetime dependence of Minkowski 
modes. 
⇒ Rindler mode combinations  (IF) or  (LF) whose annihilation operators  (or ) 
annihilate  (or ). 

 

 

h(I)
p , h(IV)

p h(I)
p , h(IV)

p ̂c(I,IV)
p ̂c(I,IV)

p
|0⟩M,IF |0⟩M,LF

h(I)
p =

1

2 sinh( πω
a )

(eπω/2ag(I)
p + e−πω/2ag(IV)*

−p )

h(I)
p = g(I)

p

⇒  annihil. op. :  

⇒  annihil. op. :   

g(I)
p b̂(I)

p =
1

2 sinh( πω
a )

(eπω/2a ̂c(I)
p + e−πω/2a ̂c(IV)†

−p )

g(I)
p b̂(I)

p = ̂ap+

In Rindler space-time, the field is decomposed using 
regions I and IV Rindler modes: 

  

In Minkowski (=inertial) frame  (IF) or  (LF), 
no spacetime partition ⇒ the field is decomposed as usual: 

  (IF)  

  (LF) 

Then we have the definition of the vacua: 
 ;  ; 

ϕ = ∫ dp(b̂(I)
p g(I)

p +b̂(I)†
p g(I)*

p +b̂(IV)
p g(IV)

p +b̂(IV)†
p g(IV)*

p )

(t, z) (x+, x−)

ϕ = ∫ dp( ̂ap fp + ̂a†
p f*p )

ϕ = ∫ dp+( ̂ap+ fp+ + ̂a†
p+ f*p+)

b̂(I)
p |0⟩R = 0 = b̂(IV)

p |0⟩R ̂ap |0⟩M,IF = 0 ̂ap+ |0⟩M,LF = 0
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Standard derivation (Unruh 1976)
S. M. Carroll, Spacetime and Geometry: An Introduction to General Relativity, Cambridge University Press 

z

t

x−

I

II

IV

III

ξ

x+

η

To derive his effect, Unruh combined Rindler modes so that they match the spacetime dependence of 
Minkowski modes. 
⇒ Rindler mode combinations  (IF) or  (LF) whose annihilation operators  (or ) 
annihilate  (or ). 

 

 

h(I)
p , h(IV)

p h(I)
p , h(IV)

p ̂c(I,IV)
p ̂c(I,IV)

p
|0⟩M,IF |0⟩M,LF

h(I)
p =

1

2 sinh( πω
a )

(eπω/2ag(I)
p + e−πω/2ag(IV)*

−p )

h(I)
p = g(I)

p

annihil. op. :  ⇒     

annihil. op. :                                                              ⇒   

b̂(I)
p =

1

2 sinh( πω
a )

(eπω/2a ̂c(I)
p + e−πω/2a ̂c(IV)†

−p ) b̂(I)
p |0⟩M,IF =

1

2 sinh( πω
a )

(e−πω/2a | − p⟩) ≠ 0

b̂(I)
p = ̂ap+ b̂(I)

p |0⟩M,LF = ̂ap+ |0⟩M,LF = 0
Unruh effect

no Unruh effect

In Rindler space-time, the field is decomposed using 
regions I and IV Rindler modes: 

  

In Minkowski (=inertial) frame  (IF) or  (LF), 
no spacetime partition ⇒ the field is decomposed as usual: 

  (IF)  

  (LF) 

Then we have the definition of the vacua: 
 ;  ; 

ϕ = ∫ dp(b̂(I)
p g(I)

p +b̂(I)†
p g(I)*

p +b̂(IV)
p g(IV)

p +b̂(IV)†
p g(IV)*

p )

(t, z) (x+, x−)

ϕ = ∫ dp( ̂ap fp + ̂a†
p f*p )

ϕ = ∫ dp+( ̂ap+ fp+ + ̂a†
p+ f*p+)

b̂(I)
p |0⟩R = 0 = b̂(IV)

p |0⟩R ̂ap |0⟩M,IF = 0 ̂ap+ |0⟩M,LF = 0
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Other standard derivation
Preliminary: Rindler time translation ⇔ Minkowski boost. 

Recall the definition of Rindler coordinates: 

;    

;     

Rindler time translation  
⇒            
               

              
              

This is because acceleration = succession of boosts with changing rapidity. 

z =
1
a

eaξ cosh(aη) t =
1
a

eaξ sinh(aη)

x− =
1
a

ea(−η+ξ) x+ =
1
a

ea(η+ξ)

η → η + Δ
t′ = t cosh(aΔ) + x sinh(aΔ)
z′ = z cosh(aΔ) + t sinh(aΔ)
x+′ = eaΔx+

x−′ = e−aΔx−
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Other standard derivation
Preliminary: Rindler time translation ⇔ Minkowski boost. 

Recall the definition of Rindler coordinates: 

;    

;     

Rindler time translation  
⇒            
               

              
              

This is because acceleration = succession of boosts with changing rapidity. 

z =
1
a

eaξ cosh(aη) t =
1
a

eaξ sinh(aη)

x− =
1
a

ea(−η+ξ) x+ =
1
a

ea(η+ξ)

η → η + Δ
t′ = t cosh(aΔ) + x sinh(aΔ)
z′ = z cosh(aΔ) + t sinh(aΔ)
x+′ = eaΔx+

x−′ = e−aΔx−

}IF

} LF

Usual boost formulae with  
rapidity  (a is the acceleration).aΔ
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Other standard derivation
This derivation uses the periodicity in imaginary time ( ) of a QFT at finite temperature . 

1.) Green function of :   

If H is also the time-evolution operator, then: 
  

This and cyclicity property of trace ⇒ : QFT periodicity with period  

2.) On the other hand: Rindler line element, . With imaginary Rindler time : 
: polar coordinates. For non-singular coordinates, we must have . 

Rindler time translation  ⇔ boost with rapidity  
Rindler imaginary time periodicity:  
QFT -periodicity:  
     ⇒ There exist, even in the vacuum, particles thermally distributed at T: Unruh effect.

t̃ ≡ it T ≡ /1β

ϕ(t̃, z) Gβ(t̃, z) = −
1
Z

Tr e−βH𝒯[ϕ(t̃, z)ϕ(0,0)]

e−βHϕ(t̃, z)eβH = ϕ(t̃ − β, z)
Gβ(t̃, z) = Gβ(t̃ − β, z) β

ds2 = − ξ2dη2 + dξ2 η̃ ≡ iη
ds2 = ξ2dη2 + dξ2 η̃ = η̃ + 2πi

η/a → η/a + Δ/a Δ
η̃/a → η̃/a + 2πi /a

β η̃ → η̃ + iβ

Partition function imaginary-time ordering operator

Energy operator (not necessarily the time-evolution operator)
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Other standard derivation
This derivation uses the periodicity in imaginary time ( ) of a QFT at finite temperature . 

1.) Green function of :   

If H is also the time-evolution operator, then: 
  

This and cyclicity property of trace ⇒ : QFT periodicity with period  

2.) On the other hand: Rindler line element, . With imaginary Rindler time : 
: polar coordinates. For non-singular coordinates, we must have . 

Rindler time translation  ⇔ boost with rapidity  
Rindler imaginary time periodicity:  
QFT -periodicity:  
     ⇒ There exist, even in the vacuum, particles thermally distributed at T: Unruh effect.

t̃ ≡ it T ≡ /1β

ϕ(t̃, z) Gβ(t̃, z) = −
1
Z

Tr e−βH𝒯[ϕ(t̃, z)ϕ(0,0)]

e−βHϕ(t̃, z)eβH = ϕ(t̃ − β, z)
Gβ(t̃, z) = Gβ(t̃ − β, z) β

ds2 = − ξ2dη2 + dξ2 η̃ ≡ iη
ds2 = ξ2dη2 + dξ2 η̃ = η̃ + 2πi

η/a → η/a + Δ/a Δ
η̃/a → η̃/a + 2πi /a

β η̃ → η̃ + iβ

Partition function imaginary-time ordering operator

Energy operator (not necessarily the time-evolution operator)
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Other standard derivation
This derivation uses the periodicity in imaginary time ( ) of a QFT at finite temperature . 

1.) Green function of :   

If H is also the time-evolution operator, then: 
  

This and cyclicity property of trace ⇒ : QFT periodicity with period  

2.) On the other hand: Rindler line element, . With imaginary Rindler time : 
: polar coordinates. For non-singular coordinates, we must have . 

Rindler time translation  ⇔ boost with rapidity  
Rindler imaginary time periodicity:  
QFT -periodicity:  
     ⇒ There exist, even in the vacuum, particles thermally distributed at T: Unruh effect.

t̃ ≡ it T ≡ /1β

ϕ(t̃, z) Gβ(t̃, z) = −
1
Z

Tr e−βH𝒯[ϕ(t̃, z)ϕ(0,0)]

e−βHϕ(t̃, z)eβH = ϕ(t̃ − β, z)
Gβ(t̃, z) = Gβ(t̃ − β, z) β

ds2 = − ξ2dη2 + dξ2 η̃ ≡ iη
ds2 = ξ2dη2 + dξ2 η̃ = η̃ + 2πi

η/a → η/a + Δ/a Δ
η̃/a → η̃/a + 2πi /a

β η̃ → η̃ + iβ

Partition function imaginary-time ordering operator

Energy operator (not necessarily the time-evolution operator)
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Other standard derivation
This derivation uses the periodicity in imaginary time ( ) of a QFT at finite temperature . 

1.) Green function of :   

If H is also the time-evolution operator, then: 
  

This and cyclicity property of trace ⇒ : QFT periodicity with period  

2.) On the other hand: Rindler line element, . With imaginary Rindler time : 
: polar coordinates. For non-singular coordinates, we must have . 

Rindler time translation  ⇔ boost with rapidity  
Rindler imaginary time periodicity:  
QFT -periodicity:  
     ⇒ There exist, even in the vacuum, particles thermally distributed at T: Unruh effect.

t̃ ≡ it T ≡ /1β

ϕ(t̃, z) Gβ(t̃, z) = −
1
Z

Tr e−βH𝒯[ϕ(t̃, z)ϕ(0,0)]

e−βHϕ(t̃, z)eβH = ϕ(t̃ − β, z)
Gβ(t̃, z) = Gβ(t̃ − β, z) β

ds2 = − ξ2dη2 + dξ2 η̃ ≡ iη
ds2 = ξ2dη2 + dξ2 η̃ = η̃ + 2πi

η/a → η/a + Δ/a Δ
η̃/a → η̃/a + 2πi /a

β η̃ → η̃ + iβ

Partition function imaginary-time ordering operator

Energy operator (not necessarily the time-evolution operator)

⇒ temperature β−1 = T = a /2π
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Other standard derivation

But: LF boosts are kinematical ⇒ in LF dynamics, Rindler time translation 
operator is a kinematical operator ⇒ cannot serve as the Hamiltonian: 
“If H is also the time-evolution operator” 

In Euclidean spacetime the dilation operator serves as LF Hamiltonian. 

  

No LF Unruh effect. 

Gβ(t̃, z) = Gβ(t̃ − β, z)
z

t

x−

x+

This derivation uses the periodicity in imaginary time ( ) of a QFT at finite temperature . 

1.) Green function of :   

If H is also the time-evolution operator, then: 
  

This and cyclicity property of trace ⇒ : QFT periodicity with period  

2.) On the other hand: Rindler line element, . With imaginary Rindler time : 
: polar coordinates. For non-singular coordinates, we must have . 

Rindler time translation  ⇔ boost with rapidity  
Rindler imaginary time periodicity:  
QFT -periodicity:  
     ⇒ There exist, even in the vacuum, particles thermally distributed at T: Unruh effect.

t̃ ≡ it T ≡ /1β

ϕ(t̃, z) Gβ(t̃, z) = −
1
Z

Tr e−βH𝒯[ϕ(t̃, z)ϕ(0,0)]

e−βHϕ(t̃, z)eβH = ϕ(t̃ − β, z)
Gβ(t̃, z) = Gβ(t̃ − β, z) β

ds2 = − ξ2dη2 + dξ2 η̃ ≡ iη
ds2 = ξ2dη2 + dξ2 η̃ = η̃ + 2πi

η/a → η/a + Δ/a Δ
η̃/a → η̃/a + 2πi /a

β η̃ → η̃ + iβ

Partition function imaginary-time ordering operator

Energy operator (not necessarily the time-evolution operator)

⇒ temperature β−1 = T = a /2π
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Other standard derivation

But: LF boosts are kinematical ⇒ in LF dynamics, Rindler time translation 
operator is a kinematical operator ⇒ cannot serve as the Hamiltonian: 
“If H is also the time-evolution operator” 

In Euclidean spacetime the dilation operator serves as LF Hamiltonian. 

  

No LF Unruh effect. 

Gβ(t̃, z) = Gβ(t̃ − β, z)
z

t

x−

x+

Fubini, Hanson & Jackiw, PRD 7 1732 (1973)

This derivation uses the periodicity in imaginary time ( ) of a QFT at finite temperature . 

1.) Green function of :   

If H is also the time-evolution operator, then: 
  

This and cyclicity property of trace ⇒ : QFT periodicity with period  

2.) On the other hand: Rindler line element, . With imaginary Rindler time : 
: polar coordinates. For non-singular coordinates, we must have . 

Rindler time translation  ⇔ boost with rapidity  
Rindler imaginary time periodicity:  
QFT -periodicity:  
     ⇒ There exist, even in the vacuum, particles thermally distributed at T: Unruh effect.

t̃ ≡ it T ≡ /1β

ϕ(t̃, z) Gβ(t̃, z) = −
1
Z

Tr e−βH𝒯[ϕ(t̃, z)ϕ(0,0)]

e−βHϕ(t̃, z)eβH = ϕ(t̃ − β, z)
Gβ(t̃, z) = Gβ(t̃ − β, z) β

ds2 = − ξ2dη2 + dξ2 η̃ ≡ iη
ds2 = ξ2dη2 + dξ2 η̃ = η̃ + 2πi

η/a → η/a + Δ/a Δ
η̃/a → η̃/a + 2πi /a

β η̃ → η̃ + iβ

Partition function imaginary-time ordering operator

Energy operator (not necessarily the time-evolution operator)

⇒ temperature β−1 = T = a /2π
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What gives ?
Nature is independent of any choice of frame & framework ⇒ IF and LF must eventually agree.  
IF boost is dynamical + rapidity is time-dependent for accelerations.  
⇒ Any detector used to measure the Unruh effect is dynamically affected by .  

Such detector is often described as a thermometer b/c Unruh particles are thermally distributed at TUnruh. 
Simple thermometer: deuterium gas. T given by Maxwell-Boltzmann law + between D ground state  and 
excited state .  

  

The IF cooling effect has been overlooked ⇒ No compensation mechanism for the Unruh effect, which 
seems objectively observable.  

∑ boost(θ(t))

|0⟩
|1⟩
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What gives ?

TUnruh (IF)

z

t
Dynamical boost induces spin-orbit 
force.  
⇒ State  depopulates to . 
                 McGee, Phys. Rev. 158 1500 (1967);  
                   Brodsky, Primack, Phys. Rev. 174 2071 (1968) 

  ⇒ The detector cools.  

|S = 1⟩ |S = 0⟩
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What gives ?

TUnruh (IF)

z

t

LF: boosts are kinematical (no cooling) & vacuum 
is trivial (no Unruh temperature) 
⇒ Suggests Unruh heating + IF-boost cooling = 0.

Dynamical boost induces spin-orbit 
force.  
⇒ State  depopulates to . 
                 McGee, Phys. Rev. 158 1500 (1967);  
                   Brodsky, Primack, Phys. Rev. 174 2071 (1968) 
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Implication to Black Hole Evaporation

Equivalence principle between gravity and acceleration: no Unruh effect ⇔ no Hawking effect. 

⇒ No black hole evaporation  
⇒No black hole information paradox. (One of the gravest problems in physics.) 

Equivalence principle + LF yields a new perspective on Unruh effect:  

• Definition of positive and negative frequency modes is ambiguous in accelerated frame/curved 
spacetime. Since they determine the vacuum state ⇒ Unruh effect. 

• Apparently contradicts the basic principle that for vanishing distances, curved spacetime → flat 
spacetime (=inertial frame, without Unruh effect).  

• However IF vacuum is complex, with characteristic distance scale (size of the vacuum loops). ⇒ cannot 
take the small distance limit ⇒ definition of positive and negative modes ambiguous: Unruh effect.  

•  Classical physics (with trivial vacuum): no Unruh effect. Indeed, TUnruh : quantum effect.  

LF vacuum is trivial. No distance scale prevents reaching the flat spacetime limit, with well-defined 
positive and negative modes ⇒ no Unruh effect 

∝ ℏ
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Conclusion

Common claim: No need to test or question the Unruh effect since it is a logical consequence of QFT. 
•“the Unruh effect itself does not need experimental confirmation any more than free quantum field 
theory does ” (Standard review on the Unruh effect: arXiv:0710.5373) 

•“the Unruh effect does not require any verification beyond that of relativistic free field theory itself ” 
(“Unruh effect”, Scholarpedia ) 

Yet, despite being a legitimate approach to QFT, LF quantization does not predict an Unruh effect.  

This suggests that the Unruh effect is cancelled in IF dynamics by Unruh detector cooling due to 
dynamical evolution from succession of IF boosts.  

Equivalence principle: Unruh effect ⇔ Hawking radiation from black holes.  

No Hawking radiation  
⇒ no black hole evaporation  

⇒ no black hole information paradox.  

Then, origin of these grave problems: same as the cosmological constant problem, with  
same resolution: trivial LF vacuum ⇒ no ~ discrepancy with observed cosmological constant. 

Brodsky, Shrock, PNAS. 108, 45 (2011) 
Brodsky, et al, PRC 82, 022201 (2010); 85, 065202 (2012). 
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Supplementary slides
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LF vacuum
•Firmly established: no virtual particle loops in LF vacuum.  

•Rôle of possible zero-momentum LF modes in the LF vacuum is less clear. But, irrelevant to the Unruh 
effect regardless of their possible existence:  

1.   modes do not transfer momentum/kinetic energy to the Unruh detector: zero-modes 
cannot heat thermometers. 

2. Vacuum structure is not invoked in IF demonstration of Unruh effect. Demonstration is based on 
coordinate definitions of the forms of dynamics + consequent quantization conditions + generic 
properties of quantum field theory. Only the interpretation of the effect invokes the vacuum 
structure to provides an intuitive picture. 

3. Discussions of the Unruh effect are often set for simplicity in (1+1)D. There the triviality of the 
LF vacuum (perturbative & non-perturbative) is established.  

4. New perspective in “Implication to Black Hole Evaporation”: By definition, zero-point energy 
occurs at a single point in space (their only possible physical contribution being from the infinite momentum loop, 
viz with conjugate distance →0) ⇒ zero-modes do not provide the distance scale necessary to prevent 
reaching the flat spacetime limit. 

Possible nontrivial nonperturbative vacuum? Also irrelevant because no field coupling nor other expansion 
parameter enters in the Unruh effect. 

p+ = 0


