Consistency of the pion form factor and unpolarized TMDs beyond leading twist in the light-front quark model

Ho-Meoyng Choi (Kyungpook National Univ.)

Based on arXiv:2403.16703 (to appear in Phys. Rev. D) (in collaboration with Prof. Chueng-Ryong Ji)

3D Structure of the Nucleon via GPDs, June 25-28, 2024, Incheon, Korea

Outline

- 1. Motivation
- 2. Form Factors on the Light-Front
 - LF zero mode issue
- 3. Light-Front Quark Model(LFQM)
 - New Development of self-consistent LFQM
 - Pion Form Factor
- 4. Unpolarized TMDs of pion
- 5. QCD evolution of Pion PDFs
- 6. Conclusions

1. Motivation

• Understanding the internal structure of hadron is an important objective in modern nuclear and particle physics.

- Experimental studies (e.g. JLab, COMPASS, EIC, J-PARC, etc.) are aimed at probing the 3D structure of hadrons, particularly focused on Generalized Parton Distributions (GPDs) and Transverse Momentum Dependent Distributions (TMDs).

For precision 3D imaging of hadrons,

it is essential to measure positions and momenta of the partons transverse to the hadron's direction of motion.

 $W(x, \mathbf{k}_{\perp}, \mathbf{b}_{\perp})$: Wigner distribution

3D hadron structure from 5D tomography

 $W(x, \mathbf{k}_{\perp}, \mathbf{b}_{\perp})$: Wigner distribution

PDFs: inclusive and semi-inclusive processes

PDFs: inclusive and semi-inclusive processes

Study the interplay among the pion's Form Factor, TMDs, and PDFs in the LFQM.

Schematic descriptions of form factors, TMDs, and PDFs of the Pion in the LFQM

$$\langle P'|\bar{q} (0)\gamma^{\mu} q(0)|P\rangle = \mathscr{P}^{\mu} F_{\pi}(q^2) \qquad \mathscr{P} \cdot q = 0$$

FF
$$F_{\pi}^{(\mu)}(Q^2) = \iint dx \, d^2 \mathbf{k}_{\perp} f^{(\mu)}(x, \mathbf{k}_{\perp}, Q^2), \qquad (\mu = +, \bot, -)$$

Schematic descriptions of form factors, TMDs, and PDFs of the Pion in the LFQM

$$\langle P'|\bar{q} (0)\gamma^{\mu} q(0)|P\rangle = \mathscr{P}^{\mu} F_{\pi}(q^2) \qquad \mathscr{P} \cdot q = 0$$

FF
$$F_{\pi}^{(\mu)}(Q^2) = \iint dx \, d^2 \mathbf{k}_{\perp} f^{(\mu)}(x, \mathbf{k}_{\perp}, Q^2), \qquad (\mu = +, \perp, -)$$

 $\downarrow \text{ as } Q^2 \to 0$
 $F_{\pi}^{(\mu)}(0) = 1 = \iint dx \, d^2 \mathbf{k}_{\perp} f^{(\mu)}(x, \mathbf{k}_{\perp}) \text{ TMDs } (\mu = +, -)$

Schematic descriptions of form factors, TMDs, and PDFs of the Pion in the LFQM

$$\langle P'|\bar{q} (0)\gamma^{\mu} q(0)|P\rangle = \mathscr{P}^{\mu} F_{\pi}(q^2) \qquad \mathscr{P} \cdot q = 0$$

FF
$$F_{\pi}^{(\mu)}(Q^2) = \iint dx \, d^2 \mathbf{k}_{\perp} f^{(\mu)}(x, \mathbf{k}_{\perp}, Q^2), \qquad (\mu = +, \perp, -)$$

 $\downarrow \text{ as } Q^2 \to 0$
 $F_{\pi}^{(\mu)}(0) = 1 = \iint dx \, d^2 \mathbf{k}_{\perp} \frac{f^{(\mu)}(x, \mathbf{k}_{\perp})}{f^{(\mu)}(x, \mathbf{k}_{\perp})} \text{ TMDs } (\mu = +, -)$

PDFs
$$f^{(\mu)}(x) = \int d^2 \mathbf{k}_{\perp} f^{(\mu)}(x, \mathbf{k}_{\perp})$$

(\mu = +, -) $c.f.$) $\mu = \perp$ case later...

2. Form Factors on the Light-Front

2. Form Factors on the Light-Front

 \Rightarrow facilitates the <u>partonic interpretation</u> of the amplitude!

2. Form Factors on the Light-Front

Nonvanishing : LF Zero-Mode !

We developed a "new method" to obtain the form factor

$$F_{\pi}^{(+)}(Q^2) = F_{\pi}^{(\perp)}(Q^2) = F_{\pi}^{(-)}(Q^2)$$

within the valence picture of the LFQM.

 $rac{1}{2}$ We resolved the LF zero mode problems from *J*[−].

Meson state: Noninteracting "on-mass" shell $Q \& \overline{Q}$ representation.

Invariant mass

$$P = (P^+, P^-, \mathbf{P}_{\perp})$$

$$P^{\pm} = P^0 \pm P^3$$

$$p_1 \qquad P^- = p_1^- + p_2^- \rightarrow \qquad \frac{M_0^2 + \mathbf{P}_{\perp}^2}{P^+} = \frac{m_1^2 + \mathbf{p}_{1\perp}^2}{p_1^+} + \frac{m_2^2 + \mathbf{p}_{2\perp}^2}{p_2^+}$$

$$M_0^2 = \frac{m_1^2 + \mathbf{k}_{\perp}^2}{p_1^+} + \frac{m_2^2 + \mathbf{k}_{\perp}^2}{1 - x}$$

Meson state: Noninteracting "on-mass" shell $Q \& \overline{Q}$ representation.

Invariant mass

$$\Psi_{\lambda\overline{\lambda}}(x, \boldsymbol{k}_{\perp}) = \phi(x, \boldsymbol{k}_{\perp}) \mathcal{R}_{\lambda\overline{\lambda}}(x, \boldsymbol{k}_{\perp})$$

Spin-Orbit for PS meson

$$\phi(x, \mathbf{k}_{\perp}) = \frac{4\pi^{3/4}}{\beta^{3/2}} \sqrt{\frac{\partial k_z}{\partial x}} \exp(-\frac{\mathbf{k}^2}{2\beta^2})$$

$$\mathcal{R}_{\lambda_q \lambda_{\bar{q}}} = \frac{\bar{u}_{\lambda_q}(p_q) \gamma_5 v_{\lambda_{\bar{q}}}(p_{\bar{q}})}{\sqrt{2}M_0}$$

H.J. Melosh: PRD 9, 1095(1974).

$$\int_0^1 dx \, \int \frac{d^2 \mathbf{k}_\perp}{16\pi^3} \left| \phi(x, \mathbf{k}_\perp) \right|^2 = 1 \qquad \sum_{\lambda' s} \mathcal{R}^\dagger \mathcal{R} = 1.$$

Meson state: Noninteracting "on-mass" shell $Q \& \overline{Q}$ representation.

The interaction between $Q\bar{Q}$ is incorporated into the mass operator via $M \coloneqq M_0 + V_{Q\bar{Q}}$

$$\begin{split} H_{Q\bar{Q}} &= \sqrt{m_Q^2 + \vec{k}^2} + \sqrt{m_{\bar{Q}}^2 + \vec{k}^2} + V_{Q\bar{Q}} \qquad V_{Q\bar{Q}} = a + br(br^2) - \frac{4\kappa}{3r} + \frac{2\vec{S}_Q \cdot \vec{S}_{\bar{Q}}}{3m_Q m_{\bar{Q}}} \nabla^2 V_{\text{Coul}} \\ H_{Q\bar{Q}} \mid \Psi \rangle &= M_{Q\bar{Q}} \mid \Psi \rangle \end{split}$$

Invariant mass

Meson state: Noninteracting "on-mass" shell $Q \& \bar{Q}$ representation. The interaction between $Q\bar{Q}$ is incorporated into the mass operator via $M \coloneqq M_0 + V_{Q\bar{Q}}$ $H_{Q\bar{Q}} = \sqrt{m_Q^2 + \vec{k}^2} + \sqrt{m_{\bar{Q}}^2 + \vec{k}^2} + V_{Q\bar{Q}}$ $V_{Q\bar{Q}} = a + br(br^2) - \frac{4\kappa}{3r} + \frac{2\vec{S}_Q \cdot \vec{S}_{\bar{Q}}}{3m_Q m_{\bar{Q}}} \nabla^2 V_{\text{Coul}}$ $H_{Q\bar{Q}} |\Psi\rangle = M_{Q\bar{Q}} |\Psi\rangle$

Bakamjian-Thomas(BT) constuction!

Optimized model parameters(in unit of GeV) and 1S state meson mass spectra

Model	m _q	m _s	m _c	m _b	β_{qq}	β_{sq}	β_{ss}	β_{qc}	β_{sc}	β_{cc}	β_{qb}	β_{sb}	β_{cb}	β_{bb}
Linear	0.22	0.45	1.8	5.2	0.366	0.389	0.413	0.468	0.502	0.651	0.527	0.571	0.807	1.145
HO	0.25	0.48	1.8	5.2	0.319	0.342	0.368	0.422	0.469	0.699	0.496	0.574	1.035	1.803

Mass spectroscopy analysis

- PRD59, 074015(99); PLB460, 461(99) by HMC and CRJ
- PRC92, 055203(2015) by HMC, CRJ, Z. Li, and H. Ryu
- PRD 100, 014026(2019) by N. Dhiman, H. Dahiya, HMC, CRJ
- PRD106, 014009(2022) by A. J. Arifi, HMC, CRJ, YO

PRC92, 055203(2015) by HMC, CRJ, Z. Li, and H. Ryu

Analysis of (1*S*, 2*S*) state heavy meson spectroscopy

PRD106, 014009(2022) by A. J. Arifi, HMC, CRJ, YO

 $\frac{1}{2}$ cot⁻¹ $(2\sqrt{6}) < \theta < \frac{\pi}{4}$ constrained by empirical mass gap: $\Delta M_P > \Delta M_V$

BT Construction on Hadronic Matrix Element Calculations

PRD 89, 033011(14); PRD91, 014018(15); PRD95, 056002(17) by HMC and C.-R. Ji PRD 103, 073004(21); Adv. High Energy Phys., 4277321(21) by HMC PRD 107, 053003(23); PRD108, 013006(23) by A. J. Arifi, HMC and C.-R. Ji

 $\langle P' | \bar{q} \ \Gamma^{\mu} \ q | P \rangle = \mathscr{O}^{\mu} \mathcal{F}$

 \mathcal{F} : Physical observables

 \wp^{μ} : Lorentz factors

BT Construction on Hadronic Matrix Element Calculations

PRD 89, 033011(14); PRD91, 014018(15); PRD95, 056002(17) by HMC and C.-R. Ji PRD 103, 073004(21); Adv. High Energy Phys., 4277321(21) by HMC PRD 107, 053003(23); PRD108, 013006(23) by A. J. Arifi, HMC and C.-R. Ji

 $\langle P' | \bar{q} \Gamma^{\mu} q | P \rangle = \wp^{\mu} \mathcal{F}$ \mathcal{F} : Physical observables \wp^{μ} : Lorentz factors

• Most Previous LFQM: Apply BT $(M \rightarrow M_0)$ only to LHS.

$$M \to M_0$$

$$\langle P' | \bar{q} \Gamma^{\mu} q | P \rangle = \mathscr{O}^{\mu} \mathcal{F}$$

$$\int \mathcal{F} = \frac{1}{\mathscr{O}^{\mu}} \langle P' | \bar{q} \Gamma^{\mu} q | P \rangle$$

BT Construction on Hadronic Matrix Element Calculations

PRD 89, 033011(14); PRD91, 014018(15); PRD95, 056002(17) by HMC and C.-R. Ji PRD 103, 073004(21); Adv. High Energy Phys., 4277321(21) by HMC PRD 107, 053003(23); PRD108, 013006(23) by A. J. Arifi, HMC and C.-R. Ji

 $\langle P' | \bar{q} \ \Gamma^{\mu} q | P \rangle = \wp^{\mu} \mathcal{F}$ \mathcal{F} : Physical observables \wp^{μ} : Lorentz factors

• Most Previous LFQM: Apply BT $(M \rightarrow M_0)$ only to the matrix element.

$$M \to M_{0}$$

$$\langle P' | \bar{q} \Gamma^{\mu} q | P \rangle = \mathscr{P}^{\mu} \mathcal{F}$$

$$\mathcal{F} = \frac{1}{\mathscr{P}^{\mu}} \langle P' | \bar{q} \Gamma^{\mu} q | P \rangle$$

Fails to show the independency of " μ " due to the LF zero-modes from the "bad" current.

New development of a "self-consistent" LFQM based on the BT construction.

• In our LFQM: Apply BT $(M \rightarrow M_0)$ equally to both sides

$$M \to M_0$$

$$\langle P' | \overline{q} \ \Gamma^{\mu} q | P \rangle = \mathcal{O}^{\mu} \mathcal{F}$$

$$\mathcal{F} = \left\langle P' | \frac{\overline{q} \ \Gamma^{\mu} q}{\mathcal{O}^{\mu}} | P \right\rangle$$

becomes independent of the current components!

General structure for $P(P) \rightarrow P(P')$ transition: PRD 103, 073004(21); Adv. High Energy Phys., 4277321(21) by HMC

$$\langle P' | \bar{q} \ \gamma^{\mu} \ q | P \rangle = \mathscr{D}^{\mu} F(q^2) + q^{\mu} \ \frac{(M^2 - M'^2)}{q^2} H(q^2), \qquad \mathscr{D}^{\mu} = \ (P + P')^{\mu} - q^{\mu} \ \frac{(M^2 - M'^2)}{q^2}$$
$$q^{\mu} = \ (P - P')^{\mu}$$

General structure for $P(P) \rightarrow P(P')$ transition:

$$\langle P' | \bar{q} \ \gamma^{\mu} \, q | P \rangle = \mathscr{D}^{\mu} \, F(q^2) \, + q^{\mu} \, \frac{(M^2 - M'^2)}{q^2} H(q^2), \qquad \mathscr{D}^{\mu} = \, (P + P')^{\mu} - q^{\mu} \, \frac{(M^2 - M'^2)}{q^2}$$

$$q^{\mu} = \, (P - P')^{\mu}$$

For elastic process, only gauge invariant form factor $F(q^2)$ survives!

$$\langle P'|\bar{q} \ \gamma^{\mu} \ q|P\rangle = \mathscr{P}^{\mu} \ F_{P}(q^{2}) \qquad \mathscr{P} \cdot q = 0$$

$$\langle P'|\bar{q} \ \gamma^{\mu} \ q|P\rangle = \mathscr{D}^{\mu} F_P(q^2), \qquad \mathscr{D}^{\mu} = (P+P')^{\mu} - q^{\mu} \ \frac{(M^2 - M'^2)}{q^2}$$

In $q^+ = 0$ frame,

$$\langle P' | \bar{q} \ \gamma^{\mu} \ q | P \rangle = \int_{0}^{1} \mathrm{d}p_{1}^{+} \int \frac{\mathrm{d}^{2} \mathbf{k}_{\perp}}{16\pi^{3}} \ \phi'(x, \mathbf{k}_{\perp}') \phi(x, \mathbf{k}_{\perp}) \ \sum_{\lambda' s} \mathcal{R}_{\lambda_{2}\bar{\lambda}}^{\dagger} \left[\frac{\bar{u}_{\lambda_{2}}(p_{2})}{\sqrt{x_{2}}} \gamma^{\mu} \frac{u_{\lambda_{1}}(p_{1})}{\sqrt{x_{1}}} \right] \mathcal{R}_{\lambda_{1}\bar{\lambda}},$$

$$F_P^{(\mu)}(Q^2) = \int_0^1 \mathrm{d}p_1^+ \int \frac{\mathrm{d}^2 \mathbf{k}_\perp}{16\pi^3} \,\phi'(x,\mathbf{k}_\perp')\phi(x,\mathbf{k}_\perp) \,\frac{1}{\wp^\mu} \,\sum_{\lambda's} \mathcal{R}^\dagger_{\lambda_2\bar{\lambda}} \left[\frac{\bar{u}_{\lambda_2}(p_2)}{\sqrt{x_2}} \gamma^\mu \frac{u_{\lambda_1}(p_1)}{\sqrt{x_1}} \right] \mathcal{R}_{\lambda_1\bar{\lambda}},$$

$$\langle P'|\bar{q} \ \gamma^{\mu} \ q|P\rangle = \mathscr{D}^{\mu} F_P(q^2), \qquad \mathscr{D}^{\mu} = (P+P')^{\mu} - q^{\mu} \ \frac{(M^2 - M'^2)}{q^2}$$

In $q^+ = 0$ frame,

$$\langle P' | \bar{q} \ \gamma^{\mu} \ q | P \rangle = \int_{0}^{1} dp_{1}^{+} \int \frac{d^{2} \mathbf{k}_{\perp}}{16\pi^{3}} \ \phi'(x, \mathbf{k}_{\perp}') \phi(x, \mathbf{k}_{\perp}) \sum_{\lambda' s} \mathcal{R}_{\lambda_{2}\bar{\lambda}}^{\dagger} \left[\frac{\bar{u}_{\lambda_{2}}(p_{2})}{\sqrt{x_{2}}} \gamma^{\mu} \frac{u_{\lambda_{1}}(p_{1})}{\sqrt{x_{1}}} \right] \mathcal{R}_{\lambda_{1}\bar{\lambda}},$$
Previous LFQM method, which couldn't resolve the zero-mode.

$$F_{P}^{(\mu)}(Q^{2}) = \int_{0}^{1} \mathrm{d}p_{1}^{+} \int \frac{\mathrm{d}^{2}\mathbf{k}_{\perp}}{16\pi^{3}} \,\phi'(x,\mathbf{k}_{\perp}')\phi(x,\mathbf{k}_{\perp}) \,\frac{1}{\wp^{\mu}} \sum_{\lambda's} \mathcal{R}_{\lambda_{2}\bar{\lambda}}^{\dagger} \left[\frac{\bar{u}_{\lambda_{2}}(p_{2})}{\sqrt{x_{2}}} \gamma^{\mu} \frac{u_{\lambda_{1}}(p_{1})}{\sqrt{x_{1}}} \right] \mathcal{R}_{\lambda_{1}\bar{\lambda}},$$

This leads to $F_{\pi}^{(+)}(Q^2) = F_{\pi}^{(\perp)}(Q^2) \neq F_{\pi}^{(-)}(Q^2)$

$$\langle P' | \bar{q} \ \gamma^{\mu} q | P \rangle = \mathscr{D}^{\mu} F_P(q^2), \qquad \mathscr{D}^{\mu} = (P + P')^{\mu} - q^{\mu} \frac{(M^2 - M'^2)}{q^2}$$

In $q^+ = 0$ frame,

$$\langle P' | \bar{q} \ \gamma^{\mu} \ q | P \rangle = \int_{0}^{1} \mathrm{d}p_{1}^{+} \int \frac{\mathrm{d}^{2}\mathbf{k}_{\perp}}{16\pi^{3}} \ \phi'(x, \mathbf{k}_{\perp}') \phi(x, \mathbf{k}_{\perp}) \sum_{\lambda's} \mathcal{R}_{\lambda_{2}\bar{\lambda}}^{\dagger} \left[\frac{\bar{u}_{\lambda_{2}}(p_{2})}{\sqrt{x_{2}}} \gamma^{\mu} \frac{u_{\lambda_{1}}(p_{1})}{\sqrt{x_{1}}} \right] \mathcal{R}_{\lambda_{1}\bar{\lambda}},$$

$$\text{Apply } M \rightarrow M_{0} \text{ both to} \quad \text{Our New method, which now resolves the zero-mode.}$$

$$F_{P}^{(\mu)}(Q^{2}) = \int_{0}^{1} \mathrm{d}p_{1}^{+} \int \frac{\mathrm{d}^{2}\mathbf{k}_{\perp}}{16\pi^{3}} \ \phi'(x, \mathbf{k}_{\perp}') \phi(x, \mathbf{k}_{\perp}) \sum_{\lambda's} \mathcal{R}_{\lambda_{2}\bar{\lambda}}^{\dagger} \left[\frac{\bar{u}_{\lambda_{2}}(p_{2})}{\sqrt{x_{2}}} \gamma^{\mu} \frac{u_{\lambda_{1}}(p_{1})}{\sqrt{x_{1}}} \right] \mathcal{R}_{\lambda_{1}\bar{\lambda}},$$

Then we get
$$F_{\pi}^{(+)}(Q^2) = F_{\pi}^{(\perp)}(Q^2) = F_{\pi}^{(-)}(Q^2)$$

$$F_{\pi}^{\text{SLF}(\mu)}(Q^2) = \int_0^1 dx \int \frac{d^2 \mathbf{k}_{\perp}}{16\pi^3} \frac{\phi(x, \mathbf{k}_{\perp})\phi'(x, \mathbf{k}'_{\perp})}{\sqrt{\mathbf{k}_{\perp}^2 + m^2}\sqrt{\mathbf{k}'_{\perp}^2 + m^2}} O_{\text{LFQM}}^{(\mu)}$$

TABLE II: The operators $O_{\text{LFQM}}^{(\mu)}$ and their helicity contributions to the pion form factor in the standard LFQM.

"The first proof of the pion form factor's independence from current components in the LFQM!"

$$\int \frac{[dz]}{2(2\pi)^3} e^{ip \cdot z} \langle P | \bar{\psi}(0) \gamma^+ \psi(z) | P \rangle |_{z^+=0} = f_1^q(x, p_T),$$

$$\int \frac{[dz]}{2(2\pi)^3} e^{ip \cdot z} \langle P | \bar{\psi}(0) \gamma_T^j \psi(z) | P \rangle |_{z^+=0} = \frac{p_T^j}{P^+} f_3^q(x, p_T),$$

$$\int \frac{[dz]}{2(2\pi)^3} e^{ip \cdot z} \langle P | \bar{\psi}(0) \gamma^- \psi(z) | P \rangle |_{z^+=0} = \left(\frac{m_\pi}{P^+}\right)^2 f_4^q(x, p_T),$$

which are related with the forward matrix elements $\langle P | \bar{q} \gamma^{\mu} q | P \rangle$ as

$$2P^{+} \int dx f_{1}^{q}(x) = \langle P | \bar{\psi}(0) \gamma^{+} \psi(0) | P \rangle,$$

$$2p_{T} \int dx f_{3}^{q}(x) = \langle P | \bar{\psi}(0) \gamma^{\perp} \psi(0) | P \rangle,$$

$$4P^{-} \int dx f_{4}^{q}(x) = \langle P | \bar{\psi}(0) \gamma^{-} \psi(0) | P \rangle,$$

$$\int \frac{[dz]}{2(2\pi)^3} e^{ip \cdot z} \langle P | \bar{\psi}(0) \gamma^+ \psi(z) | P \rangle |_{z^+=0} = f_1^q(x, p_T),$$

$$\int \frac{[dz]}{2(2\pi)^3} e^{ip \cdot z} \langle P | \bar{\psi}(0) \gamma_T^j \psi(z) | P \rangle |_{z^+=0} = \frac{p_T^j}{P^+} f_3^q(x, p_T),$$

$$\int \frac{[dz]}{2(2\pi)^3} e^{ip \cdot z} \langle P | \bar{\psi}(0) \gamma^- \psi(z) | P \rangle |_{z^+=0} = \left(\frac{m_\pi}{P^+}\right)^2 f_4^q(x, p_T),$$

which are related with the forward matrix elements $\langle P | \bar{q} \gamma^{\mu} q | P \rangle$ as

$$2P^{+} \int dx f_{1}^{q}(x) = \langle P | \bar{\psi}(0) \gamma^{+} \psi(0) | P \rangle,$$

$$2p_{T} \int dx f_{3}^{q}(x) = \langle P | \bar{\psi}(0) \gamma^{\perp} \psi(0) | P \rangle,$$

$$4P^{-} \int dx f_{4}^{q}(x) = \langle P | \bar{\psi}(0) \gamma^{-} \psi(0) | P \rangle,$$

$$FDF \qquad TMD$$

$$f(x) = \int d^{2}p_{T} f(x, p_{T}).$$

$$2P^{+} \int dx f_{1}^{q}(x) = \langle P | \bar{\psi}(0) \gamma^{+} \psi(0) | P \rangle,$$

$$2p_{T} \int dx f_{3}^{q}(x) = \langle P | \bar{\psi}(0) \gamma^{\perp} \psi(0) | P \rangle,$$

$$4P^{-} \int dx f_{4}^{q}(x) = \langle P | \bar{\psi}(0) \gamma^{-} \psi(0) | P \rangle,$$

Sum rules : In free quark model: $\int dx \ f_1^q(x) = 1 \qquad x f_3^q(x, p_T) = f_1^q(x, p_T)$

$$2\int dx \ f_4^q(x) = 1$$

$$2P^{+} \int dx f_{1}^{q}(x) = \langle P | \bar{\psi}(0) \gamma^{+} \psi(0) | P \rangle,$$

$$2p_{T} \int dx f_{3}^{q}(x) = \langle P | \bar{\psi}(0) \gamma^{\perp} \psi(0) | P \rangle,$$

$$4P^{-} \int dx f_{4}^{q}(x) = \langle P | \bar{\psi}(0) \gamma^{-} \psi(0) | P \rangle,$$

Sum rules : In free quark model: $\int dx \ f_1^q(x) = 1 \qquad x f_3^q(x, p_T) = f_1^q(x, p_T)$

$$2\int dx \ f_4^q(x) = 1$$

However...

C. Lorce, B. Pasquini, P. Schweitzer

EPJC76,415(2016)

 $\langle P' | J^{\mu} | P \rangle = \overline{\wp}^{\mu} F_{\pi}(q^2)$

 $\overline{\wp}^{\mu} = (P + P')^{\mu}$

$$1 = F_{\pi}(Q^2 = 0) = \lim_{Q \to 0} \frac{\langle P' \mid J^{\mu} \mid P \rangle}{\overline{\wp}^{\mu}}$$

EPJC76,415(2016) $\langle P' | J^{\mu} | P \rangle = \overline{\wp}^{\mu} F_{\pi}(q^2)$ $\overline{\wp}^{\mu} = (P + P')^{\mu}$ $1 = F_{\pi}(Q^2 = 0) = \lim_{Q \to 0} \frac{\langle P' \mid J^{\mu} \mid P \rangle}{\overline{Q^{\mu}}}$ $\lim_{Q \to 0} \frac{\langle P' \mid J^+ \mid P \rangle}{\overline{\wp}^+} = \int dx \ f_1^q(x)$ $\lim_{Q \to 0} \frac{\langle P' \mid J^- \mid \mathbf{P} \rangle}{\overline{Q}^-} = 2 \int dx \ f_4^q(x)$

C. Lorce, B. Pasquini, P. Schweitzer

C. Lorce, B. Pasquini, P. Schweitzer EPJC76,415(2016) $\langle P' | J^{\mu} | P \rangle = \overline{\wp}^{\mu} F_{\pi}(q^2)$ $\overline{\wp}^{\mu} = (P + P')^{\mu}$ $1 = F_{\pi}(Q^2 = 0) = \lim_{Q \to 0} \frac{\langle P' \mid J^{\mu} \mid P \rangle}{\overline{\wp}^{\mu}}$ $\lim_{Q \to 0} \frac{\langle P' \mid J^+ \mid P \rangle}{\overline{Q}^+} = \int dx \ f_1^q(x) = 1$ $\lim_{Q \to 0} \frac{\langle P' \mid J^- \mid P \rangle}{\overline{Q}^-} = 2 \int dx \ f_4^q(x) \neq 1$

C. Lorce, B. Pasquini, P. Schweitzer EPJC76,415(2016) $\langle P' | J^{\mu} | P \rangle = \overline{\wp}^{\mu} F_{\pi}(q^2)$ $\overline{\wp}^{\mu} = (P + P')^{\mu}$ $1 = F_{\pi}(Q^2 = 0) = \lim_{Q \to 0} \frac{\langle P' \mid J^{\mu} \mid P \rangle}{\overline{\wp}^{\mu}}$ $\lim_{Q \to 0} \frac{\langle P' \mid J^+ \mid P \rangle}{\overline{Q}^+} = \int dx \ f_1^q(x) = 1$ $\lim_{Q \to 0} \frac{\langle P' \mid J^- \mid P \rangle}{\overline{Q}^-} = 2 \int dx \ f_4^q(x) \neq 1$

This Work

$$\langle P' | J^{\mu} | P \rangle = \mathscr{O}^{\mu} F_{\pi}(q^{2})$$

$$\mathscr{O}^{\mu} = (P + P')^{\mu} - q^{\mu} \frac{(M^{2} - M'^{2})}{q^{2}}$$

$$1 = F_{\pi}(Q^{2} = 0) = \lim_{Q \to 0} \left\langle P' | \frac{J^{\mu}}{\mathscr{O}^{\mu}} | P \right\rangle$$

This Work $\langle P'| I^{\mu} | P \rangle = \mathcal{O}^{\mu} F_{\pi}(q^2)$ $\wp^{\mu} = (P + P')^{\mu} - q^{\mu} \frac{(M^2 - M'^2)}{\sigma^2}$ $1 = F_{\pi}(Q^{2} = 0) = \lim_{Q \to 0} \left(P' | \frac{J^{\mu}}{\wp^{\mu}} | P \right)$ $M \rightarrow M_0$ $\lim_{Q \to 0} \left\langle P' \mid \frac{J^+}{\wp^+} \mid P \right\rangle = \int dx \ f_1^q(x)$ $\lim_{Q \to 0} \left\langle P' \right| \frac{J}{Q^{-}} \left| P \right\rangle = 2 \int dx \ f_4^q(x)$

This Work $\langle P'| I^{\mu} | P \rangle = \mathcal{O}^{\mu} F_{\pi}(q^2)$ $\wp^{\mu} = (P + P')^{\mu} - q^{\mu} \frac{(M^2 - M'^2)}{\sigma^2}$ $1 = F_{\pi}(Q^{2} = 0) = \lim_{Q \to 0} \left(P' | \frac{J^{\mu}}{\wp^{\mu}} | P \right)$ $M \rightarrow M_0$ $\lim_{Q \to 0} \left\langle P' \mid \frac{J^+}{\wp^+} \mid P \right\rangle = \int dx \ f_1^q(x) = 1$ $\lim_{Q \to 0} \left\langle P' \right| \frac{J^{-}}{Q^{-}} \left| P \right\rangle = 2 \int dx \ f_{4}^{q}(x) = 1$

LF Zero-Mode for twist-4 PDF and its Resolution

Unpolarized TMDs for Pion

Unpolarized PDFs for Pion

4. QCD Evolution of Pion PDFs

Evolved from $\mu_0^2 = 1 \text{ GeV}^2$ to $\mu^2 = 4$ and 27 GeV²

We use the **Higher Order Perturbative Parton Evolution toolkit (HOPPET)** to solve the NNLO DGLAP equation.

Mellin moments:
$$\langle x^n \rangle = \int_0^1 dx \ x^n f(x)$$

TABLE III. Mellin moments of the pion valence PDF, $f_1^q(x)$, evaluated at the scale $\mu^2 = 4 \text{ GeV}^2$.

	$\langle x \rangle_{t2}^{u}$	$\langle x^2 \rangle_{t2}^u$	$\langle x^3 \rangle_{t2}^u$	$\langle x^4 \rangle_{t2}^u$
This work	0.236	0.101	0.055	0.033
[83]	0.2541(26)	0.094(12)	0.057(4)	0.015(12)
[84]	0.2075(106)	0.163(33)		
[56]	0.24(2)	0.098(10)	0.049(7)	• • •
[57]	0.24(2)	0.094(13)	0.047(8)	

[83] B. Joo et al., PRD 100, 114512(2019)
[84] M. Oehm et al., PRD 99, 014508(2019)
[56] M. Ding et al. PRD 101, 054014(2020)
[57] Z.-F. Cui et al. EPJC 80, 1064(2020)

TABLE IV. Mellin moments of the pion valence PDF, $f_1^q(x)$, evaluated at the scale $\mu^2 = 27 \text{ GeV}^2$.

	$\langle x \rangle_{t2}^{u}$	$\langle x^2 \rangle_{t2}^u$	$\langle x^3 \rangle_{t2}^u$	$\langle x^4 \rangle_{t2}^u$
This work	0.182	0.069	0.034	0.019
[85]	0.18(3)	0.064(10)	0.030(5)	• • •
[57]	0.20(2)	0.074(10)	0.035(6)	• • •
[86]	0.184	0.068	0.033	0.018
[21]	0.217(11)	0.087(5)	0.045(3)	•••

[85] R. S. Sufian et al. , PRD 99, 074507(2019)

[86] S.-I. Nam, PRD 86, 074005(2012)

[21] K. Wijesooriya, P. Reimer, R. J. Holt, PRC 72, 065203 (2005).

Lowest four moments of pion valence PDF

Adopted from J. Lan et al. (BLFQ Collab.), PRL 122, 172001 (2019)

Mellin moments:
$$\langle x^n \rangle = \int_0^1 dx \ x^n f(x)$$

TABLE V. Mellin moments of the twist-3 pion PDF, $f_3^q(x)$, evaluated at the scales $\mu^2 = 4 \text{ GeV}^2$ and $\mu^2 = 27 \text{ GeV}^2$, respectively.

	$\langle x \rangle_{t3}^{u}$	$\langle x^2 \rangle_{t3}^u$	$\langle x^3 \rangle_{t3}^u$	$\langle x^4 \rangle_{t3}^u$
$\mu^2 = 4 \text{ GeV}^2$	0.471	0.164	0.079	0.045
$\mu^2 = 27 \text{ GeV}^2$	0.365	0.111	0.049	0.026

TABLE VI. Mellin moments of the twist-4 pion PDF, $f_4^q(x)$, evaluated at the scales $\mu^2 = 4 \text{ GeV}^2$ and $\mu^2 = 27 \text{ GeV}^2$, respectively.

	$\langle x \rangle_{t4}^{u}$	$\langle x^2 \rangle_{t4}^u$	$\langle x^3 \rangle_{t4}^u$	$\langle x^4 \rangle^u_{t4}$
$\mu^2 = 4 \text{ GeV}^2$	0.069	0.021	0.009	0.005
$\mu^2 = 27 \text{ GeV}^2$	0.053	0.014	0.006	0.003

5. Conclusions

• We developed a new method for ensuring self-consistency in the LFQM.

Our LFQM: Noninteracting $Q \& \bar{Q}$ representation consistent with the Bakamjian-Thomas(BT) constuction! $P^- = p_{\bar{q}}^- + p_{\bar{q}}^-$, i. e. $M^2 \rightarrow M_0^2$

 $\langle 0 | \bar{q} \Gamma^{\mu} q | P \rangle = \mathfrak{F} \mathfrak{S}^{\mu} \qquad \mathfrak{F}: \text{ physical observables } (\mathfrak{F} = f_{P}, F \cdots)$ $\mathfrak{S}^{\mu}: \text{ Lorentz factors } (\mathfrak{S} = P^{\mu} \cdots)$ $\mathfrak{F} = \langle 0 | \frac{\bar{q} \Gamma^{\mu} q}{\mathfrak{S}^{\mu}} | P \rangle = \iint dx \ d^{2} \mathbf{k}_{\perp} \cdots \left(\frac{\Gamma^{\mu}}{\mathfrak{S}^{\mu}} \right) \cdot \mathbf{k}_{\perp}$ Constrained by BT construction!

This allows one to obtain the physical observables independent of the current components !

Partial Extractions of TMD, PDF, GPD from Pion Form Factor

Form factor:
$$F^{(\mu)}(t) \equiv \iint dx \, dk_{\perp} f^{(\mu)}(x, k_{\perp}, t)$$
 Note) $Q^2 \rightarrow -t$
 $f^{(\mu)}(x, k_{\perp}, t \rightarrow 0)$
TMD $f(x, k_{\perp})$
 $f_1^{(x)}(x, k_{\perp}, 0)$
 $f_1^{(x)}(x, k_{\perp}$

Backup Slides

2. Why Light-Front?

Light-Front Dynamics (LFD) (by Dirac in 1949)

Hamiltonian	P^0	$P^- = P^0 - P^3$
Momentum	$\boldsymbol{P}_{\perp} = (P^1, P^2)$ P^3	$\begin{array}{c} P_{\perp} \\ P^+ = P^0 + P^3 \end{array}$
Energy-Momentum Dispersion Relation	$P^0 = \sqrt{M^2 + \vec{P}^2}$	$P^- = \frac{M^2 + \boldsymbol{P}_\perp^2}{P^+}$
	Irrational	vs. Rational

LF valence

Decay Constant and DAs

Decay Constant and DAs

$$f_{\pi} = \sqrt{2N_c} \int_0^1 dx \int \frac{d^2 \mathbf{k}_{\perp}}{16\pi^3} \frac{\phi(x, \mathbf{k}_{\perp})}{\sqrt{m^2 + \mathbf{k}_{\perp}^2}} (2m)$$
$$\phi_{\pi}(x, \mu_0) = \frac{\sqrt{2N_c}}{f_{\pi}} \int^{\mu_0^2} \frac{d^2 \mathbf{k}_{\perp}}{16\pi^3} \frac{\phi(x, \mathbf{k}_{\perp})}{\sqrt{m^2 + \mathbf{k}_{\perp}^2}} (2m)$$

independent of " μ "!

Decay Constant and DAs

independent of " μ "!

See PRD 107, 053003(23); PRD108, 013006(23) by A. Arifi, HMC and CRJ for the analysis of higher-twist DAs.