Consistency of the pion form factor and unpolarized TMDs beyond leading twist in the light-front quark model

Ho-Meoyng Choi (Kyungpook National Univ.)

Based on arXiv:2403.16703 (to appear in Phys. Rev. D)
(in collaboration with Prof. Chueng-Ryong Ji)

Outline

1. Motivation
2. Form Factors on the Light-Front

- LF zero mode issue

3. Light-Front Quark Model(LFQM)

- New Development of self-consistent LFQM
- Pion Form Factor

4. Unpolarized TMDs of pion
5. QCD evolution of Pion PDFs
6. Conclusions

1. Motivation

- Understanding the internal structure of hadron is an important objective in modern nuclear and particle physics.
- Experimental studies (e.g. JLab, COMPASS, EIC, J-PARC, etc.) are aimed at probing the 3D structure of hadrons, particularly focused on Generalized Parton Distributions (GPDs) and Transverse Momentum Dependent Distributions (TMDs).

For precision 3D imaging of hadrons, it is essential to measure positions and momenta of the partons transverse to the hadron's direction of motion.
$W\left(x, \boldsymbol{k}_{\perp}, \boldsymbol{b}_{\perp}\right)$: Wigner distribution

3D hadron structure from 5D tomography

$W\left(x, \boldsymbol{k}_{\perp}, \boldsymbol{b}_{\perp}\right)$: Wigner distribution

3D hadron structure from 5D tomography
$W\left(x, \boldsymbol{k}_{\perp}, \boldsymbol{b}_{\perp}\right)$: Wigner distribution

$f\left(x, k_{\perp}\right)$
TMDs :semi-inclusive processes

$f\left(x, b_{\perp}\right)$
Impact parameter distributions

$$
f(x)
$$

$$
H\left(x, \zeta, t=-\Delta^{2}\right)
$$

$$
\zeta=\frac{\left(P-P^{\prime}\right)^{+}}{P^{+}}
$$

PDFs: inclusive and semi-inclusive processes

3D hadron structure from 5D tomography
$W\left(x, \boldsymbol{k}_{\perp}, \boldsymbol{b}_{\perp}\right)$: Wigner distribution

$f\left(x, \boldsymbol{b}_{\perp}\right)$
Impact parameter
TMDs :semi-inclusive processes

$$
H\left(x, \zeta, t=-\Delta^{2}\right) \quad \zeta=\frac{\left(P-P^{\prime}\right)^{+}}{P^{+}}
$$

GPDs :exclusive processes
$\int d x$
$F(t)$
Form factors: elastic scattering
PDFs: inclusive and semi-inclusive processes

3D hadron structure from 5D tomography
$W\left(x, \boldsymbol{k}_{\perp}, \boldsymbol{b}_{\perp}\right)$: Wigner distribution

TMDs :semi-inclusive processes

$f\left(x, \boldsymbol{b}_{\perp}\right)$
Impact parameter
distributions

PDFs: inclusive and semi-inclusive processes

Study the interplay among the pion's Form Factor, TMDs, and PDFs in the LFQM.

Schematic descriptions of form factors, TMDs, and PDFs of the Pion in the LFQM

$$
\begin{gathered}
\left\langle P^{\prime}\right| \bar{q}(0) \gamma^{\mu} q(0)|\mathrm{P}\rangle=\wp^{\mu} F_{\pi}\left(q^{2}\right) \quad \wp \cdot q=0 \\
\mathrm{FF} \quad F_{\pi}^{(\mu)}\left(Q^{2}\right)=\iint d x d^{2} \boldsymbol{k}_{\perp} f^{(\mu)}\left(x, \boldsymbol{k}_{\perp}, Q^{2}\right), \quad(\mu=+, \perp,-)
\end{gathered}
$$

Schematic descriptions of form factors, TMDs, and PDFs of the Pion in the LFQM

$$
\left\langle P^{\prime}\right| \bar{q}(0) \gamma^{\mu} q(0)|\mathrm{P}\rangle=\wp^{\mu} F_{\pi}\left(q^{2}\right) \quad \wp \cdot q=0
$$

$$
\begin{aligned}
& \mathrm{FF} \quad F_{\pi}^{(\mu)}\left(Q^{2}\right)=\iint d x d^{2} \boldsymbol{k}_{\perp} f^{(\mu)}\left(x, \boldsymbol{k}_{\perp}, Q^{2}\right), \quad(\mu=+, \perp,-) \\
& \quad \text { as } Q^{2} \rightarrow 0 \\
& F_{\pi}^{(\mu)}(0)=1=\iint d x d^{2} \boldsymbol{k}_{\perp} f^{(\mu)}\left(x, \boldsymbol{k}_{\perp}\right) \text { TMDs }(\mu=+,-)
\end{aligned}
$$

Schematic descriptions of form factors, TMDs, and PDFs of the Pion in the LFQM

$$
\begin{aligned}
& \left\langle P^{\prime}\right| \bar{q}(0) \gamma^{\mu} q(0)|\mathrm{P}\rangle=\wp^{\mu} F_{\pi}\left(q^{2}\right) \quad \wp \cdot q=0 \\
& \mathrm{FF} \quad F_{\pi}^{(\mu)}\left(Q^{2}\right)=\iint d x d^{2} \boldsymbol{k}_{\perp} f^{(\mu)}\left(x, \boldsymbol{k}_{\perp}, Q^{2}\right), \quad(\mu=+, \perp,-) \\
& \text { as } Q^{2} \rightarrow 0 \\
& F_{\pi}^{(\mu)}(0)=1=\iint d x d^{2} \boldsymbol{k}_{\perp} f^{(\mu)}\left(x, \boldsymbol{k}_{\perp}\right) \text { TMDs }(\mu=+,-) \\
& \text { PDFs } \quad f^{(\mu)}(x)=\int d^{2} \boldsymbol{k}_{\perp} f^{(\mu)}\left(x, \boldsymbol{k}_{\perp}\right) \\
& (\mu=+,-)
\end{aligned} \quad \text { c.f.) } \mu=\perp \text { case later... } \quad .
$$

2. Form Factors on the Light-Front

LF nonvalence

2. Form Factors on the Light-Front

\Rightarrow facilitates the partonic interpretation of the amplitude!

2. Form Factors on the Light-Front

\Rightarrow facilitates the partonic interpretation of the amplitude!

Nonvanishing : LF Zero-Mode!

We developed a "new method" to obtain the form factor

$$
F_{\pi}^{(+)}\left(Q^{2}\right)=F_{\pi}^{(\perp)}\left(Q^{2}\right)=F_{\pi}^{(-)}\left(Q^{2}\right)
$$

within the valence picture of the LFQM.

$$
\begin{gathered}
\left\langle P^{\prime}\right| \bar{q}(0) \gamma^{\mu} q(0)|\mathrm{P}\rangle=\wp^{\mu} F_{\pi}\left(q^{2}\right) \\
F\left(Q^{2}\right)=\int[d x]\left[d^{2} \boldsymbol{k}_{\perp}\right] \psi_{f}^{*}\left(x, \boldsymbol{k}^{\prime}\right) \psi_{i}\left(x, \boldsymbol{k}_{\perp}\right) \\
\text { for any } J^{\mu}=\left(J^{+}, \mathrm{J}^{\perp}, J^{-}\right)
\end{gathered}
$$

We resolved the LF zero mode problems from J^{-}.

3. Light-Front Quark Model(LFQM)

3. Light-Front Quark Model(LFQM)

Meson state: Noninteracting "on-mass" shell $Q \& \bar{Q}$ representation.
Invariant mass

$$
\begin{gathered}
\Psi_{\lambda \bar{\lambda}}\left(x, \boldsymbol{k}_{\perp}\right)=\phi\left(x, \boldsymbol{k}_{\perp}\right) \mathcal{R}_{\lambda \bar{\lambda}}\left(x, \boldsymbol{k}_{\perp}\right) \\
\\
\phi\left(x, \boldsymbol{k}_{\perp}\right)=\frac{4 \pi^{3 / 4}}{\beta^{3 / 2}} \sqrt{\frac{\partial k_{z}}{\partial x}} \exp \left(-\frac{\boldsymbol{k}^{2}}{2 \beta^{2}}\right)
\end{gathered} \mathcal{R}_{\lambda_{q} \lambda_{\bar{q}}}=\frac{\bar{u}_{\lambda_{q}}\left(p_{q}\right) \gamma_{5} v_{\lambda_{\bar{q}}}\left(p_{\bar{q}}\right)}{\sqrt{2} M_{0}} \quad \text { H.J. Melosh: PRD 9, 1095(1974). }
$$

3. Light-Front Quark Model(LFQM)

Meson state: Noninteracting "on-mass" shell $Q \& \bar{Q}$ representation.
The interaction between $Q \bar{Q}$ is incorporated into the mass operator via $M:=M_{0}+V_{Q \bar{Q}}$

$$
\begin{gathered}
H_{Q \bar{Q}}=\sqrt{m_{Q}^{2}+\vec{k}^{2}}+\sqrt{m_{\bar{Q}}^{2}+\vec{k}^{2}}+V_{Q \bar{Q}} \quad V_{Q \bar{Q}}=a+b r\left(b r^{2}\right)-\frac{4 \kappa}{3 r}+\frac{2 \vec{S}_{Q} \cdot \vec{S}_{\bar{Q}}}{3 m_{Q} m_{\bar{Q}}} \nabla^{2} V_{\text {Coul }} \\
H_{Q \bar{Q}}|\Psi\rangle=M_{Q \bar{Q}}|\Psi\rangle
\end{gathered}
$$

3. Light-Front Quark Model(LFQM)

Meson state: Noninteracting "on-mass" shell $Q \& \bar{Q}$ representation.
The interaction between $Q \bar{Q}$ is incorporated into the mass operator via $M:=M_{0}+V_{Q \bar{Q}}$

$$
\begin{gathered}
H_{Q \bar{Q}}=\sqrt{m_{Q}^{2}+\vec{k}^{2}}+\sqrt{m_{\bar{Q}}^{2}+\vec{k}^{2}}+V_{Q \bar{Q}} \quad V_{Q \bar{Q}}=a+b r\left(b r^{2}\right)-\frac{4 \kappa}{3 r}+\frac{2 \vec{S}_{Q} \cdot \vec{S}_{\bar{Q}}}{3 m_{Q} m_{\bar{Q}}} \nabla^{2} V_{\text {Coul }} \\
H_{Q \bar{Q}}|\Psi\rangle=M_{Q \bar{Q}}|\Psi\rangle
\end{gathered}
$$

Bakamjian-Thomas(BT) constuction!

Optimized model parameters(in unit of GeV) and 1 S state meson mass spectra

Model	m_{q}	m_{s}	m_{c}	m_{b}	$\beta_{q q}$	$\beta_{s q}$	$\beta_{s s}$	$\beta_{q c}$	$\beta_{s c}$	$\beta_{c c}$	$\beta_{q b}$	$\beta_{s b}$	$\beta_{c b}$	$\beta_{b b}$
Linear	0.22	0.45	1.8	5.2	0.366	0.389	0.413	0.468	0.502	0.651	0.527	0.571	0.807	1.145
HO	0.25	0.48	1.8	5.2	0.319	0.342	0.368	0.422	0.469	0.699	0.496	0.574	1.035	1.803

Mass spectroscopy analysis

- PRD59, 074015(99); PLB460, 461(99) by HMC and CRJ
- PRC92, 055203(2015) by HMC, CRJ, Z. Li, and H. Ryu
- PRD 100, 014026(2019) by N. Dhiman, H. Dahiya, HMC, CRJ
- PRD106, 014009(2022) by A. J. Arifi, HMC, CRJ, YO

Analysis of $(1 S, 2 S)$ state heavy meson spectroscopy

PRD106, 014009(2022) by A. J. Arifi, HMC, CRJ, YO

$$
\frac{1}{2} \cot ^{-1}(2 \sqrt{6})<\theta<\frac{\pi}{4} . \text { constrained by empirical mass gap: } \Delta M_{P}>\Delta M_{V}
$$

BT Construction on Hadronic Matrix Element Calculations

PRD 89, 033011(14); PRD91, 014018(15); PRD95, 056002(17) by HMC and C.-R. Ji PRD 103, 073004(21); Adv. High Energy Phys., 4277321(21) by HMC PRD 107, 053003(23); PRD108, 013006(23) by A. J. Arifi, HMC and C.-R. Ji

$$
\left\langle P^{\prime}\right| \bar{q} \Gamma^{\mu} q|P\rangle=\wp^{\mu} \mathcal{F} \quad \mathcal{F}: \text { Physical observables } \wp^{\mu}: \text { Lorentz factors }
$$

BT Construction on Hadronic Matrix Element Calculations

PRD 89, 033011(14); PRD91, 014018(15); PRD95, 056002(17) by HMC and C.-R. Ji PRD 103, 073004(21); Adv. High Energy Phys., 4277321(21) by HMC PRD 107, 053003(23); PRD108, 013006(23) by A. J. Arifi, HMC and C.-R. Ji

$$
\left\langle P^{\prime}\right| \bar{q} \Gamma^{\mu} q|\mathrm{P}\rangle=\wp^{\mu} \mathcal{F} \quad \mathcal{F}: \text { Physical observables } \wp^{\mu}: \text { Lorentz factors }
$$

- Most Previous LFQM: Apply BT $\left(M \rightarrow M_{0}\right)$ only to LHS.

$$
\begin{gathered}
M \rightarrow M_{0} \\
\left\langle P^{\prime}\right| \bar{q} \Gamma^{\mu} q|\mathrm{P}\rangle=\wp^{\mu} \mathcal{F} \\
\mathcal{F}=\frac{1}{\wp^{\mu}}\left\langle P^{\prime}\right| \bar{q} \Gamma^{\mu} q|\mathrm{P}\rangle
\end{gathered}
$$

BT Construction on Hadronic Matrix Element Calculations

PRD 89, 033011(14); PRD91, 014018(15); PRD95, 056002(17) by HMC and C.-R. Ji PRD 103, 073004(21); Adv. High Energy Phys., 4277321(21) by HMC PRD 107, 053003(23); PRD108, 013006(23) by A. J. Arifi, HMC and C.-R. Ji

$$
\left\langle P^{\prime}\right| \bar{q} \Gamma^{\mu} q|P\rangle=\wp^{\mu} \mathcal{F} \quad \mathcal{F}: \text { Physical observables } \quad \wp^{\mu}: \text { Lorentz factors }
$$

- Most Previous LFQM: Apply BT ($M \rightarrow M_{0}$) only to the matrix element.

$$
\left\langle P^{\prime}\right| \bar{q} \Gamma^{\mu} q|\mathrm{P}\rangle=\wp^{\mu} \mathcal{F}
$$

New development of a "self-consistent" LFQM based on the BT construction.

- In our LFQM: Apply BT $\left(M \rightarrow M_{0}\right)$ equally to both sides

$$
\begin{gathered}
\left\langle P^{\prime}\right| \bar{q} \Gamma^{\mu} q|\mathrm{P}\rangle=\wp^{\mu} \mathcal{F} \\
\mathcal{F}=\left\langle P^{\prime}\right| \frac{\bar{q} \Gamma^{\mu} q}{\wp^{\mu}}|\mathrm{P}\rangle \text { becomes independent of the current components! }
\end{gathered}
$$

Pion Form Factor

General structure for $P(P) \rightarrow P\left(P^{\prime}\right)$ transition: PRD 103, 073004(21); Adv. High Energy Phys, 4277321(21) by HMC

$$
\begin{aligned}
\left\langle P^{\prime}\right| \bar{q} \gamma^{\mu} q|P\rangle=\wp^{\mu} F\left(q^{2}\right)+q^{\mu} \frac{\left(M^{2}-M^{\prime 2}\right)}{q^{2}} H\left(q^{2}\right), \quad \wp^{\mu} & =\left(P+P^{\prime}\right)^{\mu}-q^{\mu} \frac{\left(M^{2}-M^{\prime 2}\right)}{q^{2}} \\
q^{\mu} & =\left(P-P^{\prime}\right)^{\mu}
\end{aligned}
$$

Pion Form Factor

General structure for $P(P) \rightarrow P\left(P^{\prime}\right)$ transition:

$$
\begin{aligned}
\left\langle P^{\prime}\right| \bar{q} \gamma^{\mu} q|P\rangle=\wp^{\mu} F\left(q^{2}\right)+q^{\mu} \frac{\left(M^{2}-M^{\prime 2}\right)}{q^{2}} H\left(q^{2}\right), \quad \wp^{\mu} & =\left(P+P^{\prime}\right)^{\mu}-q^{\mu} \frac{\left(M^{2}-M^{\prime 2}\right)}{q^{2}} \\
q^{\mu} & =\left(P-P^{\prime}\right)^{\mu}
\end{aligned}
$$

For elastic process,

only gauge invariant form factor $F\left(q^{2}\right)$ survives!

$$
\left\langle P^{\prime}\right| \bar{q} \gamma^{\mu} q|\mathrm{P}\rangle=\wp^{\mu} F_{P}\left(q^{2}\right) \quad \wp \cdot q=0
$$

Pion Form Factor

$$
\left\langle P^{\prime}\right| \bar{q} \gamma^{\mu} q|P\rangle=\wp^{\mu} F_{P}\left(q^{2}\right), \quad \wp^{\mu}=\left(P+P^{\prime}\right)^{\mu}-q^{\mu} \frac{\left(M^{2}-M^{\prime 2}\right)}{q^{2}}
$$

In $q^{+}=0$ frame,

$$
\left\langle P^{\prime}\right| \bar{q} \gamma^{\mu} q|\mathrm{P}\rangle=\int_{0}^{1} \mathrm{~d} p_{1}^{+} \int \frac{\mathrm{d}^{2} \mathbf{k}_{\perp}}{16 \pi^{3}} \phi^{\prime}\left(x, \mathbf{k}_{\perp}^{\prime}\right) \phi\left(x, \mathbf{k}_{\perp}\right) \sum_{\lambda^{\prime} s} \mathcal{R}_{\lambda_{2} \bar{\lambda}}^{\dagger}\left|\frac{\bar{u}_{\lambda_{2}}\left(p_{2}\right)}{\sqrt{x_{2}}} \gamma^{\mu} \frac{u_{\lambda_{1}}\left(p_{1}\right)}{\sqrt{x_{1}}}\right| \mathcal{R}_{\lambda_{1} \bar{\lambda}},
$$

$$
F_{P}^{(\mu)}\left(Q^{2}\right)=\int_{0}^{1} \mathrm{~d} p_{1}^{+} \int \frac{\mathrm{d}^{2} \mathbf{k}_{\perp}}{16 \pi^{3}} \phi^{\prime}\left(x, \mathbf{k}_{\perp}^{\prime}\right) \phi\left(x, \mathbf{k}_{\perp}\right) \frac{1}{\wp^{\mu}} \sum_{\lambda^{\prime} s} \mathcal{R}_{\lambda_{2} \bar{\lambda}}^{\dagger}\left|\frac{\bar{\lambda}_{\lambda_{2}}\left(p_{2}\right)}{\sqrt{x_{2}}} \gamma^{\mu} \frac{u_{\lambda_{1}}\left(p_{1}\right)}{\sqrt{x_{1}}}\right| \mathcal{R}_{\lambda_{1} \bar{\lambda}},
$$

Pion Form Factor

$$
\left\langle P^{\prime}\right| \bar{q} \gamma^{\mu} q|P\rangle=\wp^{\mu} F_{P}\left(q^{2}\right), \quad \wp^{\mu}=\left(P+P^{\prime}\right)^{\mu}-q^{\mu} \frac{\left(M^{2}-M^{\prime 2}\right)}{q^{2}}
$$

$\operatorname{In} q^{+}=0$ frame,

$$
\left\langle P^{\prime}\right| \bar{q} \gamma^{\mu} q|\mathrm{P}\rangle=\int_{0}^{1} \mathrm{~d} p_{1}^{+} \int \frac{\mathrm{d}^{2} \mathbf{k}_{\perp}}{16 \pi^{3}} \phi^{\prime}\left(x, \mathbf{k}_{\perp}^{\prime}\right) \phi\left(x, \mathbf{k}_{\perp}\right) \sum_{\lambda^{\prime} s} \mathcal{R}_{\lambda_{2} \bar{\lambda}}^{\dagger}\left|\frac{\bar{u}_{\lambda_{2}}\left(p_{2}\right)}{\sqrt{x_{2}}} \gamma^{\mu} \frac{u_{\lambda_{1}}\left(p_{1}\right)}{\sqrt{x_{1}}}\right| \mathcal{R}_{\lambda_{1} \bar{\delta}},
$$

$$
F_{P}^{(\mu)}\left(Q^{2}\right)=\int_{0}^{1} \mathrm{~d} p_{1}^{+} \int \frac{\mathrm{d}^{2} \mathbf{k}_{\perp}}{16 \pi^{3}} \phi^{\prime}\left(x, \mathbf{k}_{\perp}^{\prime}\right) \phi\left(x, \mathbf{k}_{\perp}\right) \frac{1}{\wp^{\mu}} \sum_{\lambda^{\prime} s} \mathcal{R}_{\lambda_{2} \bar{\lambda}}^{\dagger}\left|\frac{\bar{u}_{\lambda_{2}}\left(p_{2}\right)}{\sqrt{x_{2}}} \gamma^{\mu} \frac{u_{\lambda_{1}}\left(p_{1}\right)}{\sqrt{x_{1}}}\right| \mathcal{R}_{\lambda_{1} \bar{\lambda}},
$$

This leads to $F_{\pi}^{(+)}\left(Q^{2}\right)=F_{\pi}^{(\perp)}\left(Q^{2}\right) \neq F_{\pi}^{(-)}\left(Q^{2}\right)$

Pion Form Factor

$$
\left\langle P^{\prime}\right| \bar{q} \gamma^{\mu} q|P\rangle=\wp^{\mu} F_{P}\left(q^{2}\right), \quad \wp^{\mu}=\left(P+P^{\prime}\right)^{\mu}-q^{\mu} \frac{\left(M^{2}-M^{\prime 2}\right)}{q^{2}}
$$

$\operatorname{In} q^{+}=0$ frame,

$$
\left\langle P^{\prime}\right| \bar{q} \gamma^{\mu} q|\mathrm{P}\rangle=\int_{0}^{1} \mathrm{~d} p_{1}^{+} \int \frac{\mathrm{d}^{2} \mathbf{k}_{\perp}}{16 \pi^{3}} \phi^{\prime}\left(x, \mathbf{k}_{\perp}^{\prime}\right) \phi\left(x, \mathbf{k}_{\perp}\right) \sum_{\lambda^{\prime} s} \mathcal{R}_{\lambda_{2} \bar{\lambda}}^{\dagger}\left|\frac{\bar{u}_{\lambda_{2}}\left(p_{2}\right)}{\sqrt{x_{2}}} \gamma^{\mu} \frac{u_{\lambda_{1}}\left(p_{1}\right)}{\sqrt{x_{1}}}\right| \mathcal{R}_{\lambda_{1} \bar{\delta}},
$$

Apply $M \rightarrow M_{0}$ both to Our New method, which now resolves the zero-mode.

$$
F_{P}^{(\mu)}\left(Q^{2}\right)=\int_{0}^{1} \mathrm{~d} p_{1}^{+} \int \frac{\mathrm{d}^{2} \mathbf{k}_{\perp}}{16 \pi^{3}} \phi^{\prime}\left(x, \mathbf{k}_{\perp}^{\prime}\right) \phi\left(x, \mathbf{k}_{\perp}\right)+\frac{1}{\wp^{\mu}} \sum_{\lambda^{\prime} s} \mathcal{R}_{\lambda_{2} \bar{\lambda}}^{\dagger}\left\lfloor\frac{\bar{u}_{\lambda_{2}}\left(p_{2}\right)}{\sqrt{x_{2}}} \gamma^{\mu} \frac{u_{\lambda_{1}}\left(p_{1}\right)}{\sqrt{x_{1}}}\right\rfloor \mathcal{R}_{\lambda_{1} \bar{\lambda}},
$$

$$
\text { Then we get } F_{\pi}^{(+)}\left(Q^{2}\right)=F_{\pi}^{(\perp)}\left(Q^{2}\right)=F_{\pi}^{(-)}\left(Q^{2}\right)
$$

$$
F_{\pi}^{\mathrm{SLF}(\mu)}\left(Q^{2}\right)=\int_{0}^{1} d x \int \frac{d^{2} \mathbf{k}_{\perp}}{16 \pi^{3}} \frac{\phi\left(x, \mathbf{k}_{\perp}\right) \phi^{\prime}\left(x, \mathbf{k}_{\perp}^{\prime}\right)}{\sqrt{\mathbf{k}_{\perp}^{2}+m^{2}} \sqrt{\mathbf{k}_{\perp}^{\prime 2}+m^{2}}} O_{\mathrm{LFQM}}^{(\mu)}
$$

TABLE II: The operators $O_{\mathrm{LFQM}}^{(\mu)}$ and their helicity contributions to the pion form factor in the standard LFQM.

$F_{\pi}^{(\mu)}$	$O_{\mathrm{LFPM}}^{(\mu)}$	$\mathcal{H}_{(\uparrow \rightarrow \uparrow)+(\downarrow \rightarrow \downarrow)}^{(\mu)}$	$\mathcal{H}_{(\uparrow \rightarrow \downarrow)+(\downarrow \rightarrow \uparrow)}^{(\mu)}$
$F_{\pi}^{(+)}$	$\mathbf{k}_{\perp} \cdot \mathbf{k}_{\perp}^{\prime}+m^{2}$	$\mathbf{k}_{\perp} \cdot \mathbf{k}_{\perp}^{\prime}+m^{2}$	0
$F_{\pi}^{(+)}$	$\mathbf{k}_{\perp} \cdot \mathbf{k}_{\perp}^{\prime}+m^{2}$	$\mathbf{k}_{\perp} \cdot \mathbf{k}_{\perp}^{\prime}+m^{2}$	0
$F_{\pi}^{(-)}$	$\frac{2(1-x) \mathbf{q}_{\perp}^{2} M_{0}^{2}\left(\mathbf{k}_{\perp} \cdot \mathbf{k}_{\perp}^{\prime}+m^{2}+\mathbf{q}_{\perp} \cdot \mathbf{k}_{\perp}^{\prime}\right)}{x\left[2 \mathbf{M}_{0}^{\prime 2} \mathbf{q}_{\perp}^{2}+\mathbf{q}_{\perp}^{4}+\left(M_{0}^{2}-M_{0}^{\prime 2}\right)^{2}\right]}$	$\frac{2 \mathbf{q}_{\perp}^{2}\left\{\left(\mathbf{k}_{\perp} \cdot \mathbf{k}_{\perp}^{\prime}+m^{2}\right)\left(\mathbf{k}_{\perp}^{2}+\mathbf{k}_{\perp} \mathbf{q}_{\perp}+m^{2}\right)+(1-x)\left(\mathbf{k}_{\perp} \times \mathbf{q}_{\perp}\right)^{2}\right\}}{x^{2}\left[2 M_{0}^{\prime 2} \mathbf{q}_{\perp}^{2}+\mathbf{q}_{\perp}^{4}+\left(M_{0}^{2}-M_{0}^{\prime 2}\right)^{2}\right]}$	$\frac{2 \mathbf{q}_{\perp}^{2}\left\{(1-x) m^{2} \mathbf{q}_{\perp}^{2}\right\}}{x^{2}\left[2 M_{0}^{\prime 2} \mathbf{q}_{\perp}^{2}+\mathbf{q}_{\perp}^{4}+\left(M_{0}^{2}-M_{0}^{\prime 2}\right)^{2}\right]}$

$$
F_{\pi}^{(+)}\left(Q^{2}\right)=F_{\pi}^{(\perp)}\left(Q^{2}\right)=F_{\pi}^{(-)}\left(Q^{2}\right)
$$

"The first proof of the pion form factor's independence from current components in the LFQM!"

4. Unpolarized TMDs of pion

$$
\begin{aligned}
& \left.\int \frac{[d z]}{2(2 \pi)^{3}} e^{i p \cdot z}\langle P| \bar{\psi}(0) \gamma^{+} \psi(z)|P\rangle\right|_{z^{+}=0}=f_{1}^{q}\left(x, p_{T}\right), \\
& \left.\int \frac{[d z]}{2(2 \pi)^{3}} e^{i p \cdot z}\langle P| \bar{\psi}(0) \gamma_{T}^{j} \psi(z)|P\rangle\right|_{z^{+}=0}=\frac{p_{T}^{j}}{P^{+}} f_{3}^{q}\left(x, p_{T}\right), \\
& \left.\int \frac{[d z]}{2(2 \pi)^{3}} e^{i p \cdot z}\langle P| \bar{\psi}(0) \gamma^{-} \psi(z)|P\rangle\right|_{z^{+}=0}=\left(\frac{m_{\pi}}{P^{+}}\right)^{2} f_{4}^{q}\left(x, p_{T}\right),
\end{aligned}
$$

which are related with the forward matrix elements $\langle P| \bar{q} \gamma^{\mu} q|\mathrm{P}\rangle$ as

$$
\begin{aligned}
& 2 P^{+} \int d x f_{1}^{q}(x)=\langle P| \bar{\psi}(0) \gamma^{+} \psi(0)|P\rangle, \\
& 2 p_{T} \int d x f_{3}^{q}(x)=\langle P| \bar{\psi}(0) \gamma^{\perp} \psi(0)|P\rangle, \\
& 4 P^{-} \int d x f_{4}^{q}(x)=\langle P| \bar{\psi}(0) \gamma^{-} \psi(0)|P\rangle,
\end{aligned}
$$

4. Unpolarized TMDs of pion

$$
\begin{aligned}
& \left.\int \frac{[d z]}{2(2 \pi)^{3}} e^{i p \cdot z}\langle P| \bar{\psi}(0) \gamma^{+} \psi(z)|P\rangle\right|_{z^{+}=0}=f_{1}^{q}\left(x, p_{T}\right), \\
& \left.\int \frac{[d z]}{2(2 \pi)^{3}} e^{i p \cdot z}\langle P| \bar{\psi}(0) \gamma_{T}^{j} \psi(z)|P\rangle\right|_{z^{+}=0}=\frac{p_{T}^{j}}{P^{+}} f_{3}^{q}\left(x, p_{T}\right) \\
& \left.\int \frac{[d z]}{2(2 \pi)^{3}} e^{i p \cdot z}\langle P| \bar{\psi}(0) \gamma^{-} \psi(z)|P\rangle\right|_{z^{+}=0}=\left(\frac{m_{\pi}}{P^{+}}\right)^{2} f_{4}^{q}\left(x, p_{T}\right),
\end{aligned}
$$

which are related with the forward matrix elements $\langle P| \bar{q} \gamma^{\mu} q|P\rangle$ as

$$
\begin{aligned}
& 2 P^{+} \int d x f_{1}^{q}(x)=\langle P| \bar{\psi}(0) \gamma^{+} \psi(0)|P\rangle \\
& 2 p_{T} \int d x f_{3}^{q}(x)=\langle P| \bar{\psi}(0) \gamma^{\perp} \psi(0)|P\rangle \\
& 4 P^{-} \int d x f_{4}^{q}(x)=\langle P| \bar{\psi}(0) \gamma^{-} \psi(0)|P\rangle
\end{aligned}
$$

PDF
TMD
$f(x)=\int d^{2} p_{T} f\left(x, p_{T}\right)$
4. Unpolarized TMDs of pion
C. Lorce, B. Pasquini, P. Schweitzer EPJC76,415(2016)

$$
\begin{aligned}
2 P^{+} \int d x f_{1}^{q}(x) & =\langle P| \bar{\psi}(0) \gamma^{+} \psi(0)|P\rangle, \\
2 p_{T} \int d x f_{3}^{q}(x) & =\langle P| \bar{\psi}(0) \gamma^{\perp} \psi(0)|P\rangle, \\
4 P^{-} \int d x f_{4}^{q}(x) & =\langle P| \bar{\psi}(0) \gamma^{-} \psi(0)|P\rangle,
\end{aligned}
$$

Sum rules: In free quark model:
$\int d x f_{1}^{q}(x)=1 \quad x f_{3}^{q}\left(x, p_{T}\right)=f_{1}^{q}\left(x, p_{T}\right)$
$2 \int d x f_{4}^{q}(x)=1$
4. Unpolarized TMDs of pion
C. Lorce, B. Pasquini, P. Schweitzer EPJC76,415(2016)

$$
\begin{aligned}
2 P^{+} \int d x f_{1}^{q}(x) & =\langle P| \bar{\psi}(0) \gamma^{+} \psi(0)|P\rangle, \\
2 p_{T} \int d x f_{3}^{q}(x) & =\langle P| \bar{\psi}(0) \gamma^{\perp} \psi(0)|P\rangle, \\
4 P^{-} \int d x f_{4}^{q}(x) & =\langle P| \bar{\psi}(0) \gamma^{-} \psi(0)|P\rangle,
\end{aligned}
$$

Sum rules: In free quark model:
$\int d x f_{1}^{q}(x)=1 \quad x f_{3}^{q}\left(x, p_{T}\right)=f_{1}^{q}\left(x, p_{T}\right)$
$2 \int d x f_{4}^{q}(x)=1$

However...

Derivation of Sum rules

C. Lorce, B. Pasquini, P. Schweitzer

EPJC76,415(2016)

$$
\begin{gathered}
\left\langle P^{\prime}\right| J^{\mu}|\mathrm{P}\rangle=\bar{\wp}^{\mu} F_{\pi}\left(q^{2}\right) \\
\bar{\wp}^{\mu}=\left(P+P^{\prime}\right)^{\mu} \\
1=F_{\pi}\left(Q^{2}=0\right)=\lim _{Q \rightarrow 0} \frac{\left\langle P^{\prime}\right| J^{\mu}|\mathrm{P}\rangle}{\bar{\wp}^{\mu}}
\end{gathered}
$$

Derivation of Sum rules

C. Lorce, B. Pasquini, P. Schweitzer

EPJC76,415(2016)

$$
\begin{aligned}
& \left\langle P^{\prime}\right| J^{\mu}|\mathrm{P}\rangle=\bar{\wp}^{\mu} F_{\pi}\left(q^{2}\right) \\
& \bar{\wp}^{\mu}=\left(P+P^{\prime}\right)^{\mu} \\
& 1=F_{\pi}\left(Q^{2}=0\right)=\lim _{Q \rightarrow 0} \frac{\left\langle P^{\prime}\right| J^{\mu}|P\rangle}{\bar{\wp}^{\mu}}
\end{aligned}
$$

$\lim _{Q \rightarrow 0} \frac{\left\langle P^{\prime}\right| J^{+}|P\rangle}{\bar{夕}^{+}}=\int d x f_{1}^{q}(x)$
$\lim _{Q \rightarrow 0} \frac{\left\langle P^{\prime}\right| J^{-}|\mathrm{P}\rangle}{\bar{\wp}^{-}}=2 \int d x f_{4}^{q}(x)$

Derivation of Sum rules

C. Lorce, B. Pasquini, P. Schweitzer

EPJC76,415(2016)

$$
\begin{aligned}
& \left\langle P^{\prime}\right| J^{\mu}|\mathrm{P}\rangle=\bar{\wp}^{\mu} F_{\pi}\left(q^{2}\right) \\
& \bar{\wp}^{\mu}=\left(P+P^{\prime}\right)^{\mu} \\
& 1=F_{\pi}\left(Q^{2}=0\right)=\lim _{Q \rightarrow 0} \frac{\left\langle P^{\prime}\right| J^{\mu}|\mathrm{P}\rangle}{\bar{夕}^{\mu}}
\end{aligned}
$$

$\lim _{Q \rightarrow 0} \frac{\left\langle P^{\prime}\right| J^{+}|\mathrm{P}\rangle}{\bar{\wp}^{+}}=\int d x f_{1}^{q}(x)=1$
$\lim _{Q \rightarrow 0} \frac{\left\langle P^{\prime}\right| J^{-}|\mathrm{P}\rangle}{\bar{\wp}^{-}}=2 \int d x f_{4}^{q}(x) \neq 1$

Derivation of Sum rules

EPJC76,415(2016)

$$
\begin{gathered}
\left\langle P^{\prime}\right| J^{\mu}|\mathrm{P}\rangle=\bar{\wp}^{\mu} F_{\pi}\left(q^{2}\right) \\
\bar{\wp}^{\mu}=\left(P+P^{\prime}\right)^{\mu} \\
1=F_{\pi}\left(Q^{2}=0\right)=\lim _{Q \rightarrow 0} \frac{\left\langle P^{\prime}\right| J^{\mu}|\mathrm{P}\rangle}{\bar{\wp}^{\mu}}
\end{gathered}
$$

$\lim _{Q \rightarrow 0} \frac{\left\langle P^{\prime}\right| J^{+}|\mathrm{P}\rangle}{\bar{\wp}^{+}}=\int d x f_{1}^{q}(x)=1$
$\lim _{Q \rightarrow 0} \frac{\left\langle P^{\prime}\right| J^{-}|\mathrm{P}\rangle}{\bar{\wp}^{-}}=2 \int d x f_{4}^{q}(x) \neq 1$

$$
\begin{aligned}
& \left\langle P^{\prime}\right| J^{\mu}|\mathrm{P}\rangle=\wp^{\mu} F_{\pi}\left(q^{2}\right) \\
& \wp^{\mu}=\left(P+P^{\prime}\right)^{\mu}-q^{\mu} \frac{\left(M^{2}-M^{\prime 2}\right)}{q^{2}} \\
& 1=F_{\pi}\left(Q^{2}=0\right)=\lim _{Q \rightarrow 0}\left\langle P^{\prime}\right| \frac{J^{\mu}}{\wp^{\mu}}|\mathrm{P}\rangle
\end{aligned}
$$

Derivation of Sum rules

EPJC76,415(2016)

$$
\left\langle P^{\prime}\right| J^{\mu}|\mathrm{P}\rangle=\bar{\wp}^{\mu} F_{\pi}\left(q^{2}\right)
$$

$$
\begin{gathered}
\bar{\wp}^{\mu}=\left(P+P^{\prime}\right)^{\mu} \\
1=F_{\pi}\left(Q^{2}=0\right)=\lim _{Q \rightarrow 0} \frac{\left\langle P^{\prime}\right| J^{\mu}|P\rangle}{\bar{夕}^{\mu}}
\end{gathered}
$$

$\lim _{Q \rightarrow 0} \frac{\left\langle P^{\prime}\right| J^{+}|P\rangle}{\bar{夕}^{+}}=\int d x f_{1}^{q}(x)=1$
$\lim _{Q \rightarrow 0} \frac{\left\langle P^{\prime}\right| J^{-}|\mathrm{P}\rangle}{\bar{\wp}^{-}}=2 \int d x f_{4}^{q}(x) \neq 1$

$$
\begin{gathered}
\left\langle P^{\prime}\right| J^{\mu}|\mathrm{P}\rangle=\wp^{\mu} F_{\pi}\left(q^{2}\right) \\
\wp^{\mu}=\left(P+P^{\prime}\right)^{\mu}-q^{\mu} \frac{\left(M^{2}-M^{\prime 2}\right)}{q^{2}} \\
1=F_{\pi}\left(Q^{2}=0\right)=\lim _{Q \rightarrow 0}\left\langle P^{\prime}\right| \frac{J^{\mu}}{\wp P^{\mu}}|\mathrm{P}\rangle \\
\square M \rightarrow M_{0} \\
\lim _{Q \rightarrow 0}\left|P^{\prime}\right| \frac{J^{+}}{\wp \wp^{+}}|\mathrm{P}\rangle=\int d x f_{1}^{q}(x) \\
\lim _{Q \rightarrow 0}\left\langle P^{\prime}\right| \frac{J^{-}}{\wp^{-}}|\mathrm{P}\rangle=2 \int d x f_{4}^{q}(x)
\end{gathered}
$$

Derivation of Sum rules

EPJC76,415(2016)

$$
\left\langle P^{\prime}\right| J^{\mu}|\mathrm{P}\rangle=\bar{\wp}^{\mu} F_{\pi}\left(q^{2}\right)
$$

$$
\begin{gathered}
\bar{\wp}^{\mu}=\left(P+P^{\prime}\right)^{\mu} \\
1=F_{\pi}\left(Q^{2}=0\right)=\lim _{Q \rightarrow 0} \frac{\left\langle P^{\prime}\right| J^{\mu}|P\rangle}{\bar{夕}^{\mu}}
\end{gathered}
$$

$\lim _{Q \rightarrow 0} \frac{\left\langle P^{\prime}\right| J^{+}|P\rangle}{\bar{夕}^{+}}=\int d x f_{1}^{q}(x)=1$
$\lim _{Q \rightarrow 0} \frac{\left\langle P^{\prime}\right| J^{-}|\mathrm{P}\rangle}{\bar{\wp}^{-}}=2 \int d x f_{4}^{q}(x) \neq 1$

$$
\begin{gathered}
\left\langle P^{\prime}\right| J^{\mu}|\mathrm{P}\rangle=\wp^{\mu} F_{\pi}\left(q^{2}\right) \\
\wp^{\mu}=\left(P+P^{\prime}\right)^{\mu}-q^{\mu} \frac{\left(M^{2}-M^{\prime 2}\right)}{q^{2}} \\
1=F_{\pi}\left(Q^{2}=0\right)=\lim _{Q \rightarrow 0}\left\langle P^{\prime}\right| \frac{J^{\mu}}{\wp^{\mu}}|\mathrm{P}\rangle \\
\square M \rightarrow M_{0} \\
\lim _{Q \rightarrow 0}\left|P^{\prime}\right| \frac{J^{+}}{\wp}|\mathrm{P}\rangle=\int d x f_{1}^{q}(x)=1 \\
\lim _{Q \rightarrow 0}\left\langle P^{\prime}\right| \frac{J^{-}}{\wp^{-}}|\mathrm{P}\rangle=2 \int d x f_{4}^{q}(x)=1
\end{gathered}
$$

LF Zero-Mode for twist-4 PDF and its Resolution

$$
\lim _{Q \rightarrow 0}\left\langle P^{\prime}\right| \frac{J^{-}}{\wp \wp^{-}}|\mathrm{P}\rangle=2 \int d x f_{4}^{q}(x)=1
$$

Unpolarized TMDs for Pion

(a)
(b)
(c)

$$
x f_{3}^{q}\left(x, \boldsymbol{k}_{\perp}^{2}\right)=f_{1}^{q}\left(x, \boldsymbol{k}_{\perp}^{2}\right)
$$

Unpolarized PDFs for Pion

4. QCD Evolution of Pion PDFs

Evolved from $\mu_{0}^{2}=1 \mathrm{GeV}^{2}$ to $\mu^{2}=4$ and $27 \mathrm{GeV}^{2}$

We use the Higher Order Perturbative Parton Evolution toolkit (HOPPET) to solve the NNLO DGLAP equation.

$$
\text { Mellin moments: }\left\langle x^{n}\right\rangle=\int_{0}^{1} d x x^{n} f(x)
$$

TABLE III. Mellin moments of the pion valence PDF, $f_{1}^{q}(x)$, evaluated at the scale $\mu^{2}=4 \mathrm{GeV}^{2}$.

	$\langle x\rangle_{t 2}^{u}$	$\left\langle x^{2}\right\rangle_{t 2}^{u}$	$\left\langle x^{3}\right\rangle_{t 2}^{u}$	$\left\langle x^{4}\right\rangle_{t 2}^{u}$	
This work	0.236	0.101	0.055	0.033	
[83]	$0.2541(26)$	$0.094(12)$	$0.057(4)$	$0.015(12)$	
[83] B. Joo et al., PRD 100, 114512(2019)					
[84]	$0.2075(106)$	$0.163(33)$	\ldots	\cdots	[84] M. Oehm et al., PRD 99, 014508(2019)
[56]	$0.24(2)$	$0.098(10)$	$0.049(7)$	\cdots	[56] M. Ding et al. PRD 101, 054014(2020)
[57]	$0.24(2)$	$0.094(13)$	$0.047(8)$	\cdots	[57] Z.-F. Cui et al. EPJC 80, 1064(2020)

TABLE IV. Mellin moments of the pion valence PDF, $f_{1}^{q}(x)$, evaluated at the scale $\mu^{2}=27 \mathrm{GeV}^{2}$.
[85] R. S. Sufian et al. , PRD 99, 074507(2019)
[86] S.-I. Nam, PRD 86, 074005(2012)
[21] K. Wijesooriya, P. Reimer, R. J. Holt, PRC 72, 065203 (2005).

	$\langle x\rangle_{t 2}^{u}$	$\left\langle x^{2}\right\rangle_{t 2}^{u}$	$\left\langle x^{3}\right\rangle_{t 2}^{u}$	$\left\langle x^{4}\right\rangle_{t 2}^{u}$
This work	0.182	0.069	0.034	0.019
[85]	$0.18(3)$	$0.064(10)$	$0.030(5)$	\cdots
$[57]$	$0.20(2)$	$0.074(10)$	$0.035(6)$	\cdots
$[86]$	0.184	0.068	0.033	0.018
$[21]$	$0.217(11)$	$0.087(5)$	$0.045(3)$	\cdots

Lowest four moments of pion valence PDF

Adopted from J. Lan et al. (BLFQ Collab.), PRL 122, 172001 (2019)

$$
\text { Mellin moments: }\left\langle x^{n}\right\rangle=\int_{0}^{1} d x x^{n} f(x)
$$

TABLE V. Mellin moments of the twist-3 pion PDF, $f_{3}^{q}(x)$, evaluated at the scales $\mu^{2}=4 \mathrm{GeV}^{2}$ and $\mu^{2}=27 \mathrm{GeV}^{2}$, respectively.

	$\langle x\rangle_{t 3}^{u}$	$\left\langle x^{2}\right\rangle_{t 3}^{u}$	$\left\langle x^{3}\right\rangle_{t 3}^{u}$	$\left\langle x^{4}\right\rangle_{t 3}^{u}$
$\mu^{2}=4 \mathrm{GeV}^{2}$	0.471	0.164	0.079	0.045
$\mu^{2}=27 \mathrm{GeV}^{2}$	0.365	0.111	0.049	0.026

TABLE VI. Mellin moments of the twist-4 pion PDF, $f_{4}^{q}(x)$, evaluated at the scales $\mu^{2}=4 \mathrm{GeV}^{2}$ and $\mu^{2}=27 \mathrm{GeV}^{2}$, respectively.

	$\langle x\rangle_{t 4}^{u}$	$\left\langle x^{2}\right\rangle_{t 4}^{u}$	$\left\langle x^{3}\right\rangle_{t 4}^{u}$	$\left\langle x^{4}\right\rangle_{t 4}^{u}$
$\mu^{2}=4 \mathrm{GeV}^{2}$	0.069	0.021	0.009	0.005
$\mu^{2}=27 \mathrm{GeV}^{2}$	0.053	0.014	0.006	0.003

5. Conclusions

- We developed a new method for ensuring self-consistency in the LFQM.

Our LFQM: Noninteracting $Q \& \bar{Q}$ representation consistent with the Bakamjian-Thomas(BT) constuction!

$$
P^{-}=p_{q}^{-}+p_{\bar{q}}^{\bar{q}}, \text { i. e. } M^{2} \rightarrow M_{0}^{2}
$$

$$
\left.\begin{array}{r}
\langle 0| \bar{q} \Gamma^{\mu} q|\mathrm{P}\rangle=\mathfrak{F} \wp^{\mu} \quad \mathfrak{F}: \text { physical observables }\left(\mathfrak{F}=f_{P}, F \cdots\right) \\
\wp^{\mu}: \text { Lorentz factors }\left(\wp=P^{\mu} \cdots\right)
\end{array}\right\}
$$

This allows one to obtain the physical observables independent of the current components !

Partial Extractions of TMD, PDF, GPD from Pion Form Factor

Backup Slides

2. Why Light-Front?

$a \cdot b=a^{0} b^{0}-\vec{a} \cdot \vec{b}$

Hamiltonian	P^{0}	$P^{-}=P^{0}-P^{3}$			
Momentum	$\boldsymbol{P}_{\perp}=\left(P^{1}, P^{2}\right)$ P^{3}	\boldsymbol{P}_{\perp} $P^{+}=P^{0}+P^{3}$			
Energy-Momentum Dispersion Relation	$P^{0}=\sqrt{M^{2}+\vec{P}^{2}}$	$P^{-}=\frac{M^{2}+\boldsymbol{P}_{\perp}^{2}}{P^{+}}$			
Irrational				vs.	Rational

- Advantage of LFD in the calculation of Form Factors :

Equal- t vs Equal Light-front τ formulations

Equal t (Instant form)

$$
=
$$

$+$

- Advantage of LFD in the calculation of Form Factors :

Equal- t vs Equal Light-front τ formulations

$$
k^{0}=\sqrt{m^{2}+\vec{k}^{2}}
$$

Equal t

$$
\vec{k}_{1}+\vec{k}_{2}+\vec{k}_{3}=0
$$

- Advantage of LFD in the calculation of Form Factors :

Equal- t vs Equal Light-front τ formulations

Equal τ (Front form)
$=$

$+$

- Advantage of LFD in the calculation of Form Factors :

Equal- t vs Equal Light-front τ formulations

- Advantage of LFD in the calculation of Form Factors :

Equal- t vs Equal Light-front τ formulations

Equal τ (Front form)
=
LF nonvalence
(higher Fock state)

LF valence

Decay Constant and DAs

$$
\begin{aligned}
& \langle 0| \bar{q}(0) \gamma^{\mu} \gamma_{5} q(0)|P\rangle=i f_{\pi} P^{\mu} \\
& \mathrm{BT} \\
& f_{\pi}=\langle 0| \frac{\bar{q} \gamma^{\mu} \gamma_{5} q}{P^{\mu}}|\mathrm{P}\rangle \text { with } M \rightarrow M_{0}
\end{aligned}
$$

Decay Constant and DAs

$$
\begin{aligned}
& \langle 0| \bar{q}(0) \gamma^{\mu} \gamma_{5} q(0)|P\rangle=i f_{\pi} P^{\mu} \\
& \text { BT } \\
& f_{\pi}=\langle 0| \frac{\bar{q} \gamma^{\mu} \gamma_{5} q}{P^{\mu}}|\mathrm{P}\rangle \text { with } M \rightarrow M_{0}
\end{aligned}
$$

$f_{\pi}=\sqrt{2 N_{c}} \int_{0}^{1} d x \int \frac{d^{2} \boldsymbol{k}_{\perp}}{16 \pi^{3}} \frac{\phi\left(x, \boldsymbol{k}_{\perp}\right)}{\sqrt{m^{2}+\boldsymbol{k}_{\perp}^{2}}}(2 m)$
$\phi_{\pi}\left(x, \mu_{0}\right)=\frac{\sqrt{2 N_{c}}}{f_{\pi}} \int^{\mu_{0}^{2}} \frac{d^{2} \boldsymbol{k}_{\perp}}{16 \pi^{3}} \frac{\phi\left(x, \boldsymbol{k}_{\perp}\right)}{\sqrt{m^{2}+\boldsymbol{k}_{\perp}^{2}}}(2 m)$
independent of " μ "!

Decay Constant and DAs

$\langle 0| \bar{q}(0) \gamma^{\mu} \gamma_{5} q(0)|P\rangle=i f_{\pi} P^{\mu}$

$f_{\pi}=\sqrt{2 N_{c}} \int_{0}^{1} d x \int \frac{d^{2} \boldsymbol{k}_{\perp}}{16 \pi^{3}} \frac{\phi\left(x, \boldsymbol{k}_{\perp}\right)}{\sqrt{m^{2}+\boldsymbol{k}_{\perp}^{2}}}(2 m)$
$\phi_{\pi}\left(x, \mu_{0}\right)=\frac{\sqrt{2 N_{c}}}{f_{\pi}} \int^{\mu_{0}^{2}} \frac{d^{2} \boldsymbol{k}_{\perp}}{16 \pi^{3}} \frac{\phi\left(x, \boldsymbol{k}_{\perp}\right)}{\sqrt{m^{2}+\boldsymbol{k}_{\perp}^{2}}}(2 m)$

independent of " μ "!
See PRD 107, 053003(23); PRD108, 013006(23) by A. Arifi, HMC and CRJ for the analysis of higher-twist DAs.

