3D Structure of the Nucleon via Generalized Parton Distributions Howard Johnson Incheon Airport Hotel 28 June 2024

I. Motivation

To probe the internal hadron structure, and understand the QCD dynamics,

Asymmetry in the cross section when the spin of the polarized electron beam is flipped.

$$A_{LU}(\phi) = \frac{d\sigma_{e\uparrow} - d\sigma_{e\downarrow}}{d\sigma_{e\uparrow} + d\sigma_{e\downarrow}} = \frac{d\sigma_{BSA}}{d\sigma_{T} (1 + \epsilon \cos(2\phi)) + d\sigma_{L}\epsilon_{L} + d\sigma_{LT} \cos(\phi)\sqrt{\epsilon_{L}(1 + \epsilon)/2}}$$

Non-vanishing BSA

For the **pseudoscalar meson** (0^{-+}) production on He-4 target, the zero-BSA is confirmed in the F. Cao's work.

Cao, Frank Thanh, *Doctoral Dissertations (2019)*

On the other hand, non-vanishing BSA is expected for scalar meson (0^{++}) production.

Ji, Chueng-Ryong et al, Phys. Rev. D 99, 11 116008 (2019)

$$A_{LU}(\phi) \sim \mathcal{F}_1 \, \mathcal{F}_2^* \ - \ \mathcal{F}_2 \, \mathcal{F}_1^*$$

To obtain the finite BSA, at least two Compton Form Factors are required.

But, GPD based model, a single leading-twist GPD $H(x, \zeta, t)$ exist for this process.

Since # of GPDs is the same as # of CFFs,

the leading-twist approximation is not sufficient!

simple theoretical test

II. Two approaches

Parameterization

Generalized structure functions (Compton Form Factors (CFFs))

Considering symmetries (gauge invariance, ...),

for the pseudoscalar meson $(J^{PC} = 0^{-+})$: $\epsilon^{\mu\nu\alpha\beta}$ scalar meson (0^{++}) : $d^{\mu\nu\alpha\beta} = g^{\mu\nu}g^{\alpha\beta} - g^{\mu\alpha}g^{\nu\beta}$

$$\mathcal{M}^{\mu}_{S} = (\mathcal{F}_{1}(Q^{2}, x_{B}, t) \ q_{\alpha} + \mathcal{F}_{2}(Q^{2}, x_{B}, t) \ \mathcal{P}_{\alpha}) \ d^{\mu\nu\alpha\beta}q_{\beta}\Delta_{\nu}$$

$$= \left\{ q^2 \ \Delta^{\mu} - (\Delta \cdot q) \ q^{\mu} \right\} \mathscr{F}_1(Q^2, x_B, t) + \left\{ (\mathscr{P} \cdot q) \ \Delta^{\mu} - (\Delta \cdot q) \ \mathscr{P}^{\mu} \right\} \mathscr{F}_2(Q^2, x_B, t)$$

where $\Delta = p - p' = q' - q$, $\mathcal{P} = p + p'$

Ji, Chueng-Ryong et al., Phys. Rev. D 99, 11 116008 (2019)

I. One-Loop Based Model

Large Q^2 Expansion (Factorization)

In the large Q^2 , the upper propagators are

$$\frac{2k^{\mu}+q^{\mu}}{(k+q)^2-m^2} \rightarrow \left(\frac{1}{X-\zeta}\right) \left(\frac{2k^{\mu}+q^{\mu}}{Q^2/\zeta}\right)$$

Then, the scattering amplitude in the large Q^2 limit can be

$$\mathcal{M}^{\mu} \sim \int dX \left(\frac{1}{X - \zeta} - \frac{1}{X} \right) \operatorname{H}(X, \zeta, t) \times \begin{cases} \zeta^{1} \ Q^{-2} & \text{for } \mu = + \\ \zeta^{0} \ Q^{-1} & \mu = - \\ \zeta^{-1} Q^{0} & \mu = \bot \end{cases}$$

Remarks : Regardless of the choice μ ,

we have the same leading-twsit GPD with different order of ζ and Q.

II. GPD Based Model

Skewed (off-forward) parton distribution : hard part (OPE) ⊗ soft part (GPD H)

Relation with CFF :

$$\begin{split} &\operatorname{Re}[\mathscr{F}(Q^2, x_B, t)] \sim \mathscr{P} \int dx \left(\frac{1}{X - \zeta} - \frac{1}{X} \right) \operatorname{H}(X, \zeta, t) \\ &\operatorname{Im}[\mathscr{F}(Q^2, x_B, t)] \sim -i\pi \operatorname{H}(X = \zeta, \zeta, t) \end{split}$$

$$p^+$$
: Light-front (LF) longitudinal momentum of incoming target,

- Q^2 : Virtuality \rightarrow factorizable in $Q^2 > |t|, M_t^2, M_s^2, \cdots$,
- X : Longitudinal momentum fraction,
- ζ : Skewness, $(p^+ p'^+)/p^+$, asymmetry of LF longitudinal momentum of target,
- *t* : Square momentum transfer, $\Delta^2 = (q' q)^2 = (p p')^2$,

"kick" transverse momentum depending on scattering angle.

Model-I vs Model-II

DV(f0)P	I-One-loop based	II. Leading-twist GPD		
Factorizable	Х	0		
Diagrams	S-, U- box, and Cat's ears	Handbags		
Gauge Invariance	0	X		
# of CFFs	2	1		
Exp.	Compton Form Factors, Beam Spin Asymmetry,			

III. GPD Result

GPD sum rule

Generalized Parton Distribution (GPD)

Parton Distribution Function

Helium is consist of **two effective partons** in this model.

Expect that for a single parton, It has largest probability at x=0.5.

Electromagnetic Form Factor

Energy-Momentum Tensor FFs

IV. Results

I. One-loop based model

Set $|\mathbf{q}_{\perp}| = 0$ for simplicity.

$$q_{\mu} \mathcal{M}^{\mu} = q^{+} \mathcal{M}^{-} + q^{-} \mathcal{M}^{+} = 0$$

II. GPD based model

$$q_{\mu} \ \mathscr{M}^{\mu}_{DVMP} \sim \frac{1}{2} + \frac{\zeta}{2Q}$$

The gauge violation is decreased in large Q^2 , but, is not vanished even in very large Q^2 .

Compton Form Factors

For scalar meson $f_0(980)$ production on spin-0 $^4\mathrm{He}$ target ,

$$\begin{split} \mathcal{M}^{\mu} &= A^{\mu} \,\,\mathcal{F}_{1} + B^{\mu} \,\,\mathcal{F}_{2} \\ &= \left[\,\, \left(\Delta \cdot q \right) \,\, q^{\mu} - q^{2} \,\, \Delta^{\mu} \,\, \right] \,\,\mathcal{F}_{1} \\ &\quad + \left[\,\, \left(\Delta \cdot q \right) \,\,\mathcal{P}^{\mu} - \left(\mathcal{P} \cdot q \right) \,\, \Delta^{\mu} \,\, \right] \,\,\mathcal{F}_{2} \end{split}$$

Remarks

Magnitude of $|\mathscr{F}_{2}|$ is quiet small compared to $|\mathscr{F}_{1}|$, but, **non-zero complex values** provide interferences, $\mathscr{F}_{1}^{*}\mathscr{F}_{2}$, in BSA

Beam Spin Asymmetry

$$A_{LU}^{S}(\phi) = \frac{d\sigma_{BSA}^{S}}{d\sigma_{T}^{S} (1 + \epsilon \cos(2\phi)) + d\sigma_{L}^{S} \epsilon_{L} + d\sigma_{LT}^{S} \cos(\phi) \sqrt{\epsilon_{L}(1 + \epsilon)/2}}$$

Conclusion

- 1. To invest the deeply virtual scalar meson (0^{++}) production on helium target, the simple theoretical test was performed.
- 2. Two simple models are used, and the leading-twsit GPD can be obtained from the one-loop based model in the large Q^2 limit.
- 3. In the model calculation, we can obtain the GPD. and PDF, FF, and EMT are obtained by using the GPD sum rule.
- At specific kinematical region, non-vanishing BSA implies that the leading-twist approximation is not sufficient.

Future work

- 1. Realistic partons (quark propagator)
- 2. Realistic model for soft part (Liquid Instanton Model)
- 3. Coherent and incoherent processes
- 4. Twist-3 contribution (chiral-odd GPD)
- 5. Gluon contents

Search ID: pknn1213

"Thank you for listening."

Backup

Exclusive Inelastic Scattering

Deeply Virtual Compton Scattering (DVCS)

 $\sigma \; (\gamma^* p \to \gamma p) \; \propto \; Q^{-4}$

Measures a combination of $H, E, \tilde{H}, \tilde{E}$

Contribution of Bethe-Heitler process :

Deeply Virtual Meson Production (DVMP)

 $\sigma \; (\gamma^* p \to M p) \; \propto \; Q^{-6}$

M = V : H, E $M = PS : \tilde{H}, \tilde{E}$

Managable complication : the meson structure

28

Kinematics & GPDs limit

CR Ji, BLG Bakker, Int. J. Mod. Phys. E 22, 1330002 (2013)

• GPDs limit ($Q^2 > > t , M_s^2,$)
$k = [xp^+, k^-],$
$p = \left[p^+, \frac{M_t}{p^+} \right],$
$q = \left[-\zeta p^+, \ \frac{Q^2}{\zeta' p^+}\right] \simeq \left[-\zeta p^+, \ \frac{Q^2}{\zeta p^+}\right],$
$\Delta = \left[\zeta p^+, \frac{t}{\zeta p^+} \right],$
$p' = \left[(1 - \zeta) p^+, \left(M_t^2 - \frac{t}{\zeta} \right) \frac{1}{p^+} \right],$
$q' = \left[0, \frac{Q^2}{\zeta' p^+} \right] \simeq \left[0, \frac{Q^2}{\zeta p^+} \right],$
where there is no M_s dependence, and $\zeta \simeq \zeta'$.
GPD does not distinguish between DVMP & DVCS.

GPDs vs VMP in Diagrams

: GPDs formulation

: Occurring imaginary values

For a plus current of a virtual photon,

$$\frac{2k^{+} + q^{+}}{(k^{+} + q^{+})(k^{-} - k_{t}^{-})} \frac{1}{k^{2} - m^{2}} \frac{1}{(k - \Delta)^{2} - m^{2}} \frac{1}{(k - p)^{2} - M^{2}} \quad \text{where} \quad k_{t}^{-} = -q^{-} + \frac{m_{Q_{1}}^{2}}{k^{+} + q^{+}} - i\frac{\epsilon}{k^{+} + q^{+}}$$

For large
$$Q^2$$
: $\simeq \frac{1}{(x-\zeta)} \frac{\zeta'}{Q^2} (2x-\zeta) + \mathcal{O}\left(\frac{1}{Q^4}\right)$

$$= \frac{1}{x-\zeta} \frac{\zeta'}{Q^2} \frac{1}{k^2 - m^2} \frac{2k^+ - \Delta^+}{p^+} \frac{1}{(k-\Delta)^2 - m^2} \frac{1}{(k-p)^2 - M^2}$$

For a plus current of a virtual photon,

$$\frac{2k^{\mu} - \Delta^{\mu} - {q'}^{\mu}}{(k^{+} - {q'}^{+})(k^{-} - k_{u}^{-})} \frac{1}{k^{2} - m^{2}} \frac{1}{(k - \Delta)^{2} - m^{2}} \frac{1}{(k - \mu)^{2} - M^{2}} \quad \text{where} \quad k_{u}^{-} = q'^{-} + \frac{m_{Q_{1}}^{2}}{k^{+} - q'^{+}} - i\frac{\epsilon}{k^{+} - q'^{+}}$$

For large
$$Q^2$$
: $\simeq -\frac{1}{x} \frac{\zeta'}{Q^2} (2x - \zeta) + \mathcal{O}\left(\frac{1}{Q^4}\right)$

$$= -\frac{1}{x} \frac{\zeta'}{Q^2} \frac{1}{k^2 - m^2} \frac{2k^+ - \Delta^+}{p^+} \frac{1}{(k - \Delta)^2 - m^2} \frac{1}{(k - p)^2 - M^2}$$

Operator Product Expansion

Bilocal current can be expressible in the sum of local currents when the separation is going to zero :

Twist Expansion - Factorization

What is **the twist**?

 $twist(\tau) = dimension(d) - spin(s)$

(Mass) dimension : naive canonical dimension of the operator from that action is dimensionless.

operator	8	$P_{\mu}, D_{\mu}, A_{\mu}$	ψ	$G_{\mu u}, ilde{G}_{\mu u}$	$\overline{\psi}\gamma_{\mu}\psi$	L
dimension	0	1	3/2	2	3	4

Spin : its transformation properties under the Lorentz group. (the number of Lorentz indices)

In QCD, the leading twist is 2,

and hadronic tensor eventually can be expressed in terms of $(\Lambda/Q^2)^{\tau-2}$ powers.