3D imaging of hadrons at the EicC

Xu Cao

on behalf of the EicC Exclusive Physics Working Group

Workshop of the 3D structure of the nucleon via GPDs Incheon, Korea, 24~28 Jun. 2024

Understanding the universe out of nothing

Introduction EicC Status&Agenda

3D Imaging of Nucleon

Proton DVCS Exclusive Heavy Flavor

3D Imaging of Meson

Meson Structure Pion DVCS

Out of QCD vacuum, (anti-)quarks are born; Out of (anti-)quarks, mass; Out of mass, particles; Out of particles, / the created universe --- modified from Tao Te Ching

Xu CAO, 24-28 Jun. 2024

- TMD: Transverse Momentum Distributions (k \perp & longi. Momentum):
- How is proton's spin correlated with the motion of the quarks/gluons?
- probed by the inclusive process
- GPD: General Parton Distributions (trans. spatial position b^{\perp} & longi. Momentum):
- TDA: Transition Distribution Amplitudes (nucleon-to-photon & nucleon-to-meson):
- How does proton's spin influence the spatial distribution of partons?
- probed by the exclusive process
- From 1D to 3D picture of hadron & nuclei
- Origin of the Proton/Meson mass & spin

Xu CAO, 24-28 Jun. 2024

• From 1D to 3D structure of proton & nuclei:

- GPD: DVCS, TCS, DVMP, DDVCS
- TDA: backward (u-channel) meson production

Deeply Virtual Compton Scattering $\xi = x_B/(2 - x_B)$

Timelike Compton Scattering

share the same final states with nucleon-to-photon TDA but with backward u-channel $\xi = \tau/(2-\tau)$

Deeply Virtual Meson Production

share the same light meson with nucleon-to-meson TDA & hadron physics heavy quarkonium: gravitation form factors or proton mass? fully construction of all particles & kinematics

• From 1D to 3D structure of pions & kaons:

- Pions/Kaons as the approximate Nambu–Goldstone bosons of spontaneously broken chiral symmetries associated with the (near) masslessness of quarks
- Probed by Drell-Yan process and Sullivan process
- Detection of leading neutron/Lambda?

Structure function

Sensitivity to elastic form factor and Parton Distribution Functions

π⁺-DVCS

quarks and gluons interfere destructively

see J. M. Morgado Chávez et al., Phys.Rev.Lett. 128 (2022) 202501

From conventional to exotic spectrum of Hadrons:

X.C, Front. Phys. 18 (2023) 44600

- Heavy Charmonium Production \leq 1 nb
- From quasi-real to deep virtual photon
- Exotic States Production < 10pb

Semi-inclusive electroproduction gives another upper limit of exclusive production

courtesy : Panpan Shi & Fengkun Guo

Xu CAO, 24-28 Jun. 2024

• Energy:

electron + proton: 3.5 GeV \times 20 GeV electron + ³He: 3.5 GeV \times 40 GeV (nucleus energy)

arXiv:2102.09222,

Front. Phys. 16, 64701 (2021)

• Luminosity:

Instantaneous Lumi: $2 \times 10^{33} \text{ cm}^{-2} \text{ s}^{-1}$ Integrated Lumi for simulation = 50 fb⁻¹

• Polarization:

electron: 80% L proton& ³He: 70% L&T

 Phase space coverage √s ~ 16.7 (15 ~ 20)GeV 4x10⁻³ < x < ~ 0.1

Xu CAO, 24-28 Jun, 2024

 \checkmark

- e+p, e+d, e+³He
- Effective tool for flavor separation

Particle	е	d	$^{3}\mathrm{He}^{++}$	$^{7}\mathrm{Li}^{3+}$	$^{12}\mathrm{C}^{6+}$	40Ca^{20+}	$^{197}\mathrm{Au}^{79+}$	$^{208}{\rm Pb}^{82+}$	238U92+
Kinetic energy (GeV/u)	3.5	12.00	16.30	10.16	12.00	12.00	9.46	9.28	9.09
Momentum $(GeV/c/u)$	3.5	12.90	17.21	11.05	12.90	12.90	10.35	10.17	9.98
Total energy (GeV/u)	3.5	12.93	17.23	11.09	12.93	12.93	10.39	10.21	10.02
CM energy (GeV/u)	_	13.48	15.55	12.48	13.48	13.48	12.09	11.98	11.87
$f_{\text{collision}}$ (MHz)	_	499.25	499.82	498.79	499.25	499.25	498.54	498.47	498.39
Polarization	80%	Yes	Yes	No	No	No	No	No	No
B ho (T·m)	11.67	86.00	86.00	86.00	86.00	86.00	86.00	86.00	86.00
Particles per bunch $(\times 10^9)$	40	6.1	3.0	2.04	1.00	0.30	0.07	0.065	0.055
$\varepsilon_x/\varepsilon_y \text{ (nm·rad, rms)}$	20	100/60	100/60	100/60	100/60	100/60	100/60	100/60	100/60
β_x^*/β_y^* (m)	0.2/0.06	0.04/0.02	0.04/0.02	0.04/0.02	0.04/0.02	0.04/0.02	0.04/0.02	0.04/0.02	0.04/0.02
Bunch length (m, rms)	0.01	0.015	0.015	0.02	0.015	0.015	0.02	0.02	0.02
Beam-beam parameter ξ_x/ξ_y	0.007	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002
Laslett tune shift	_	0.07	0.06	0.04	0.06	0.06	0.06	0.06	0.06
Current (A)	3.3	0.49	0.48	0.49	0.48	0.48	0.44	0.43	0.40
Crossing angle (mrad)					50				
Hourglass	_	0.94	0.94	0.92	0.94	0.94	0.92	0.92	0.92
Luminosity at nucleon level $(cm^{-2} \cdot s^{-1})$	_	8.48×10^{32}	6.29×10^{32}	9.75×10^{32}	8.35×10^{32}	8.35×10^{32}	9.37×10^{32}	9.22×10^{32}	8.92×10^{32}

- The Luminosity is under optimization
- lever arm $Q^2 > 30 \text{ GeV}^2$

Xu CAO, 24-28 Jun. 2024

Central detector

electron far-forward detectors

Ion far-forward detectors

	High	Lumi.	Low Lumi.				
Designs	HIAF-U-	New, V0	V1				
Particle	е	р	е	р			
Circumference(m)	1151.20	1149.07	1151.20	1149.07			
Kinetic energy (GeV)	3.5	19.08	3.5	19.08			
Momentum (GeV)	3.5	20	3.5	20			
Total energy (GeV)	3.5	20.02	3.5	20.02			
CM energy (GeV)	16 <mark>.76</mark>						
f _{collision} (MHz)	1 <mark>00</mark>						
Polarization	80%	70%	80%	70%			
<i>Β</i> ρ (T ·m)	11.7	67.2	11.7	67.2			
Bunch intensity(×1011)	1.7	1.05	0.44	0.27			
$\varepsilon_x/\varepsilon_y$ (nm·rad, rms)	50/15	100/50	12.5/3.75	25/12.5			
eta_x^*/eta_y^* (cm)	10/4	5/1.2	10/4	5/1.2			
RMS divergence (mrad)		1.4/2.0		0.7/1.0			
6×RMS size @ BpF2 (cm)		9.3/4.6		4.6/2.3			
8×RMS size @ BpF2 (cm)		12.4/6.2		6.2/3.1			
10×RMS size @ BpF2 (cm)		15.5/7.7		7.8/3.9			
Bunch length (cm, rms)	0.75	8	0.75	8			
BB parameter ξ_x/ξ_y	0.102/0.118	0.0144/0.01	0.105/0.121	0.015/0.010			
Laslett tune shift	-	0.066/0.105		0.065/0.10			
Energy loss (MeV/turn)	0.32	-					
Total SR power (MW)	0.86	-					
Average Current (A)	2.7	1.68					
Crossing angle (mrad)	50						
Luminosity (cm ⁻² ·s ⁻¹)	4.25×10 ³³ (H=0.52)		1.13×10 ³³ (H=0.52)				

Xu CAO, 24-28 Jun. 2024

Xu CAO, 24-28 Jun. 2024

Aerial view of HIAF - 05.14.2024

Xu CAO, 24-28 Jun. 2024

Xu CAO, 24-28 Jun. 2024

- Worldwide data VS. pseudodata
- ... generated by MILOU and filtered by the state-of-the-art detector design

Xu CAO, 24-28 Jun. 2024

- Detector efficiency and resolution: separately
- ³⁄₄ High Lumi ~7 % average

1/4 Low: ~25% average

Xu CAO, 24-28 Jun. 2024

• A_{UT} in all 1.0 < Q² < 80.0 GeV² and x_B & -t bins. Cut: Q² > 1.5 GeV², $|t/Q^2| < 0.2$

Xu CAO, 24-28 Jun. 2024

- 3D structure of nucleon (GPDs) @ EicC: ~ 1day running surpasses old data of A_{UT}
- Accessing Compton Form Factors: An Impact study on Im \mathcal{E}

see X. C, Jinlong Zhang, arXiv:2301.06940, EPJC 83 (2023) 505

• quark OAM: neutron target or a transversely polarized proton beam

• reweighting the replicas from PARTONS(EPJC79:614) by $sin(\phi - \phi_s)cos(\phi)$ module of A_{UT}

Xu CAO, 24-28 Jun. 2024

- Pseudo-rapidity, azimuthal angle coverage and pt coverage?
- Any requirement on far-forward detector?
- large rapidity coverage, good high momentum resolution
- DVCS&DVMP Electron ($Q^2 > 1.0 \text{ GeV}^2$, $\eta > 2.0$); TCS & hadron ($Q^2 < 1.0 \text{ GeV}^2$) need e-far-forward
- Proton: good far-forward detector; Photon: several to 15 GeV, 4π coverage

• $\pi / K / \eta / \eta' / \omega / \phi$ separation: $\eta / \pi^0 \rightarrow \gamma \gamma$ required by DVMP and TDA physics

• Moderate Asymmetry precision < 1.0 ~ 1.5 % in all kinematic region

Xu CAO, 24-28 Jun. 2024

3D hadron imaging at the EicC

-0.5

1

0.5

4

 $\delta\;A_{UT}^{sc}/A_{UT}^{sc}$

• Accessing Compton Form Factors / GPD? by all pseudo-data at the EicC

• Re-training (less-biased) within Gepard framework in collaboration with K. Kumericki

Xu CAO, 24-28 Jun. 2024

- Tool for studying the 3D quark and gluon distributions in the nucleon, encoded in terms of the so-called GEneralized PArton Distributions.
- https://gepard.phy.hr/
- with an update of neural network architecture

3-100-100-100-100-8

Activiton function

Xu CAO, 24-28 Jun. 2024

Very preliminary: trained within Gepard: dispersion relation is not enabled

Xu CAO, 24-28 Jun. 2024

- From light quarks to charm and up to bottom: Photo- and electro-production of narrow exotic states
- Generated by IAger and eSTARlight: X.C, Front. Phys. 18 (2023) 44600, see also PhysRevD.101.074010

- Exclusive Heavy Quarkonium Production probes several interesting topics
- e.g. pentaquarks, cusps, Charmonium-nucleon interaction, Gravitational Form Factors ...
 X. Wang, X. C *et al.*, 2311.07008, EPJC (2024)

 Optimization the efficiency and resolution of detector will helpful for approaching close to the threshold region W<5.0 GeV

- 3D structure of nucleon (gravitation form factors & model dependence)
- Require heavy flavor reconstruction: detect Positron & Electron from heavy quarkonium decay; approaching near-threshold: slow quarkonium need more luminosity.

$$\begin{aligned} \frac{d\sigma}{dt} &= \frac{\alpha_{\rm EM} e_Q^2}{4(W^2 - M_N^2)^2} \frac{(16\pi\alpha_S)^2}{3M_N^3} |\psi_{\rm NR}(0)|^2 |G(t,\xi)|^2 \\ &= \frac{t - M_\psi^2}{2M_p^2 + M_\psi^2 - t - 2W^2} \\ &= \frac{t - M_\psi^2}{2M_\psi^2 + M_\psi^2 - t - 2W^2} \\ &= \frac{t - M_\psi^2}{2M_\psi^2 + M_\psi^2 - t - 2W^2} \\ &= \frac{t - M_\psi^2}{2M_\psi^2 + M_\psi^2 - t - 2W^2} \\ &= \frac{t - M_\psi^2}{2M_\psi^2 + M_\psi^2 - t - 2W^2} \\ &= \frac{t - M_\psi^2}{2M_\psi^2 + M_\psi^2 - t - 2W^2} \\ &= \frac{t - M_\psi^2}{2M_\psi^2 + M_\psi^2 - t - 2W^2} \\ &= \frac{t - M_\psi^2}{2M_\psi^2 + M_\psi^2 - t - 2W^2} \\ &= \frac{t - M_\psi^2}{2M_\psi^2 + M_\psi^2 - t - 2W^2} \\ &= \frac{t - M_\psi^2}{2M_\psi^2 + M_\psi^2 - t - 2W^2} \\ &= \frac{t - M_\psi^2}{2M_\psi^2 + M_\psi^2 - t - 2W^2} \\ &= \frac{t - M_\psi^2}{2M_\psi^2 + M_\psi^2 - t - 2W^2} \\ &= \frac{t - M_\psi^2}{2M_\psi^2 + M_\psi^2 - t - 2W^2} \\ &= \frac{t - M_\psi^2}{2M_\psi^2 + M_\psi^2 + M_\psi^2 - t - 2W^2} \\ &= \frac{t - M_\psi^2}{2M_\psi^2 + M_\psi^2 + M_\psi^2 - t -$$

P. Sun, X-B Tong, F. Yuan, 2111.07034, 2103.12047; see also 2101.02395, 1808.02163, 2305.06992, 2308.13006 B. Duran, Z. -E. Meziani, S. Joosten, Nature 615, 813 (2023) 2

3

 $t \mid [\text{GeV}^2]$

8

- 3D structure of nucleon (gravitation form factors & model dependence)
- Require heavy flavor reconstruction: detect Positron & Electron from heavy quarkonium decay; approaching near-threshold: slow quarkonium need more luminosity.

• Theorists usually ask for very low W or large-|t/ or high-Q²

Xu CAO, 24-28 Jun. 2024

0.5

W Resolution generated by detector group: • Coverage of bigger-|t|

IMP

Meson Structure

- "Spectator" neutron and Λ move very close to the initial p-beam: far-forward detectors
- Pion FF and SF require ZDC for neutron detection
- Kaon FF and SF need all detectors in far-forward region for Λ neutral & charged decay

29

Xu CAO, 24-28 Jun. 2024

Meson Structure

 σ (black), σ_{1} (red), σ_{2} (blue)

- In hard scattering regime, QCD scaling predicts $\sigma_L \propto Q^{-6}$, $\sigma_T \propto Q^{-8}$
- 100% uncertainty in R = σ_T / σ_L from model subtraction
- 2.5% point-to-point syst. uncertainty 12% scaling syst. uncertainty

Weizki (24-28 Jun. 2024

30

30/34

• RAPGAP generator, reasonable agreement with IMParton over a board range

31

Xu CAO, 24-28 Jun. 2024

Meson Structure

- π^+ -DVCS through Sullivan process
 - (J. M. Morgado Chávez et al., Phys.Rev.Lett. 128 (2022) 202501)

 $e^{-}(l')$

 $e^{-}(l)$

 $\gamma ^{\ast }\left(q\right)$

 $\gamma~(q')$

Meson Structure

- π^+ -DVCS through Sullivan process (filtered by detector at EicC)
- Over eff. ~ 20.0%

Summary

- Fruitful exclusive measurements are expected at the EicC. Selected topics are present:
- Proton/Pion DVCS: GPD
- Heavy flavor: GFF
- Pion Form Factor & SF

• A lot of efforts from detector group

- reconstruction efficiency and resolution of detector
- Far forward

Not cover here:

- TCS, DVMP, TDA
- Inclusive: TMD

• Theoretical issue: Inverse CFF to GPD

Special Thanks to PARTONS, Gepard, Simonetta, Pawel

Current Design for EicC Far-Forward (FF) Region

IMP

Current Design for EicC Far-Forward (FF) Region

Endcap Dipole Tracker (EDT):

 Detect charged particles and photons with 15mr < θ < 60mr around ion beam

Off Momentum Detector (OMD):

 Detect positive charged fragments (spectators) with 0.4 < p/p_{beam} < 0.8 **Roman Pot Station:**

- Located inside the ion beam pipe
- Positive Charged particle with E ~ E_{beam}
- 5 mr θ < 16 mr around ion beam

Zero degree calorimeter (ZDC):

 Neutrons and photons with θ < 15 mr around ion beam

36

Weizki kiAro 24-28 Jun. 2024

IMP

3D hadron imaging at the EicC

36/34

Neutron Detection for Pion FF and SI

- Main detector for neutron is ZDC:
 - 15 mrad acceptance around the ion beam
 - Nearly 100% accept rate for neutrons of interest
 - Energy resolution : 1.9% + 48.5%/sqrt(E [GeV])
 - Position resolution : 2.4 mr /sqrt(E [GeV])

Accept/Throw Ratio for 15 GeV neutron

IMP? **A Detection for Kion FF and SF (Neutral Channel)**

- $\Lambda \rightarrow \pi^0 n$ with 36% branching ratio
- Neutrons only detected by ZDC (15 mr ٠ acceptance)
- Photons can be detected by ZDC, EDT-ECal and EMCal on central detector ion endcap

EDT ECal (20 60 mr)

Weizki kiAro 24-28 Jun. 2024

3D hadron imaging at the EicC

38

A Detection for Kion FF and SF (Charged Channel)

- $\Lambda \rightarrow \pi^- p$ with 64% branching ratio
- π^- can only be detected by EDT (16 60 mr)
- Proton will be detected by EDT, Roman pots (~5-16mrad) as well as OMD
- EDT resolution: ~0.6% for p, 0.2mr for θ
- RP resolution: ~6.0% for p, 1.2mr for θ

EDT trackers

3D hadron imaging at the EicC

Oll-momentggn

- Exclusive Heavy Quarkonium Production probes several interesting topics
- e.g. pentaquarks, cusps, Charmonium-nucleon interaction, Gravitational Form Factors ... X. Wang, X. C *et al.*, 2311.07008, EPJC (2024)

 Optimization the efficiency and resolution of detector will helpful for approaching close to the threshold region W<5.0 GeV

Xu CAO, 24-28 Jun. 2024

arXiv:2102.09222

Double-Spin-Asymmetry (DSA) $A_{LL} \propto \frac{g_1}{F_1}$

Xu CAO, 24-28 Jun. 2024

arXiv:2103.10276

Flavored Helicity PDF@EicC: reweighting Hessian PDF sets by ePump

Xu CAO, 24-28 Jun. 2024

arXiv:2102.09222 SIDIS and TMD@EicC

 $Q^2 > 1 \text{ GeV}^2$, W > 5 GeV, W' > 2 GeV, 0.3 < z < 0.7

arXiv:2208.14620 SIDIS and TMD@EicC $Q^2 > 1 \text{ GeV}^2$, W > 5 GeV, W' > 2 GeV, 0.3 < z < 0.7 $A_{UT}^{\sin(\phi_h - \phi_S)}$ $\delta \equiv |P_{h\perp}|/(zQ)$ 10^{2} proton data ($\delta < 0.3$) neutron data ($\delta < 0.3$) ٩. $\delta > 0.3$ data $P_{h\perp}(\text{GeV})$ $Q^2 \left({
m GeV}^2
ight)$ • 10^{0} 0.0 10^{-2} 10^{-1} 10^{0} 0.3 0.40.50.6 0.7x \boldsymbol{z}

Xu CAO, 24-28 Jun. 2024

arXiv:2208.14620 The precision of extractions of Sivers functions @ EicC

Xu CAO, 24-28 Jun. 2024

- 3D structure of nucleon (TDA)
- u-channel meson production (borrowed from Bill Wenliang@WM&JLab)

Lumi. is OK, but 15 (VS. 4.5)mRad acceptance for 2γ from π^0 other mesons: reduce the dead zone near the beamline

Xu CAO, 24-28 Jun. 2024

IMP

Deeply Virtual Compton Scattering (DVCS)

• From 1D to 3D structure of proton & atom, and vice versa:

- GPD: General Parton Distribution
- DVCS: Deeply Virtual Compton Scattering

 $\tilde{E} : \underset{p}{\swarrow} \underset{p'}{\swarrow} \underset{p'}{\swarrow} \underset{p'}{\swarrow} \underset{p'}{\swarrow} \underset{p'}{\swarrow} \underset{p'}{\swarrow} \underset{p'}{\swarrow} \underset{p'}{\rightthreetimes} \underset{p'}{$ }

≻Rept. Prog. Phys. 76 (2013) 066202

Projection Bins of DVCS@EicC

3D hadron imaging at the EicC

1

10-1

-t (GeV²)

Reweighting replicas @ PARTONS NN

 Given an PARTONS NN ensemble one can evaluate any quantity or experimental observable O[f] depending on the CFFs by computing O[f] for each of the replicas, and averaging the results: NNPDF: Nucl.Phys.B849:112,2011 (arxiv: 1012.0836)

$$\langle \mathcal{O} \rangle = \int \mathcal{O}[f] \mathcal{P}(f) Df = \frac{1}{N} \sum_{k=1}^{N} \mathcal{O}[f_k] .$$

$$(Pseudo-)data n: \chi^2(y, f) = \sum_{i,j=1}^{n} (y_i - y_i[f])\sigma_{ij}^{-1}(y_j - y_j[f]) .$$

$$w_k = \frac{(\chi_k^2)^{\frac{1}{2}(n-1)}e^{-\frac{1}{2}\chi_k^2}}{\frac{1}{N}\sum_{k=1}^{N}(\chi_k^2)^{\frac{1}{2}(n-1)}e^{-\frac{1}{2}\chi_k^2}} .$$

$$\langle \mathcal{O} \rangle_{\text{new}} = \int \mathcal{O}[f] \mathcal{P}_{\text{new}}(f) Df = \frac{1}{N} \sum_{k=1}^{N} w_k \mathcal{O}[f_k] .$$

Reweighting replicas @ PARTONS NN

 Given an PARTONS NN ensemble one can evaluate any quantity or experimental observable O[f] depending on the CFFs by computing O[f] for each of the replicas, and averaging the results: NNPDF: Nucl.Phys.B849:112,2011 (arxiv: 1012.0836)

$$\langle \mathcal{O} \rangle_{\text{new}} = \int \mathcal{O}[f] \mathcal{P}_{\text{new}}(f) Df = \frac{1}{N} \sum_{k=1}^{N} w_k \mathcal{O}[f_k].$$

We can quantify this loss of efficiency by using the Shannon entropy to compute the effective number of replicas left after reweighting:

$$N_{\text{eff}} \equiv \exp\left\{\frac{1}{N}\sum_{k=1}^{N} w_k \ln(N/w_k)\right\}.$$

- If N_{eff} becomes too low, the reweighting procedure will no longer be reliable,
 1. either because the new data contain a lot of information on the PDFs, necessitating a full refitting with more replicas. (pseudo-data: integrated luminosity)
- 2. or because the new data are inconsistent with the old. (pseudo-data: smeared)

- Detector efficiency
- coutercy of detector group

Update of DVCS

Detector resolution

• coutercy of detector group

Exclusive Process

- Detector efficiency
- coutercy of detector group

Ultimate Goal: impact of EicC on GPD of proton

• Flavor seperation? CFF , , , , & , , ,

$$A_{LU,I}^{\sin\phi} \propto \operatorname{Im} \left[F_{1}\mathcal{H} + \xi(F_{1} + F_{2})\widetilde{\mathcal{H}} - \frac{t}{4m^{2}}F_{2}\mathcal{E} \right],$$

$$A_{UL,I}^{\sin\phi} \propto \operatorname{Im} \left[\xi(F_{1} + F_{2})(\mathcal{H} + \frac{\xi}{1 + \xi}\mathcal{E}) + F_{1}\widetilde{\mathcal{H}} - \xi(\frac{\xi}{1 + \xi}F_{1} + \frac{t}{4M^{2}}F_{2})\widetilde{\mathcal{E}} \right]$$

$$A_{LL,I}^{\cos\phi} \propto \operatorname{Re} \left[\xi(F_{1} + F_{2})(\mathcal{H} + \frac{\xi}{1 + \xi}\mathcal{E}) + F_{1}\widetilde{\mathcal{H}} - \xi(\frac{\xi}{1 + \xi}F_{1} + \frac{t}{4M^{2}}F_{2})\widetilde{\mathcal{E}} \right]$$

$$A_{UT,I}^{\sin(\phi-\phi_{s})\cos\phi} \propto \operatorname{Im} \left[-\frac{t}{4M^{2}}(F_{2}\mathcal{H} - F_{1}\mathcal{E}) + \xi^{2}(F_{1} + \frac{t}{4M^{2}}F_{2})(\mathcal{H} + \mathcal{E}) - \xi^{2}(F_{1} + F_{2})(\widetilde{\mathcal{H}} + \frac{t}{4M^{2}}\widetilde{\mathcal{E}}) \right],$$

$$A_{UT,I}^{\cos(\phi-\phi_{s})\sin\phi} \propto \operatorname{Im} \left(F_{2}\widetilde{\mathcal{H}} - F_{1}\xi\widetilde{\mathcal{E}} \right),$$

$$A_{LT,I}^{\cos(\phi-\phi_{s})\cos\phi} \propto \operatorname{Re} \left(F_{2}\mathcal{H} - F_{1}\mathcal{E} \right),$$

IMP

Ultimate Goal: impact of EicC on GPD of neutron

Deeply Virtual Compton Scattering (DVCS)

- Proejction Bins of DVCS@EicC: Assume |t|>0.01, ∆t>0.02
- ●1. Only several projection points with |t|<0.01
- •2. Magnitude of asymmetry is tiny with |t| < 0.01, so the relative errors are usually above 50% there
- A big challenge for the detector design for |t|~0.002 & ∆t~0.002: detector simulation? the first t-bin in 1.63< Q²<2.64 GeV² absolute asymmetry: GK model for illustration only

Xu CAO, 24-28 Jun. 2024

- 3D structure of nucleon (TDA)
- u-channel meson production (Bill Wenliang@WM&JLab)
- Pseudo-rapidity, azimuthal angle coverage and pt coverage?
- outgoing scattered e': $0 < \eta < 3$; recoiled proton: $1.5 < \eta < 4$; π^0 : $0 < \eta < 3.69$;
- Note: $\eta = 3.69$ is the far-forward region
- Momentum/Energy resolution?
- Energy resolution $(\sigma(\Delta E / E))$ in the far forward region and forward endcap: 0.02 + 0.077 \sqrt{E} for photon. minimum requirement 0.35* $\sqrt{0.35}$
- PID requirements? Note (η for glue, see 2111.08965):
- Any requirement on far-forward detector?
- Excellent forward γ/neutron separation
- Reconstruct photon energy.
- The forward acceptance: \pm 7mrad, > \pm 5 mrad

GPD physics

- 3D structure of nucleon (GPDs) @ EicC
- Charged current electroproduction of a charmed meson (PRD104, 094002)
- Courtesy: B. Pire, L. Szymanowski, J. Wagner
- The rates are quite small
- missing mass technique: the neutrino at final states.
- Ds reconstruction: difficult

- The exclusives of EicC (DVCS, DEMP...):
- Impact of A_{UT} is noticeable to imaginary CFF- \mathcal{E} (KK);
- Present data constraining power in sea CFF- \mathcal{E} :

~ 0.01 fb⁻¹ (PARTONS-NN);

- Future:
- Local extracting of CFF
- Feed the numerical framework and models

• ... GPD impact study of electron-ion collider

• From 1D to 3D picture of hadron & atom:

- TMD: Transverse Momentum Distribution (k \perp & longi. Momentum)
- How is proton's spin correlated with the motion of the quarks/gluons?
- GPD: General Parton Distribution (trans. spatial position b^{\perp} & longi. Momentum)
- How does proton's spin influence the spatial distribution of partons?
- TDA: nucleon-to-photon & nucleon-to-meson Transition Distribution Amplitudes
- Origin of the Proton spin

$$J_{q,g} = \frac{1}{2} \int_{-1}^{1} \mathrm{d}x \, x \left[H_{q,g}(x,\xi,t=0) + E_{q,g}(x,\xi,t=0) \right]$$

- Origin of the Proton mass
- Quark OAM? $\mathcal{F}(\xi, t, Q^2) = \sum_{q=u,d,s,\cdots} e_q^2 \int_{-1}^1 \mathrm{d}x \, \left[\frac{1}{\xi x i\epsilon} \mp \frac{1}{\xi + x i\epsilon} \right] F^q(x,\xi,t)$

EicC Central Detector

