New developments on proton Generalized Parton Distributions from lattice QCD

Martha Constantinou

\mathbb{T} Temple University

3D Structure of the Nucleon via Generalized Parton Distributions
June 26, 2024

Outline

Collaborators:

Approaches to access information on GPDs from lattice QCD

* Definition of light-cone GPDs vs Euclidean lattice definition (quasi GPDs)

New Lorentz covariant approach to access x-dependence of GPDs

* Twist-3 GPDs

Future extensions - Other developments

Twist-2

S. Bhattacharya, K. Cichy, J. Dodson, X. Gao, A. Metz, J. Miller, S. Mukherjee, P. Petreczky, A. Scapellato, F. Steffens, Y. Zhao

PHYSICAL REVIEW D 106, 114512 (2022)

Generalized parton distributions from lattice QCD with asymmetric momentum transfer: Unpolarized quarks

Shohini Bhattacharya,$_{,}^{1, *}$ Krzysztof Cichy, ${ }^{2}$ Martha Constantinou ${ }^{3},{ }^{3, \dagger}$ Jack Dodson, ${ }^{3}$ Xiang Gao ${ }_{4}^{4}$ Andreas Metz, ${ }^{3}$ Swagato Mukherjee \oplus, ${ }^{1}$ Aurora Scapellato, ${ }^{3}$ Fernanda Steffens, ${ }^{5}$ and Yong Zhao ${ }^{4}$

PHYSICAL REVIEW D 109, 034508 (2024)

Generalized parton distributions from lattice QCD with asymmetric momentum transfer: Axial-vector case

Shohini Bhattacharya $\oplus,{ }^{1, *}$ Krzysztof Cichy, ${ }^{2}$ Martha Constantinou $\oplus,{ }_{4}^{2, \dagger}$ Jack Dodson, ${ }^{2}$ Xiang Gao, ${ }_{5}^{3}$ Andreas Metz $\odot{ }^{2}{ }^{2}$ Joshua Miller, ${ }^{2, \ldots}$ Swagato Mukherjee $\odot{ }^{4}$ Peter Petreczky ${ }^{4}{ }^{4}$ Fernanda Steffens, ${ }^{5}$ and Yong Zhao ${ }^{3}$

PHYSICAL REVIEW D 108, 054501 (2023)

Chiral-even axial twist-3 GPDs of the proton from lattice QCD

Shohini Bhattacharya $\oplus,^{1,2}$ Krzysztof Cichy, ${ }^{3}$ Martha Constantinou $\odot,{ }^{1}$ Jack Dodson, ${ }^{1}$ Andreas Metz $\oplus,{ }^{1}$ Aurora Scapellato, ${ }^{1}$ and Fernanda Steffens ${ }^{4}$

Nucleon Characterization

Wigner distributions

* provide multi-dim images of the parton distributions in phase space
\star encode both TMDs and GPDs in a unified picture

Nucleon Characterization

Wigner distributions

* provide multi-dim images of the parton distributions in phase space
\star encode both TMDs and GPDs in a unified picture \rightarrow crucial in mapping hadron tomoaraphv

[H. Abramowicz et al., whitepaper for NSAC LRP, 2007]

Nucleon Characterization

Wigner distributions

* provide multi-dim images of the parton distributions in phase space
\star encode both TMDs and GPDs in a unified picture \rightarrow crucial in mapping hadron tomoaraphv

[H. Abramowicz et al., whitepaper for NSAC LRP, 2007]

GPDs

* "Parent" functions for PDFs, FFs, GFFs
* Multi-dimensional objects
* Provide correlation between transverse position \& longitudinal momentum of the partons in the hadron

Nucleon Characterization

Wigner distributions

* provide multi-dim images of the parton distributions in phase space
\star encode both TMDs and GPDs in a unified picture \rightarrow
crucial in mapping hadron tomoaraphv

* Information on the hadron's mechanical properties (OAM, pressure, etc.)
[H. Abramowicz et al., whitepaper for NSAC LRP, 2007]

GPDs

* "Parent" functions for PDFs, FFs, GFFs
* Multi-dimensional objects
* Provide correlation between transverse position \& longitudinal momentum of the partons in the hadron

Experimental processes for GPDs

\star GPDs may be accessed via exclusive reactions (DVCS, DVMP) [X.-D. Ji, PRD 55, 7114 (1997)]

DVMP

\star exclusive pion-nucleon diffractive production of a γ pair of high p_{\perp}
[J. Qiu et al, arXiv:2205.07846]

Experimental processes for GPDs

* GPDs may be accessed via exclusive reactions (DVCS, DVMP) [X.-D. Ji, PRD 55, 7114 (1997)]

* exclusive pion-nucleon diffractive production of a γ pair of high p_{\perp}
[J. Qiu et al, arXiv:2205.07846]

GPDs are not well-constrained experimentally:

- x-dependence extraction is not direct. DVCS amplitude: $\mathscr{H}=\int_{-1}^{+1} \frac{H(x, \xi, t)}{x-\xi+i \epsilon} d x$
(SDHEP [J. Qiu et al, arXiv:2205.07846] gives access to x)
- independent measurements to disentangle GPDs
- GPDs phenomenology more complicated than PDFs (multi-dimensionality)
- and more challenges ...

Experimental processes for GPDs

\star GPDs may be accessed via exclusive reactions (DVCS, DVMP) [X.-D. Ji, PRD 55, 7114 (1997)]

DVMP

* exclusive pion-nucleon diffractive production of a γ pair of high p_{\perp}
[J. Qiu et al, arXiv:2205.07846]

GPDs are not well-constrained experimentally:

- x-dependence extraction is not direct. DVCS amplitude: $\mathscr{H}=\int_{-1}^{+1} \frac{H(x, \xi, t)}{x-\xi+i \epsilon} d x$
(SDHEP [J. Qiu et al, arXiv:2205.07846] gives access to x)
- independent measurements to disentangle GPDs
- GPDs phenomenology more complicated than PDFs (multi-dimensionality)
- and more challenges ...

Essential to complement the knowledge on GPD from lattice QCD

Hadron structure at core of nuclear physics

Tomographic imaging of proton has central role in the science program of EIC GPDs, FFs, GFFs, TMDs, ...
[R. Abdul Khalek et al.,
EIC Yellow Report 2021, arXiv:2103.05419]

Hadron structure at core of nuclear physics

\star Tomographic imaging of proton has central role in the science program of EIC
GPDs, FFs, GFFs, TMDs, ...
[R. Abdul Khalek et al.,
EIC Yellow Report 2021, arXiv:2103.05419]

Hadron structure at core of nuclear physics

\star Tomographic imaging of proton has central role in the science program of EIC
GPDs, FFs, GFFs, TMDs, ...
[R. Abdul Khalek et al.,
EIC Yellow Report 2021, arXiv:2103.05419]

Award Number:
DE-SC0023646

Lattice data may be incorporated in global analysis of experimental data and may influence parametrization of t and ξ dependence

Advances of lattice QCD are timely

Twist-classification of PDFs, GPDs, TMDs

\star Twist: specifies the order in $1 / Q$ at which the function enters factorization formula for a given observable

$$
f_{i}=f_{i}^{(0)}+\frac{f_{i}^{(1)}}{Q}+\frac{f_{i}^{(2)}}{Q^{2}} \cdots
$$

Twist-2 $\left(f_{i}^{(0)}\right)$

(Selected) Twist-3 $\left(f_{i}^{(1)}\right)$

0 Nucleon	γ^{j}	$\gamma^{j} \gamma^{5}$	$\sigma^{j k}$
U	$\begin{aligned} & G_{1}, G_{2} \\ & G_{3}, G_{4} \end{aligned}$		
L		$\begin{aligned} & \widetilde{G_{1}}, \widetilde{G}_{2} \\ & \widetilde{G}_{3}, \widetilde{G}_{4} \end{aligned}$	
T			$\begin{aligned} & H_{2}^{\prime}(x, \xi, t) \\ & E_{2}^{\prime}(x, \xi, t) \end{aligned}$

Twist-classification of PDFs, GPDs, TMDs

$\begin{aligned} & \text { * Twist: specifies the order in } 1 / Q \text { at which the function } \\ & \text { enters factorization formula for a given observable }\end{aligned} \quad f_{i}=f_{i}^{(0)}+\frac{f_{i}^{(1)}}{Q}+\frac{f_{i}^{(2)}}{Q^{2}} \cdots$

(Selected) Twist-3 $\left(f_{i}^{(1)}\right)$

	γ^{j}	$\gamma^{j} \gamma^{5}$	$\sigma^{j k}$
	G_{1}, G_{2}		
U	G_{3}, G_{4}		
L		$\begin{aligned} & \widetilde{G}_{1}, \widetilde{G}_{2} \\ & \widetilde{G}_{3}, \widetilde{G}_{4} \end{aligned}$	
			$H_{2}^{\prime}(x, \xi, t)$
T			$E_{2}^{\prime}(x, \xi, t)$

* Twist-2: probabilistic densities - a wealth of information exists (mostly on PDFs)

夫 Twist-3: poorly known, but very important:

- as sizable as twist-2
- contain information about quark-gluon correlations inside hadrons
- appear in QCD factorization theorems for various observables (e.g. g_{2})
- certain twist-3 PDFs are related to the TMDs
- physical interpretation (e.g. average force on partons inside hadron)

Twist-classification of PDFs, GPDs, TMDs

$\begin{aligned} & \text { twist: specifies the order in } 1 / Q \text { at which the function } \\ & \text { enters factorization formula for a given observable }\end{aligned} \quad f_{i}=f_{i}^{(0)}+\frac{f_{i}^{(1)}}{Q}+\frac{f_{i}^{(2)}}{Q^{2}} \cdots$

$$
f_{i}=f_{i}^{(0)}+\frac{f_{i}^{(1)}}{Q}+\frac{f_{i}^{(2)}}{Q^{2}} \cdots
$$

(Selected) Twist-3 $\left(f_{i}^{(1)}\right)$

0	γ^{j}	$\gamma^{j} \gamma^{5}$	$\sigma^{j k}$
U	$\begin{aligned} & G_{1}, G_{2} \\ & G_{2}, G_{1} \end{aligned}$		
L		$\frac{\widetilde{G}_{1}}{\widetilde{G}_{3}, \widetilde{G}_{2}}, \widetilde{G}_{4}$	
T			$\begin{aligned} & H_{2}^{\prime}(x, \xi, t) \\ & E_{2}^{\prime}(x, \xi, t) \end{aligned}$

* Twist-2: probabilistic densities - a wealth of information exists (mostly on PDFs)
* Twist-3: poorly known, but very important:
- as sizable as twist-2
- contain information about quark-gluon correlations inside hadrons
- appear in QCD factorization theorems for various observables (e.g. g_{2})
- certain twist-3 PDFs are related to the TMDs
- physical interpretation (e.g. average force on partons inside hadron)

While twist-3 $f_{i}^{(1)}$ share some similarities with twist-2 $f_{i}^{(0)}$ in their extraction, there are several challenges both experimentally and theoretically

Accessing information on GPDs

$$
\begin{aligned}
& \text { t Mellin moments } \quad \bar{q}\left(-\frac{1}{2} z\right) \gamma^{\sigma} W\left[-\frac{1}{2} z, \frac{1}{2} z\right] q\left(\frac{1}{2} z\right)=\sum_{n=0}^{\infty} \frac{1}{n!} z_{\alpha_{1}} \ldots z_{\alpha_{n}} \frac{\left[\bar{q} \sigma^{\leftrightarrow} \stackrel{\leftrightarrow}{D^{\alpha_{1}}} \ldots \stackrel{\leftrightarrow}{D}^{\alpha_{n}} q\right]}{\text { (locall OPE expansion) }} \begin{array}{l}
\text { local operators } \\
\left.\left.\left\langle N\left(P^{\prime}\right)\right| \mathcal{O}_{V}^{\mu \mu_{1} \cdots \mu_{n-1}}|N(P)\rangle \sim \sum_{\substack{i=0 \\
\text { even }}}^{n-1}\left\{\gamma^{\{\mu} \Delta^{\mu_{1}} \ldots \Delta^{\mu_{i}} \bar{P}^{\mu_{i+1}} \cdots \bar{P}^{\left.\mu_{n-1}\right\}} A_{n, i}(t)-i \frac{\Delta_{\alpha} \sigma^{\alpha \mu \mu}}{2 m_{N}} \Delta^{\mu_{1}} \cdots \Delta^{\mu_{i}} \bar{P}^{\mu_{i+1}} \cdots \bar{P}^{\left.\mu_{n-1}\right\}} B_{n, i}(t)\right\}+\left.\frac{\Delta^{\mu} \Delta^{\mu_{1}} \ldots \Delta^{\mu_{n-1}}}{m_{N}} C_{n, 0}\left(\Delta^{2}\right)\right|_{n \text { even }}\right)\right\}
\end{array}
\end{aligned}
$$

Accessing information on GPDs

* Mellin moments (local OPE expansion)

$$
\bar{q}\left(-\frac{1}{2} z\right) \gamma^{\sigma} W\left[-\frac{1}{2} z, \frac{1}{2} z\right] q\left(\frac{1}{2} z\right)=\sum_{n=0}^{\infty} \frac{1}{n!} z_{\alpha_{1}} \ldots z_{\alpha_{n}} \frac{\left[\bar{q} \gamma^{\sigma} \stackrel{\leftrightarrow}{D^{\alpha_{1}}} \ldots \stackrel{\leftrightarrow}{D^{\alpha_{n}}} q\right]}{\text { local operators }}
$$

$\left.\left.\left.\left\langle N\left(P^{\prime}\right)\right| \mathcal{O}_{V}^{\mu \mu_{1} \cdots \mu_{n-1}}|N(P)\rangle \sim \sum_{\substack{i=0 \\ \text { even }}}^{n-1}\left\{\gamma^{\{\mu} \Delta^{\mu_{1}} \cdots \Delta^{\mu_{i}} \bar{P}^{\mu_{i+1}} \cdots \bar{P}^{\left.\mu_{n-1}\right\}}\right\} A_{n, i}(t)-i \frac{\Delta_{\alpha} \sigma^{\alpha \mu \mu}}{2 m_{N}} \Delta^{\mu_{1}} \cdots \Delta^{\mu_{i}} \bar{P}^{\mu_{i+1}} \cdots \bar{P}^{\left.\mu_{n-1}\right\}} B_{n_{n, i}(t)}\right\}+\left.\frac{\Delta^{\mu} \Delta^{\mu_{1}} \ldots \Delta^{\mu_{n-1}}}{m_{N}} C_{n, 0}\left(\Delta^{2}\right)\right|_{n \text { even }}\right)\right\}$

Wide -t range that comes at the cost of 1 (in the majority of cases)

Accessing information on GPDs

* Mellin moments (local OPE expansion)

$$
\bar{q}\left(-\frac{1}{2} z\right) \gamma^{\sigma} W\left[-\frac{1}{2} z, \frac{1}{2} z\right] q\left(\frac{1}{2} z\right)=\sum_{n=0}^{\infty} \frac{1}{n!} z_{\alpha_{1}} \ldots z_{\alpha_{n}} \frac{\left[\bar{q} \gamma^{\sigma} \stackrel{\leftrightarrow}{D^{\alpha_{1}}} \ldots \stackrel{\leftrightarrow}{D^{\alpha_{n}}} q\right]}{\text { local operators }}
$$

$\left.\left.\left.\left\langle N\left(P^{\prime}\right)\right| \mathcal{O}_{V}^{\mu \mu_{1} \cdots \mu_{n-1}}|N(P)\rangle \sim \sum_{\substack{i=0 \\ \text { even }}}^{n-1}\left\{\gamma^{\{\mu} \Delta^{\mu_{1}} \cdots \Delta^{\mu_{i}} \bar{P}^{\mu_{i+1}} \cdots \bar{P}^{\left.\mu_{n-1}\right\}}\right\} A_{n, i}(t)-i \frac{\Delta_{\alpha} \sigma^{\alpha \alpha \mu}}{2 m_{N}} \Delta^{\mu_{1}} \cdots \Delta^{\mu_{i}} \bar{P}^{\mu_{i+1}} \cdots \bar{P}^{\left.\mu_{n-1}\right\}} B_{n_{n, i}(t)}\right\}+\left.\frac{\Delta^{\mu} \Delta^{\mu_{1}} \ldots \Delta^{\mu_{n-1}}}{m_{N}} C_{n, 0}\left(\Delta^{2}\right)\right|_{n \text { even }}\right)\right\}$

Wide -t range that comes at the cost of 1
(in the majority of cases)

Matrix elements of non-local operators (quasi-GPDs, pseudo-GPDs, ...)

$$
\left\langle N\left(P_{f}\right)\right| \bar{\Psi}(z) \underset{\text { Wilson line }}{\frac{\mathscr{W}(z, 0) \Psi(0)}{}}\left|N\left(P_{i}\right)\right\rangle_{\mu}
$$

$$
\begin{aligned}
& \left\langle N\left(P^{\prime}\right)\right| O_{V}^{\mu}(x)|N(P)\rangle=\bar{U}\left(P^{\prime}\right)\left\{\gamma^{\mu} H(x, \xi, t)+\frac{i \sigma^{\mu \nu} \Delta_{\nu}}{2 m_{N}} E(x, \xi, t)\right\} U(P)+\mathrm{ht}, \\
& \left\langle N\left(P^{\prime}\right)\right| O_{A}^{\mu}(x)|N(P)\rangle=\bar{U}\left(P^{\prime}\right)\left\{\gamma^{\mu} \gamma_{5} \widetilde{H}(x, \xi, t)+\frac{\gamma_{5} \Delta^{\mu}}{2 m_{N}} \widetilde{E}(x, \xi, t)\right\} U(P)+\mathrm{ht}, \\
& \left\langle N\left(P^{\prime}\right)\right| O_{T}^{\mu \nu}(x)|N(P)\rangle=\bar{U}\left(P^{\prime}\right)\left\{i \sigma^{\mu \nu} H_{T}(x, \xi, t)+\frac{\gamma^{\mu \mu} \Delta^{\nu]}}{2 m_{N}} E_{T}(x, \xi, t)+\frac{\bar{P}^{[\mu} \Delta^{\nu]}}{m_{N}^{2}} \widetilde{H}_{T}(x, \xi, t)+\frac{\gamma^{[\mu} \bar{P}^{\nu]}}{m_{N}} \widetilde{E}_{T}(x, \xi, t)\right\} U(P)+\mathrm{ht}
\end{aligned}
$$

GPDs

Through non-local matrix elements of fast-moving hadrons

M. Constantinou, June 26, 2024

Access of PDFs/GPDs on a Euclidean Lattice

Matrix elements of momentum-boosted hadrons coupled to nonlocal (equal-time) operators

* Connection to light-cone GPDs through LaMET [X. Ji, PRL 110 (2013) 262002], SDF [A. Radyushkin, PRD 96, 034025 (2017)]

$$
\tilde{q}_{\Gamma}^{\operatorname{GPD}}\left(x, t, \xi, P_{3}, \mu\right)=\int \frac{d z}{4 \pi} e^{-i x P_{3} z}\left\langle N\left(P_{f}\right)\right| \bar{\Psi}(z) \Gamma \mathscr{W}(z, 0) \Psi(0)\left|N\left(P_{i}\right)\right\rangle_{\mu}
$$

$$
\begin{gathered}
\Delta=P_{f}-P_{i} \\
t=\Delta^{2}=-Q^{2} \\
\xi=\frac{Q_{3}}{2 P_{3}}
\end{gathered}
$$

Access of PDFs/GPDs on a Euclidean Lattice

Matrix elements of momentum-boosted hadrons coupled to nonlocal (equal-time) operators

* Connection to light-cone GPDs through LaMET [X. Ji, PRL 110 (2013) 262002], SDF [A. Radyushkin, PRD 96, 034025 (2017)]

$$
\Delta=P_{f}-P_{i}
$$

$$
\tilde{q}_{\Gamma}^{\mathrm{GPD}}\left(x, t, \xi, P_{3}, \mu\right)=\int \frac{d z}{4 \pi} e^{-i x P_{3} z} \quad \underset{\text { Accessing - } \text { dependence: }}{\left\langle N\left(P_{f}\right)\right| \bar{\Psi}(z) \Gamma \mathscr{W}(z, 0) \Psi(0)\left|N\left(P_{i}\right)\right\rangle_{\mu}} \begin{aligned}
& \text { Computationally intensive }
\end{aligned}
$$

$t=\Delta^{2}=-Q^{2}$
$\xi=\frac{Q_{3}}{2 P_{3}}$

Access of PDFs/GPDs on a Euclidean Lattice

Matrix elements of momentum-boosted hadrons coupled to nonlocal (equal-time) operators

* Connection to light-cone GPDs through LaMET [X. Ji, PRL 110 (2013) 262002], SDF [A. Radyushkin, PRD 96, 034025 (2017)]

$$
\tilde{q}_{\Gamma}^{\operatorname{GPD}}\left(x, t, \xi, P_{3}, \mu\right)=\int \frac{d z}{4 \pi} e^{-i x P_{3} z} \quad\left\langle N\left(P_{f}\right)\right| \bar{\Psi}(z) \Gamma \mathscr{W}(z, 0) \Psi(0)\left|N\left(P_{i}\right)\right\rangle_{\mu}
$$

Accessing -t dependence:

$$
\begin{gathered}
\Delta=P_{f}-P_{i} \\
t=\Delta^{2}=-Q^{2} \\
\xi=\frac{Q_{3}}{2 P_{3}}
\end{gathered}
$$

Computationally intensive

New parametrization of GPDs

PHYSICAL REVIEW D 106, 114512 (2022)

Generalized parton distributions from lattice QCD with asymmetric momentum transfer: Unpolarized quarks

Shohini Bhattacharya©, ${ }^{1, *}$ Krzysztof Cichy, ${ }^{2}$ Martha Constantinou $\odot{ }^{3, \dagger}$ Jack Dodson, ${ }^{3}$ Xiang Gao, ${ }^{4}$ Andreas Metz, ${ }^{3}$ Swagato Mukherjee ${ }^{\bullet}$, ${ }^{1}$ Aurora Scapellato, ${ }^{3}$ Fernanda Steffens, ${ }^{5}$ and Yong Zhao ${ }^{4}$

PHYSICAL REVIEW D 109, 034508 (2024)

Generalized parton distributions from lattice QCD with asymmetric momentum transfer: Axial-vector case

Shohini Bhattacharya $\odot,{ }^{1, *}$ Krzysztof Cichy, ${ }^{2}$ Martha Constantinou $\odot{ }^{2, \dagger}$ Jack Dodson, ${ }^{2}$ Xiang Gao, ${ }_{5}{ }^{3}$ Andreas Metz $\odot{ }^{4}{ }^{2}$
Joshua Miller, ${ }^{2, \ddagger}$ Swagato Mukherjee $\odot,{ }^{4}$ Peter Petreczky $\oplus,{ }^{4}$ Fernanda Steffens, ${ }^{5}$ and Yong Zhao ${ }^{3}$

Theoretical setup

$\star \gamma^{+}$inspired parametrization is prohibitively expensive

$$
F^{\left[\gamma^{0}\right]}\left(x, \Delta ; \lambda, \lambda^{\prime} ; P^{3}\right)=\frac{1}{2 P^{0}} \bar{u}\left(p^{\prime}, \lambda^{\prime}\right)\left[\gamma^{0} H_{\mathrm{Q}(0)}\left(x, \xi, t ; P^{3}\right)+\frac{i \sigma^{0 \mu} \Delta_{\mu}}{2 M} E_{\mathrm{Q}(0)}\left(x, \xi, t ; P^{3}\right)\right] u(p, \lambda)
$$

Theoretical setup

γ^{+}inspired parametrization is prohibitively expensive

$$
F^{\left[\gamma^{0}\right]}\left(x, \Delta ; \lambda, \lambda^{\prime} ; P^{3}\right)=\frac{1}{2 P^{0}} \bar{u}\left(p^{\prime}, \lambda^{\prime}\right)\left[\gamma^{0} H_{\mathrm{Q}(0)}\left(x, \xi, t ; P^{3}\right)+\frac{i \sigma^{0 \mu} \Delta_{\mu}}{2 M} E_{\mathrm{Q}(0)}\left(x, \xi, t ; P^{3}\right)\right] u(p, \lambda)
$$

Theoretical setup

$\star \gamma^{+}$inspired parametrization is prohibitively expensive

$$
F^{\left[\gamma^{0}\right]}\left(x, \Delta ; \lambda, \lambda^{\prime} ; P^{3}\right)=\frac{1}{2 P^{0}} \bar{u}\left(p^{\prime}, \lambda^{\prime}\right)\left[\gamma^{0} H_{\mathrm{Q}(0)}\left(x, \xi, t ; P^{3}\right)+\frac{i \sigma^{0 \mu} \Delta_{\mu}}{2 M} E_{\mathrm{Q}(0)}\left(x, \xi, t ; P^{3}\right)\right] u(p, \lambda)
$$

太 Lorentz-invariant parametrization
$F_{\lambda, \lambda^{\prime}}^{\mu}=\bar{u}\left(p^{\prime}, \lambda^{\prime}\right)\left[\frac{P^{\mu}}{M} A_{1}+z^{\mu} M A_{2}+\frac{\Delta^{\mu}}{M} A_{3}+i \sigma^{\mu z} M A_{4}+\frac{i \sigma^{\mu \Delta}}{M} A_{5}+\frac{P^{\mu} i \sigma^{z \Delta}}{M} A_{6}+\frac{z^{\mu} i \sigma^{z \Delta}}{M} A_{7}+\frac{\Delta^{\mu} i \sigma^{z \Delta}}{M} A_{8}\right] u(p, \lambda)$

Goals

Extraction of standard GPDs using A_{i} obtained from any frame quasi-GPDs may be redefined (Lorentz covariant) inspired by light-cone

Theoretical setup

$\star \gamma^{+}$inspired parametrization is prohibitively expensive

$$
F^{\left[\gamma^{0}\right]}\left(x, \Delta ; \lambda, \lambda^{\prime} ; P^{3}\right)=\frac{1}{2 P^{0}} \bar{u}\left(p^{\prime}, \lambda^{\prime}\right)\left[\gamma^{0} H_{\mathrm{Q}(0)}\left(x, \xi, t ; P^{3}\right)+\frac{i \sigma^{0 \mu} \Delta_{\mu}}{2 M} E_{\mathrm{Q}(0)}\left(x, \xi, t ; P^{3}\right)\right] u(p, \lambda)
$$

太 Lorentz-invariant parametrization
$F_{\lambda, \lambda^{\prime}}^{\mu}=\bar{u}\left(p^{\prime}, \lambda^{\prime}\right)\left[\frac{P^{\mu}}{M} A_{1}+z^{\mu} M A_{2}+\frac{\Delta^{\mu}}{M} A_{3}+i \sigma^{\mu z} M A_{4}+\frac{i \sigma^{\mu \Delta}}{M} A_{5}+\frac{P^{\mu} i \sigma^{z \Delta}}{M} A_{6}+\frac{z^{\mu} i \sigma^{z \Delta}}{M} A_{7}+\frac{\Delta^{\mu} i \sigma^{z \Delta}}{M} A_{8}\right] u(p, \lambda)$

Goals

Extraction of standard GPDs using A_{i} obtained from any frame quasi-GPDs may be redefined (Lorentz covariant) inspired by light-cone
\Rightarrow Proof-of-concept calculation $(\xi=0)$:

- symmetric frame: $\quad \vec{p}_{f}^{s}=\vec{P}+\frac{\vec{Q}}{2}, \quad \vec{p}_{i}^{s}=\vec{P}-\frac{\vec{Q}}{2} \quad-t^{s}=\vec{Q}^{2}=0.69 \mathrm{GeV}^{2}$
- asymmetric frame: $\quad \vec{p}_{f}^{a}=\vec{P}, \quad \vec{p}_{i}^{a}=\vec{P}-\vec{Q} \quad t^{a}=-\vec{Q}^{2}+\left(E_{f}-E_{i}\right)^{2}=0.65 \mathrm{GeV}^{2}$

Theoretical setup

$\star \gamma^{+}$inspired parametrization is prohibitively expensive

$$
F^{\left[\gamma^{0}\right]}\left(x, \Delta ; \lambda, \lambda^{\prime} ; P^{3}\right)=\frac{1}{2 P^{0}} \bar{u}\left(p^{\prime}, \lambda^{\prime}\right)\left[\gamma^{0} H_{\mathrm{Q}(0)}\left(x, \xi, t ; P^{3}\right)+\frac{i \sigma^{0 \mu} \Delta_{\mu}}{2 M} E_{\mathrm{Q}(0)}\left(x, \xi, t ; P^{3}\right)\right] u(p, \lambda)
$$

太 Lorentz-invariant parametrization
$F_{\lambda, \lambda^{\prime}}^{\mu}=\bar{u}\left(p^{\prime}, \lambda^{\prime}\right)\left[\frac{P^{\mu}}{M} A_{1}+z^{\mu} M A_{2}+\frac{\Delta^{\mu}}{M} A_{3}+i \sigma^{\mu z} M A_{4}+\frac{i \sigma^{\mu \Delta}}{M} A_{5}+\frac{P^{\mu} i \sigma^{z \Delta}}{M} A_{6}+\frac{z^{\mu} i \sigma^{z \Delta}}{M} A_{7}+\frac{\Delta^{\mu} i \sigma^{z \Delta}}{M} A_{8}\right] u(p, \lambda)$

Goals

Extraction of standard GPDs using A_{i} obtained from any frame quasi-GPDs may be redefined (Lorentz covariant) inspired by light-cone
\Rightarrow Proof-of-concept calculation ($\xi=0$):

- symmetric frame: $\quad \vec{p}_{f}^{s}=\vec{P}+\frac{\vec{Q}}{2}, \quad \vec{p}_{i}^{s}=\vec{P}-\frac{\vec{Q}}{2}$
- asymmetric frame: $\quad \vec{p}_{f}^{a}=\vec{P}, \quad \vec{p}_{i}^{a}=\vec{P}-\vec{Q}$

Parameters of calculations

$\mathrm{Nf}=2+1+1$ twisted mass fermions with a clover term;

[Extended Twisted Mass Collaboration, Phys. Rev. D 104, 074515 (2021), arXiv:2104.13408]

Name	β	N_{f}	$L^{3} \times T$	$a[\mathrm{fm}]$	M_{π}	$m_{\pi} L$
cA211.32	1.726	u, d, s, c	$32^{3} \times 64$	0.093	260 MeV	4

frame	$P_{3}[\mathrm{GeV}]$	$\Delta\left[\frac{2 \pi}{L}\right]$	$-t\left[\mathrm{GeV}^{2}\right]$	ξ	N_{ME}	$N_{\text {confs }}$	$N_{\text {src }}$	$N_{\text {tot }}$
N/A	± 1.25	$(0,0,0)$	0	0	2	731	16	23392
symm	± 0.83	$(\pm 2,0,0),(0, \pm 2,0)$	0.69	0	8	67	8	4288
symm	± 1.25	$(\pm 2,0,0),(0, \pm 2,0)$	0.69	0	8	249	8	15936
symm	± 1.67	$(\pm 2,0,0),(0, \pm 2,0)$	0.69	0	8	294	32	75264
symm	± 1.25	$(\pm 2, \pm 2,0)$	1.39	0	16	224	8	28672
symm	± 1.25	$(\pm 4,0,0),(0, \pm 4,0)$	2.76	0	8	329	32	84224
asymm	± 1.25	$(\pm 1,0,0),(0, \pm 1,0)$	0.17	0	8	429	8	27456
asymm	± 1.25	$(\pm 1, \pm 1,0)$	0.33	0	16	194	8	12416
asymm	± 1.25	$(\pm 2,0,0),(0, \pm 2,0)$	0.64	0	8	429	8	27456
asymm	± 1.25	$(\pm 1, \pm 2,0),(\pm 2, \pm 1,0)$	0.80	0	16	194	8	12416
asymm	± 1.25	$(\pm 2, \pm 2,0)$	1.16	0	16	194	8	24832
asymm	± 1.25	$(\pm 3,0,0),(0, \pm 3,0)$	1.37	0	8	429	8	27456
asymm	± 1.25	$(\pm 1, \pm 3,0),(\pm 3, \pm 1,0)$	1.50	0	16	194	8	12416
asymm	± 1.25	$(\pm 4,0,0),(0, \pm 4,0)$	2.26	0	8	429	8	27456

Zero-skewness calculation

Parameters of calculations

$\mathrm{Nf}=2+1+1$ twisted mass fermions with a clover term;

[Extended Twisted Mass Collaboration, Phys. Rev. D 104, 074515 (2021), arXiv:2104.13408]

Name	β	N_{f}	$L^{3} \times T$	$a[\mathrm{fm}]$	M_{π}	$m_{\pi} L$
cA211.32	1.726	u, d, s, c	$32^{3} \times 64$	0.093	260 MeV	4

frame	$P_{3}[\mathrm{GeV}]$	$\Delta\left[\frac{2 \pi}{L}\right]$	$-t\left[\mathrm{GeV}^{2}\right]$	ξ	N_{ME}	$N_{\text {confs }}$	$N_{\text {src }}$	$N_{\text {tot }}$
N/A	± 1.25	$(0,0,0)$	0	0	2	731	16	23392
symm	± 0.83	$(\pm 2,0,0),(0, \pm 2,0)$	0.69	0	8	67	8	4288
symm	± 1.25	$(\pm 2,0,0),(0, \pm 2,0)$	0.69	0	8	249	8	15936
symm	± 1.67	$(\pm 2,0,0),(0, \pm 2,0)$	0.69	0	8	294	32	75264
symm	± 1.25	$(\pm 2, \pm 2,0)$	1.39	0	16	224	8	28672
symm	± 1.25	$(\pm 4,0,0),(0, \pm 4,0)$	2.76	0	8	329	32	84224
asymm	± 1.25	$(\pm 1,0,0),(0, \pm 1,0)$	0.17	0	8	429	8	27456
asymm	± 1.25	$(\pm 1, \pm 1,0)$	0.33	0	16	194	8	12416
asymm	± 1.25	$(\pm 2,0,0),(0, \pm 2,0)$	0.64	0	8	429	8	27456
asymm	± 1.25	$(\pm 1, \pm 2,0),(\pm 2, \pm 1,0)$	0.80	0	16	194	8	12416
asymm	± 1.25	$(\pm 2, \pm 2,0)$	1.16	0	16	194	8	24832
asymm	± 1.25	$(\pm 3,0,0),(0, \pm 3,0)$	1.37	0	8	429	8	27456
asymm	± 1.25	$(\pm 1, \pm 3,0),(\pm 3, \pm 1,0)$	1.50	0	16	194	8	12416
asymm	± 1.25	$(\pm 4,0,0),(0, \pm 4,0)$	2.26	0	8	429	8	27456

Zero-skewness calculation

 each momentum requires separate computational resources
Parameters of calculations

$\mathrm{Nf}=2+1+1$ twisted mass fermions with a clover term;
[Extended Twisted Mass Collaboration, Phys. Rev. D 104, 074515 (2021), arXiv:2104.13408]

Name	β	N_{f}	$L^{3} \times T$	$a[\mathrm{fm}]$	M_{π}	$m_{\pi} L$
cA211.32	1.726	u, d, s, c	$32^{3} \times 64$	0.093	260 MeV	4

frame	$P_{3}[\mathrm{GeV}]$	$\Delta\left[\frac{2 \pi}{L}\right]$	$-t\left[\mathrm{GeV}^{2}\right]$	ξ	N_{ME}	$N_{\text {confs }}$	$N_{\text {src }}$	$N_{\text {tot }}$
N/A	± 1.25	$(0,0,0)$	0	0	2	731	16	23392
symm	± 0.83	$(\pm 2,0,0),(0, \pm 2,0)$	0.69	0	8	67	8	4288
symm	± 1.25	$(\pm 2,0,0),(0, \pm 2,0)$	0.69	0	8	249	8	15936
symm	± 1.67	$(\pm 2,0,0),(0, \pm 2,0)$	0.69	0	8	294	32	75264
symm	± 1.25	$(\pm 2, \pm 2,0)$	1.39	0	16	224	8	28672
symm	± 1.25	$(\pm 4,0,0),(0, \pm 4,0)$	2.76	0	8	329	32	84224
asymm	± 1.25	$(\pm 1,0,0),(0, \pm 1,0)$	0.17	0	8	429	8	27456
asymm	± 1.25	$(\pm 1, \pm 1,0)$	0.33	0	16	194	8	12416
asymm	± 1.25	$(\pm 2,0,0),(0, \pm 2,0)$	0.64	0	8	429	8	27456
asymm	± 1.25	$(\pm 1, \pm 2,0),(\pm 2, \pm 1,0)$	0.80	0	16	194	8	12416
asymm	± 1.25	$(\pm 2, \pm 2,0)$	1.16	0	16	194	8	24832
asymm	± 1.25	$(\pm 3,0,0),(0, \pm 3,0)$	1.37	0	8	429	8	27456
asymm	± 1.25	$(\pm 1, \pm 3,0),(\pm 3, \pm 1,0)$	1.50	0	16	194	8	12416
asymm	± 1.25	$(\pm 4,0,0),(0, \pm 4,0)$	2.26	0	8	429	8	27456

Zero-skewness calculation

! Symmetric frame:

 each momentum requires separate computational resources(! Asymmetric frame: momenta grouped in 2 sets of runs [(Q,0,0), (Qx,Qy,0)]

Light-cone GPDs

M. Constantinou, June 26, 2024

Transversity GPDs

Standard parametrization

$$
\begin{aligned}
h_{T}^{j}\left(\Gamma_{\nu}, z, P_{f}, P_{i}\right)= & \left\langle\left\langle\sigma^{3 j}\right\rangle\right\rangle F_{H_{T}}\left(z, \xi, t, P_{3}\right)+\frac{i}{2 m}\left\langle\left\langle\gamma^{3} \Delta_{j}-\gamma^{j} \Delta_{3}\right\rangle\right\rangle F_{E_{T}}\left(z, \xi, t, P_{3}\right) \\
& +\frac{P_{3} \Delta_{j}-P_{j} \Delta_{3}}{m^{2}}\langle\langle\hat{1}\rangle\rangle F_{\widetilde{H}_{T}}\left(z, \xi, t, P_{3}\right)+\frac{1}{m}\left\langle\left\langle\gamma^{3} P_{j}-\gamma^{j} P_{3}\right\rangle\right\rangle F_{\widetilde{E}_{T}}\left(z, \xi, t, P_{3}\right)
\end{aligned}
$$

[C. Alexandrou et al., PRD 105, 034501 (2022)]

Symmetric frame

Transversity GPDs

Standard parametrization

$$
\begin{aligned}
h_{T}^{j}\left(\Gamma_{\nu}, z, P_{f}, P_{i}\right)= & \left\langle\left\langle\sigma^{3 j}\right\rangle\right\rangle F_{H_{T}}\left(z, \xi, t, P_{3}\right)+\frac{i}{2 m}\left\langle\left\langle\gamma^{3} \Delta_{j}-\gamma^{j} \Delta_{3}\right\rangle\right\rangle F_{E_{T}}\left(z, \xi, t, P_{3}\right) \\
& +\frac{P_{3} \Delta_{j}-P_{j} \Delta_{3}}{m^{2}}\langle\langle\hat{1}\rangle\rangle F_{\widetilde{H}_{T}}\left(z, \xi, t, P_{3}\right)+\frac{1}{m}\left\langle\left\langle\gamma^{3} P_{j}-\gamma^{j} P_{3}\right\rangle\right\rangle F_{\widetilde{E}_{T}}\left(z, \xi, t, P_{3}\right)
\end{aligned}
$$

[C. Alexandrou et al., PRD 105, 034501 (2022)]

Lorentz covariant parametrization

$$
\begin{gathered}
H_{T} \\
P_{3}=1.25 \mathrm{GeV} \\
+M \not \gamma_{5}\left(P^{[\mu} z^{\nu]} A_{7}+\frac{P^{[\mu} \Delta^{\nu]}}{M^{2}} A_{8}+z^{[\mu} \Delta^{\nu]} A_{9}\right)+i \sigma^{\mu \nu} \gamma_{5} A_{10} \\
+i \epsilon^{\mu \nu P z} A_{11}+i \epsilon^{\mu \nu z \Delta} A_{12}
\end{gathered}
$$

Symmetric frame

Twist-3 GPDs

$$
f_{i}=f_{i}^{(0)}+\frac{f_{i}^{(1)}}{Q}+\frac{f_{i}^{(2)}}{Q^{2}} \cdots
$$

PHYSICAL REVIEW D 108, 054501 (2023)

Chiral-even axial twist-3 GPDs of the proton from lattice QCD

Shohini Bhattacharya $\odot,^{1,2}$ Krzysztof Cichy, ${ }^{3}$ Martha Constantinou $\odot,{ }^{1}$ Jack Dodson, ${ }^{1}$ Andreas Metz $\oplus,{ }^{1}$
Aurora Scapellato, ${ }^{1}$ and Fernanda Steffens ${ }^{4}$

> + Josh Miller (Temple graduate student)

Theoretical setup

Correlation functions in coordinate space

$$
F^{[\Gamma]}\left(x, \Delta ; P^{3}\right)=\left.\frac{1}{2} \int \frac{d z^{3}}{2 \pi} e^{i k \cdot z}\left\langle p_{f}, \lambda^{\prime}\right| \bar{\psi}\left(-\frac{z}{2}\right) \Gamma \mathcal{W}\left(-\frac{z}{2}, \frac{z}{2}\right) \psi\left(\frac{z}{2}\right)\left|p_{i}, \lambda\right\rangle\right|_{z^{0}=0, \vec{z}_{\perp}=\overrightarrow{0}_{\perp}}
$$

Parametrization of coordinate-space correlation functions

[D. Kiptily and M. Polyakov, Eur. Phys. J. C37 (2004) 105] [F. Aslan et a., Phys. Rev. D 98, 014038 (2018)]

$$
\begin{aligned}
F^{\left[\gamma^{\mu} \gamma_{5}\right]}\left(x, \Delta ; P^{3}\right)=\frac{1}{2 P^{3}} \bar{u}\left(p_{f}, \lambda^{\prime}\right) & {\left[P^{\mu} \frac{\gamma^{3} \gamma_{5}}{P^{0}} F_{\widetilde{H}}\left(x, \xi, t ; P^{3}\right)+P^{\mu} \frac{\Delta^{3} \gamma_{5}}{2 m P^{0}} F_{\widetilde{E}}\left(x, \xi, t ; P^{3}\right)\right.} \\
& +\Delta_{\perp}^{\mu} \frac{\gamma_{5}}{2 m} F_{\widetilde{E}+\widetilde{G}_{1}}\left(x, \xi, t ; P^{3}\right)+\gamma_{\perp}^{\mu} \gamma_{5} F_{\widetilde{H}+\widetilde{G}_{2}}\left(x, \xi, t ; P^{3}\right) \\
& \left.+\Delta_{\perp}^{\mu} \frac{\gamma^{3} \gamma_{5}}{P^{3}} F_{\widetilde{G}_{3}}\left(x, \xi, t ; P^{3}\right)+i \varepsilon_{\perp}^{\mu \nu} \Delta_{\nu} \frac{\gamma^{3}}{P^{3}} F_{\widetilde{G}_{4}}\left(x, \xi, t ; P^{3}\right)\right] u\left(p_{i}, \lambda\right)
\end{aligned}
$$

Theoretical setup

Correlation functions in coordinate space

$$
F^{[\Gamma]}\left(x, \Delta ; P^{3}\right)=\left.\frac{1}{2} \int \frac{d z^{3}}{2 \pi} e^{i k \cdot z}\left\langle p_{f}, \lambda^{\prime}\right| \bar{\psi}\left(-\frac{z}{2}\right) \Gamma \mathcal{W}\left(-\frac{z}{2}, \frac{z}{2}\right) \psi\left(\frac{z}{2}\right)\left|p_{i}, \lambda\right\rangle\right|_{z^{0}=0, \vec{z}_{\perp}=\overrightarrow{0}_{\perp}}
$$

* Parametrization of coordinate-space correlation functions
[D. Kiptily and M. Polyakov, Eur. Phys. J. C37 (2004) 105] [F. Aslan et a., Phys. Rev. D 98, 014038 (2018)]

$$
\begin{aligned}
F^{\left[\gamma^{\mu} \gamma_{5}\right]}\left(x, \Delta ; P^{3}\right)=\frac{1}{2 P^{3}} \bar{u}\left(p_{f}, \lambda^{\prime}\right) & {\left[P^{\mu} \frac{\gamma^{3} \gamma_{5}}{P^{0}} F_{\widetilde{H}}\left(x, \xi, t ; P^{3}\right)+P^{\mu} \frac{\Delta^{3} \gamma_{5}}{2 m P^{0}} F_{\widetilde{E}}\left(x, \xi, t ; P^{3}\right)\right.} \\
& +\Delta_{\perp}^{\mu} \frac{\gamma_{5}}{2 m} F_{\widetilde{E}+\widetilde{G}_{1}}\left(x, \xi, t ; P^{3}\right)+\gamma_{\perp}^{\mu} \gamma_{5} F_{\widetilde{H}+\widetilde{G}_{2}}\left(x, \xi, t ; P^{3}\right) \\
& \left.+\Delta_{\perp}^{\mu} \frac{\gamma^{3} \gamma_{5}}{P^{3}} F_{\widetilde{G}_{3}}\left(x, \xi, t ; P^{3}\right)+i \varepsilon_{\perp}^{\mu \nu} \Delta_{\nu} \frac{\gamma^{3}}{P^{3}} F_{\widetilde{G}_{4}}\left(x, \xi, t ; P^{3}\right)\right] u\left(p_{i}, \lambda\right)
\end{aligned}
$$

Theoretical setup

Correlation functions in coordinate space

$$
F^{[\Gamma]}\left(x, \Delta ; P^{3}\right)=\left.\frac{1}{2} \int \frac{d z^{3}}{2 \pi} e^{i k \cdot z}\left\langle p_{f}, \lambda^{\prime}\right| \bar{\psi}\left(-\frac{z}{2}\right) \Gamma \mathcal{W}\left(-\frac{z}{2}, \frac{z}{2}\right) \psi\left(\frac{z}{2}\right)\left|p_{i}, \lambda\right\rangle\right|_{z^{0}=0, \vec{z}_{\perp}=\overrightarrow{0}_{\perp}}
$$

\star Parametrization of coordinate-space correlation functions
[D. Kiptily and M. Polyakov, Eur. Phys. J. C37 (2004) 105] [F. Aslan et a., Phys. Rev. D 98, 014038 (2018)]

$$
\begin{aligned}
F^{\left[\gamma^{\mu} \gamma_{5}\right]}\left(x, \Delta ; P^{3}\right)=\frac{1}{2 P^{3}} \bar{u}\left(p_{f}, \lambda^{\prime}\right) & {\left[P^{\mu} \frac{\gamma^{3} \gamma_{5}}{P^{0}} F_{\widetilde{H}}\left(x, \xi, t ; P^{3}\right)+P^{\mu} \frac{\Delta^{3} \gamma_{5}}{2 m P^{0}} F_{\widetilde{E}}\left(x, \xi, t ; P^{3}\right)\right.} \\
& +\Delta_{\perp}^{\mu} \frac{\gamma_{5}}{2 m} F_{\widetilde{E}+\widetilde{G}_{1}}\left(x, \xi, t ; P^{3}\right)+\gamma_{\perp}^{\mu} \gamma_{5} F_{\widetilde{H}+\widetilde{G}_{2}}\left(x, \xi, t ; P^{3}\right) \\
& \left.+\Delta_{\perp}^{\mu} \frac{\gamma^{3} \gamma_{5}}{P^{3}} F_{\widetilde{G}_{3}}\left(x, \xi, t ; P^{3}\right)+i \varepsilon_{\perp}^{\mu \nu} \Delta_{\nu} \frac{\gamma^{3}}{P^{3}} F_{\widetilde{G}_{4}}\left(x, \xi, t ; P^{3}\right)\right] u\left(p_{i}, \lambda\right)
\end{aligned}
$$

$\mathrm{Nf}=2+1+1$ twisted mass

 fermions with a clover term[ETMC, Phys. Rev. D 104, 074515 (2021)]

Name	β	N_{f}	$L^{3} \times T$	$a[\mathrm{fm}]$	M_{π}	$m_{\pi} L$
cA211.32	1.726	u, d, s, c	$32^{3} \times 64$	0.093	260 MeV	4

$P_{3}[\mathrm{GeV}]$	$\vec{q}\left[\frac{2 \pi}{L}\right]$	$-t\left[\mathrm{GeV}^{2}\right]$	N_{ME}	$N_{\text {confs }}$	$N_{\text {src }}$	$N_{\text {total }}$
± 0.83	$(0,0,0)$	0	2	194	8	3104
± 1.25	$(0,0,0)$	0	2	731	16	23392
± 1.67	$(0,0,0)$	0	2	1644	64	210432
± 0.83	$(\pm 2,0,0)$	0.69	8	67	8	4288
± 1.25	$(\pm 2,0,0)$	0.69	8	249	8	15936
± 1.67	$(\pm 2,0,0)$	0.69	8	294	32	75264
± 1.25	$(\pm 2, \pm 2,0)$	1.38	16	224	8	28672
± 1.25	$(\pm 4,0,0)$	2.76	8	329	32	84224

Consistency Checks

Sum Rules (generalization of Burkhardt-Cottingham)

[X. D. Ji, Phys. Rev. Lett. 78, 610 (1997), hep-ph/9603249]

$$
\begin{gathered}
\int_{-1}^{1} d x \widetilde{H}(x, \xi, t)=G_{A}(t), \quad \int_{-1}^{1} d x \widetilde{E}(x, \xi, t)=G_{P}(t) \\
\int_{-1}^{1} d x \widetilde{G}_{i}(x, \xi, t)=0, \quad i=1,2,3,4
\end{gathered}
$$

Sum Rules (generalization of Efremov-Leader-Teryaev)

[A. Efremov, O. Teryaev , E. Leader, PRD 55 (1997) 4307, hep-ph/9607217]

$$
\int_{-1}^{1} d x x \widetilde{G}_{3}(x, 0, t)=\frac{\xi}{4} G_{E} \quad \int_{-1}^{1} d x x \widetilde{G}_{4}(x, 0, t)=\frac{1}{4} G_{E}(t)
$$

Consistency Checks

Sum Rules (generalization of Burkhardt-Cottingham)

[X. D. Ji, Phys. Rev. Lett. 78, 610 (1997), hep-ph/9603249]

$$
\begin{gathered}
\int_{-1}^{1} d x \widetilde{H}(x, \xi, t)=G_{A}(t), \quad \int_{-1}^{1} d x \widetilde{E}(x, \xi, t)=G_{P}(t) \\
\int_{-1}^{1} d x \widetilde{G}_{i}(x, \xi, t)=0, \quad i=1,2,3,4
\end{gathered}
$$

Sum Rules (generalization of Efremov-Leader-Teryaev)

[A. Efremov, O. Teryaev , E. Leader, PRD 55 (1997) 4307, hep-ph/9607217]

Indeed, numerically
found to be zero within uncertainties at $\xi=0$

Reconstruction of x-dependence \& matching

\star quasi-GPDs transformed to momentum space using Backus Gilbert [G. Backus and F. Gilbert, Geophysical Journal International 16, 169 (1968)]

* Matching formalism to 1 loop accuracy level

$$
F_{X}^{\mathrm{M} \overline{\mathrm{MS}}}\left(x, t, P_{3}, \mu\right)=\int_{-1}^{1} \frac{d y}{|y|} C_{\gamma_{j} \gamma_{\mathrm{s}}}^{\mathrm{M} \overline{\mathrm{MS}}, \overline{\overline{S S}}}\left(\frac{x}{y}, \frac{\mu}{y P_{3}}\right) G_{X}^{\overline{\mathrm{MS}}}(y, t, \mu)+\mathcal{O}\left(\frac{m^{2}}{P_{3}^{2}}, \frac{t}{P_{3}^{2}}, \frac{\Lambda_{Q \mathrm{QCD}}^{2}}{x^{2} P_{3}^{2}}\right)
$$

* Operator dependent kernel

PHYSICAL REVIEW D 102, 034005 (2020)
One-loop matching for the twist-3 parton distribution $g_{T}(x)$
Shohini Bhattacharya©, ${ }^{1}$ Krzysztof Cichy, ${ }^{2}$ Martha Constantinou•, ${ }^{1}$ Andreas Metz, ${ }^{1}$
Aurora Scapellato, ${ }^{2}$ and Fernanda Steffens ${ }^{3}$

* Matching does not consider mixing with q-g-q correlators [V. Braun et al., JHEP 05 (2021) 086]

Lattice Results - light-cone GPDs

Lattice Results - light-cone GPDs

Lattice Results - light-cone GPDs

Negative areas in $\widetilde{G_{2}}$ theoretically anticipated:

$$
\int_{-1}^{1} d x \widetilde{G}_{i}(x, \xi, t)=0, \quad i=1,2,3,4
$$

Lattice Results - light-cone GPDs

Direct access to \widetilde{E}-GPD not possible for zero skewness
Glimpse into \widetilde{E}-GPD through twist-3 :

$$
P^{\mu} \frac{\Delta^{3} \gamma_{5}}{2 m P^{0}} F_{\widetilde{E}}\left(x, \xi, t ; P^{3}\right)
$$

Lattice Results - light-cone GPDs

Direct access to \widetilde{E}-GPD not possible for zero skewness
Glimpse into \widetilde{E}-GPD through twist-3 :

$$
P^{\mu} \frac{\Delta^{3} \gamma_{5}}{2 m P^{0}} F_{\widetilde{E}}\left(x, \xi, t ; P^{3}\right)
$$

Sizable contributions as expected

$$
\begin{gathered}
\int_{-1}^{1} d x \widetilde{E}(x, \xi, t)=G_{P}(t) \\
\int_{-1}^{1} d x \widetilde{G}_{i}(x, \xi, t)=0, \quad i=1,2,3,4
\end{gathered}
$$

Lattice Results - light-cone GPDs

Direct access to \widetilde{E}-GPD not possible for zero skewness

* Glimpse into \widetilde{E}-GPD through twist-3 :

$$
P^{\mu} \frac{\Delta^{3} \gamma_{5}}{2 m P^{0}} F_{\widetilde{E}}\left(x, \xi, t ; P^{3}\right)
$$

Sizable contributions as expected

$$
\begin{gathered}
\int_{-1}^{1} d x \widetilde{E}(x, \xi, t)=G_{P}(t) \\
\int_{-1}^{1} d x \widetilde{G}_{i}(x, \xi, t)=0, \quad i=1,2,3,4
\end{gathered}
$$

\widetilde{G}_{4} very small; no theoretical argument to be zero

$$
\int_{-1}^{1} d x x \widetilde{G}_{4}(x, \xi, t)=\frac{1}{4} G_{E}
$$

Extension of calculation

Alternative kinematic setup can be utilized

$$
\begin{array}{cc}
F_{\widetilde{H}+\widetilde{G}_{2}}=\frac{1}{2 m^{2}} \frac{z_{3} P_{0}^{2}\left(\Delta_{\perp}\right)^{2}}{P_{3}}+A_{2} & F_{\widetilde{G}_{3}}=\frac{1}{2 m^{2}}\left(z_{3} P_{0}^{2} \Delta_{3}-z_{3} P_{3} P_{0} \Delta_{0}\right) A_{1}-z_{3} P_{3} A_{8} \\
F_{\widetilde{E}+\widetilde{G}_{1}}=\frac{2 z_{3} P_{0}^{2}}{P_{3}}+2 A_{5} & F_{\widetilde{G}_{3}}=\frac{1}{m^{2}}\left(z_{3} P_{0} P_{3}^{2}-z_{3} P_{0}^{3}\right) A_{1}
\end{array}
$$

Extension of calculation

Alternative kinematic setup can be utilized

$$
\begin{array}{cc}
F_{\widetilde{H}+\widetilde{G}_{2}}=\frac{1}{2 m^{2}} \frac{z_{3} P_{0}^{2}\left(\Delta_{\perp}\right)^{2}}{P_{3}}+A_{2} & F_{\widetilde{G}_{3}}=\frac{1}{2 m^{2}}\left(z_{3} P_{0}^{2} \Delta_{3}-z_{3} P_{3} P_{0} \Delta_{0}\right) A_{1}-z_{3} P_{3} A_{8} \\
F_{\widetilde{E}+\widetilde{G}_{1}}=\frac{2 z_{3} P_{0}^{2}}{P_{3}}+2 A_{5} & F_{\widetilde{G}_{3}}=\frac{1}{m^{2}}\left(z_{3} P_{0} P_{3}^{2}-z_{3} P_{0}^{3}\right) A_{1}
\end{array}
$$

On-going work

How to lattice QCD data fit into the overall effort for hadron tomography

How to lattice QCD data fit into the overall effort for hadron tomography
Lattice data may be incorporated in global analysis of experimental data and may influence parametrization of t and ξ dependence

How to lattice QCD data fit into the overall effort for hadron tomography

* Lattice data may be incorporated in global analysis of experimental data and may influence parametrization of t and ξ dependence

1. Theoretical studies of high-momentum transfer processes using perturbative QCD methods and study of GPDs properties
2. Lattice QCD calculations of GPDs and related structures
3. Global analysis of GPDs based on experimental data using modern data analysis techniques for inference and uncertainty quantification

Synergies: constraints \& predictive power of lattice QCD

[JAM/HadStruc, PRD105 (2022) 114051]
proton \& neutron radius

[Atac et al., Nature Comm. 12, 1759 (2021)]

helicity PDF

[JAM \& ETMC, PRD 103 (2021) 016003]

Experiments, global analysis
transversity PDF

[JAM, PRD 106 (2022) 3, 034014]

And many more!

Summary

* Definitions of quasi-GPDs on Euclidean lattice: intrinsically frame dependent. Historically used symmetric frame is computationally very expensive
* Novel Lorentz covariant decomposition has great advantages:
- access to symmetric-frame GPDs from matrix elements in any frame
- significant reduction of computational cost
- access to a broad range of t and ξ
* Numerical results demonstrate the validity of the approach
* Future calculations have the potential to transform the field of GPDs
* Lattice QCD data on GPDs will play an important role in the pre-EIC era and can complement experimental efforts of JLab@12GeV.
* Synergy with phenomenology is an exciting prospect!

Summary

* Definitions of quasi-GPDs on Euclidean lattice: intrinsically frame dependent. Historically used symmetric frame is computationally very expensive
* Novel Lorentz covariant decomposition has great advantages:
- access to symmetric-frame GPDs from matrix elements in any frame
- significant reduction of computational cost
- access to a broad range of t and ξ
* Numerical results demonstrate the validity of the approach
* Future calculations have the potential to transform the field of GPDs
* Lattice QCD data on GPDs will play an important role in the pre-EIC era and can complement experimental efforts of JLab@12GeV.
* Synergy with phenomenology is an exciting prospect!

Miscellaneous

M. Constantinou, June 26, 2024

Extension to twist-3 tensor GPDs

Parametrization [Meissner et al., JHEP 08 (2009) 056]

$$
F^{\left[\sigma^{+-} \gamma_{5}\right]}=\bar{u}\left(p^{\prime}\right)\left(\gamma^{+} \gamma_{5} \widetilde{H}_{2}^{\prime}+\frac{P^{+} \gamma_{5}}{M} \widetilde{E}_{2}^{\prime}\right) u(p)
$$

Lattice Results - Matrix Elements

Bare matrix elements

$$
\Pi^{1}\left(\Gamma_{1}\right)=i C\left(F_{\widetilde{H}+\widetilde{G}_{2}} \frac{\left(4 m(E+m)+\Delta_{y}^{2}\right)}{8 m^{2}}-F_{\widetilde{E}+\widetilde{G}_{1}} \frac{\Delta_{x}^{2}(E+m)}{8 m^{3}}+F_{\widetilde{G}_{4}} \frac{\operatorname{sign}\left[P_{3}\right] \Delta_{y}^{2}(E+m)}{4 m^{2} P_{3}}\right)
$$

Φ	$\{1,+3,(0,+2,0)\}$
Φ	$\{1,+3,(0,-2,0)\}$
Φ	$\{2,+3,(+2,0,0)\}$
Φ	$\{2,+3,(-2,0,0)\}$
Φ	$\{1,-3,(0,+2,0)\}$
Φ	$\{1,-3,(0,-2,0)\}$
Φ	$\{2,-3,(+2,0,0)\}$
Φ	$\{2,-3,(-2,0,0)\}$

$\{1,+3,(+2,0,0)\}$
$\{1,+3,(-2,0,0)\}$
$\{2,+3,(0,+2,0)\}$
$\{2,+3,(0,-2,0)\}$
$\{1,-3,(+2,0,0)\}$
$\{1,-3,(-2,0,0)\}$
$\{2,-3,(0,+2,0)\}$
$\{2,-3,(0,-2,0)\}$

Lattice Results - Matrix Elements

* Bare matrix elements

$$
\begin{aligned}
& \text { I }\{1,+3,(0,+2,0)\} \\
& \text { I }\{1,+3,(0,-2,0)\} \\
& \text { I }\{2,+3,(+2,0,0)\} \\
& \text { I }\{2,+3,(-2,0,0)\} \\
& \text { \$ }\{1,-3,(0,+2,0)\} \\
& \text { I }\{1,-3,(0,-2,0)\} \\
& \text { \$ }\{2,-3,(+2,0,0)\} \\
& \text { I }\{2,-3,(-2,0,0)\}
\end{aligned}
$$

Suppressed signal compared to $\gamma_{+} \gamma_{5}$ operators
$\Pi^{1}\left(\Gamma_{3}\right)=C\left(-F_{\widetilde{G}_{3}} \frac{E \Delta_{x}(E+m)}{2 m^{2} P_{3}}\right)$
M. Constantinou, June 26, 2024

Consistency checks

* Norms satisfied encouraging results

GPD	$P_{3}=0.83[\mathrm{GeV}]$ $-t=0.69\left[\mathrm{GeV}^{2}\right]$	$P_{3}=1.25[\mathrm{GeV}]$ $-t=0.69\left[\mathrm{GeV}^{2}\right]$	$P_{3}=1.67[\mathrm{GeV}]$ $-t=0.69\left[\mathrm{GeV}^{2}\right]$	$P_{3}=1.25[\mathrm{GeV}]$ $-t=1.38\left[\mathrm{GeV}^{2}\right]$	$P_{3}=1.25[\mathrm{GeV}]$ $-t=2.76\left[\mathrm{GeV}^{2}\right]$
\widetilde{H}	$0.741(21)$	$0.712(27)$	$0.802(48)$	$0.499(21)$	$0.281(18)$
$\widetilde{H}+\widetilde{G}_{2}$	$0.719(25)$	$0.750(33)$	$0.788(70)$	$0.511(36)$	$0.336(34)$

Consistency checks

\star Norms satisfied
encouraging results

GPD	$P_{3}=0.83[\mathrm{GeV}]$ $-t=0.69\left[\mathrm{GeV}^{2}\right]$	$P_{3}=1.25[\mathrm{GeV}]$ $-t=0.69\left[\mathrm{GeV}^{2}\right]$	$P_{3}=1.67[\mathrm{GeV}]$ $-t=0.69\left[\mathrm{GeV}^{2}\right]$	$P_{3}=1.25[\mathrm{GeV}]$ $-t=1.38\left[\mathrm{GeV}^{2}\right]$	$P_{3}=1.25[\mathrm{GeV}]$ $-t=2.76\left[\mathrm{GeV}^{2}\right]$
\widetilde{H}	$0.741(21)$	$0.712(27)$	$0.802(48)$	$0.499(21)$	$0.281(18)$
$\widetilde{H}+\widetilde{G}_{2}$	$0.719(25)$	$0.750(33)$	$0.788(70)$	$0.511(36)$	$0.336(34)$

* Alternative kinematic setup can be utilized

[Fernanda Steffens]

$$
\begin{array}{ll}
F_{\widetilde{H}+\widetilde{G}_{2}}=\frac{1}{2 m^{2}} \frac{z_{3} P_{0}^{2}\left(\Delta_{\perp}\right)^{2}}{P_{3}}+A_{2} & F_{\widetilde{G}_{3}}=\frac{1}{2 m^{2}}\left(z_{3} P_{0}^{2} \Delta_{3}-z_{3} P_{3} P_{0} \Delta_{0}\right) A_{1}-z_{3} P_{3} A_{8} \\
F_{\widetilde{E}+\widetilde{G}_{1}}=\frac{2 z_{3} P_{0}^{2}}{P_{3}}+2 A_{5} & F_{\widetilde{G}_{3}}=\frac{1}{m^{2}}\left(z_{3} P_{0} P_{3}^{2}-z_{3} P_{0}^{3}\right) A_{1}
\end{array}
$$

FIG. 10. $z_{\max }$ dependence of $F_{\widetilde{H}+\widetilde{G}_{2}}$ and $\widetilde{H}+\widetilde{G}_{2}$ (left), as well as $F_{\widetilde{E}+\widetilde{G}_{1}}$ and $\widetilde{E}+\widetilde{G}_{1}$ (right) at $-t=0.69 \mathrm{GeV}^{2}$ and $P_{3}=1.25 \mathrm{GeV}$. Results are given in the $\overline{\mathrm{MS}}$ scheme at a scale of 2 GeV .

FIG. 11. $z_{\max }$ dependence of $F_{\widetilde{G}_{4}}$ and \widetilde{G}_{4} at $-t=0.69 \mathrm{GeV}^{2}$ and $P_{3}=1.25 \mathrm{GeV}$. Results are given in $\overline{\mathrm{MS}}$ scheme at a scale of 2 GeV .

