Effective quarks and gluons forming hadrons in the Fock space

María Gómez-Rocha Universidad de Granada & Instituto Carlos I de Físca Teórica y Computacional

in collaboration with: S. D. Głazek (U. Warsaw), K. Serafin (Tufts U., Boston), J. More (IIT Bombay), and Juan José Gálvez Viruet (UCM)

ILCAC Seminar, March 20th, 2024

1. Hadrons in terms of quarks and gluons and their dynamics

Motivation

1. Hadrons in terms of quarks and gluons and their dynamics

2. QCD at different scales: from asymptotic freedom to confinement

Motivation

1. Hadrons in terms of quarks and gluons and their dynamics

2. QCD at different scales: from asymptotic freedom to confinement

- 3. Hamiltonian of QCD is complicated
 - \rightarrow It needs regularization
 - \rightarrow How to deal with an infinite number of particles??
 - \rightarrow Starting from QCD, derive an effective Hamiltonian

Every state in QCD is a superposition of infinitely many Fock components

$$\Psi_{\rm meson}\rangle = c_1 |q\bar{q}\rangle + c_2 |q\bar{q}g\rangle + c_3 |q\bar{q}gg\rangle + c_4 |q\bar{q}q\bar{q}gg\rangle + \dots$$

$$P_{|q\bar{q}\rangle} = |\langle q\bar{q}|\Psi_{\rm meson}\rangle|^2 = c_1^2$$

Masses are given by the eigenvalues of Hamiltonian operator acting on the Fock space

$$H_{QCD}|\Psi_{\rm meson}\rangle = E_n|\Psi_{\rm meson}\rangle$$

 E_n are the energy levels of the system, i.e. masses of hadrons $\ensuremath{\mathbf{Problem:}}$

In practice it is not feasible!

The method of calculation

Renormalization Group Procedure for Effective Particles

Main ingredients of the method

Hamiltonian approach

Connection with non-rel. physics: Schrödinger equation Space of operators Compatible with quantum simulations

Front-form dynamics

Connection with high-energy physics Helps with vacuum problem Helps with changes for reference frames

Renormalization GROUP

Connection between low- and high-energy physics Reduce d.o.f.: define *effective particles*

The method of calculation

Originally Similarity Renormalization Group [S.D. Głazek, K.G. Wilson, PRD49, PRD57]

、 b

b,

Lagrangian density of QCD $\mathcal{L}_{\text{QCD}} = \bar{\psi}(i\not\!\!D - m)\psi - \frac{1}{2}\text{tr}F^{\mu\nu}F_{\mu\nu}$

1. Canonical Hamiltonian Use front-form dynamics:

•
$$\mathcal{L}_{\text{QCD}} \to \mathcal{T}_{\text{QCD}}^{\mu\nu} \to H_{\text{QCD}} = \int_{x^+=0} \mathcal{H}_{\text{QCD}}(\mathbf{x}) d\mathbf{x}, \quad A^+ = 0$$

 $k^+ = k^0 + k^3, \quad k^- = k^0 - k^3, \quad \vec{k}^\perp = (k^1, k^2); \quad x = k^+/P^+,$

х

- 2. **Regularization** Interaction vertices and counterterms:
 - UV- and small-x divergences

$$\mathcal{M}_{bc}^{2} = \frac{\kappa_{bc}^{2} + m^{2}}{x_{b}x_{c}} \quad f_{bc.a,t_{r}} = e^{-t_{r}} (\mathcal{M}_{bc}^{2} - m^{2})^{2} \qquad \sum_{a}^{a} \frac{a}{f_{bc.a}} \quad \frac{a}{f_{bc.a}}$$

3. Renormalization

Scale parameter t introduced by RGPEP

$$H_0 \rightarrow H_t = U_t H_0 U_t^{\dagger}$$

Renormalization group procedure for effective particles Originally Similarity Renormalization Group [S.D. Głazek, K.G. Wilson, PRD49, PRD57] Change of basis through a similarity transformation

 $H_t = U_t H_0 U_t^{\dagger} , \qquad U_t |\psi_0\rangle = |\psi_t\rangle , \quad H_0 |\psi_0\rangle = H_t |\psi_t\rangle = E |\psi_0\rangle$

 U_t depends on an *energy-scale* parameter t, and preserves the eigenvalues H_t satisfies

 $\frac{dH_t}{dt} = [G_t, H_t]$, where G_t is a generator

Renormalization group procedure for effective particles Originally Similarity Renormalization Group [S.D. Głazek, K.G. Wilson, PRD49, PRD57] Change of basis through a similarity transformation

 $H_t = U_t H_0 U_t^{\dagger} , \qquad U_t |\psi_0\rangle = |\psi_t\rangle , \quad H_0 |\psi_0\rangle = H_t |\psi_t\rangle = E |\psi_0\rangle$

 U_t depends on an $energy\mbox{-}scale$ parameter t, and preserves the eigenvalues H_t satisfies

 $\frac{dH_t}{dt} = [G_t, H_t]$, where G_t is a generator

Generator:

$$U_t = T \exp\left(-\int_0^t d\tau G_\tau\right)$$
, $G_t = [\mathcal{H}_f, \mathcal{H}_{Pt}]$

The method of calculation: RGPEP

Renormalization group procedure for effective particles

Originally Similarity Renormalization Group [S.D. Głazek, K.G. Wilson, PRD49, PRD57]

Change of basis through a similarity transformation

$$H_t = U_t H_0 U_t^{\dagger}$$
, $U_t |\psi_0\rangle = |\psi_t\rangle$, $H_0 |\psi_0\rangle = H_t |\psi_t\rangle = E |\psi_0\rangle$

 U_t depends on an *energy-scale* parameter t, and preserves the eigenvalues H_t satisfies

$$\frac{dH_t}{dt} = [G_t, H_t],$$
 where G_t is a generator

Example: [MGR, Arriola, PLB 800 (2020), APP Sup.14 (2021)] Evolution of a model potential V(p, p'), $t = 1/\lambda^4$

The method of calculation: RGPEP

Renormalization group procedure for effective particles

Originally Similarity Renormalization Group [S.D. Głazek, K.G. Wilson, PRD49, PRD57]

Change of basis through a similarity transformation

$$H_t = U_t H_0 U_t^{\dagger}$$
, $U_t |\psi_0\rangle = |\psi_t\rangle$, $H_0 |\psi_0\rangle = H_t |\psi_t\rangle = E |\psi_0\rangle$

 U_t depends on an *energy-scale* parameter t, and preserves the eigenvalues H_t satisfies

$$\frac{dH_t}{dt} = [G_t, H_t],$$
 where G_t is a generator

Example: [MGR, Arriola, PLB 800 (2020), APP Sup.14 (2021)] Evolution of a model potential V(p, p'), $t = 1/\lambda^4$

Effective quanta

Creation and annihilation operators become *effective*

$$a^{\dagger}|0
angle = |g
angle \quad
ightarrow \quad a^{\dagger}_{\lambda}|0
angle = |g_{\lambda}
angle \qquad a^{\dagger}_{\lambda} = U_{\lambda} \, a^{\dagger} \, U^{\dagger}_{\lambda}$$

They create/annihilate particles of type $\lambda = t^{-1/4}$ or of size $s = 1/\lambda$

$$[\lambda] = \text{energy} \sim \text{scale} \qquad [s = 1/\lambda] = \text{length} \sim \text{size} \qquad t = s^4$$

Hadrons in terms effective particles

Hadrons can be described in terms of effective particles of type λ

$$|\Psi_{\mathrm{meson}\,\lambda}\rangle = c_{1,\lambda}|q\bar{q}\rangle_{\lambda} + c_{2,\lambda}|q\bar{q}g\rangle_{\lambda} + c_{3,\lambda}|q\bar{q}gg\rangle_{\lambda} + c_{4,\lambda}|q\bar{q}q\bar{q}gg\rangle_{\lambda} + \dots$$

and describe from asymptotic freedom to bound states

Effective quanta

Creation and annihilation operators become effective

$$a^{\dagger}|0
angle = |g
angle \quad
ightarrow \quad a^{\dagger}_{s}|0
angle = |g_{s}
angle \qquad a^{\dagger}_{s} = U_{s} \, a^{\dagger} \, U^{\dagger}_{s}$$

They create/annihilate particles of type λ or of size $s=1/\lambda$

$$[\lambda] = \text{energy} \sim \text{scale} \qquad [s = 1/\lambda] = \text{length} \sim \text{size} \qquad t = s^4$$

Hadrons in terms effective particles

Hadrons can be described in terms of effective particles of size \boldsymbol{s}

$$|\Psi_{\text{meson }s}\rangle = c_{1,s}|q\bar{q}\rangle_s + c_{2,s}|q\bar{q}g\rangle_s + c_{3,s}|q\bar{q}gg\rangle_s + c_{4,s}|q\bar{q}q\bar{q}gg\rangle_s + \dots$$

and describe from asymptotic freedom to bound states

Solve the RGPEP equation perturbatively

$$H'_{\lambda} = [[H_f, H_{P\lambda}], H_{\lambda}] \qquad a_{\lambda} = U_{\lambda} a U^{\dagger}_{\lambda}$$

perturbatively, order by order

$$H_{\lambda} = H_f + g H_{1,\lambda} + g^2 H_{2,\lambda} + g^3 H_{3,\lambda} + \dots$$

$$\begin{aligned} \mathcal{H}'_{f} &= 0 , \\ g\mathcal{H}'_{\lambda 1} &= \left[\left[\mathcal{H}_{f}, g\mathcal{H}_{1P\lambda} \right], \mathcal{H}_{f} \right] , \\ g^{2}\mathcal{H}'_{\lambda 2} &= \left[\left[\mathcal{H}_{f}, g^{2}\mathcal{H}_{2P\lambda} \right], \mathcal{H}_{f} \right] + \left[\left[\mathcal{H}_{f}, g\mathcal{H}_{1P\lambda} \right], g\mathcal{H}_{1\lambda} \right] , \\ g^{3}\mathcal{H}'_{\lambda 3} &= \left[\left[\mathcal{H}_{f}, g^{3}\mathcal{H}_{3P\lambda} \right], \mathcal{H}_{f} \right] + \left[\left[\mathcal{H}_{f}, g^{2}\mathcal{H}_{2P\lambda} \right], g\mathcal{H}_{1\lambda} \right] + \left[\left[\mathcal{H}_{f}, g\mathcal{H}_{1Pt\lambda} \right], g^{2}\mathcal{H}_{2\lambda} \right] \end{aligned}$$

 $\rightarrow~$ Integration produces functions with form factors

$$e^{-(\mathcal{M}_a^2 - \mathcal{M}_b^2)^2/\lambda^4}$$

Effective particles of type λ can change their relative motion kinetic energy through a single effective interaction by no more than about λ

 $s_c \sim 1/\Lambda_{QCD}$

$$s = 1/\lambda$$

$$f_{\lambda} = e^{-(\mathcal{M}_1^2 - \mathcal{M}_2^2)^2/\lambda^4}$$

Figure adapted from Patryk Kubiczek

Asymptotic freedom

Example of third-order calculation

Example of 3rd-order calculation:

$$\Rightarrow g_{\lambda} = g_0 - \frac{g_0^3}{48\pi^2} N_c \, 11 \, \ln \frac{\lambda}{\lambda_0} \, ,$$

[MGR, Głazek, PRD 92], [Galvez-Viruet, MGR, PRD 108 (2023)]

Example of 3rd-order calculation:

The running coupling

Cutoff dependences cancel in $m_g \to 0$ even when every contribution diverge in this limit

[Galvez-Viruet, MGR, PRD 108 (2023)]

Bound states

Example of second-order calculation

Effective theory for heavy quarks

Assumptions

- ★ QCD with only quarks of heavy mass m_b (4.18 GeV/ c^2), m_c (1.5 GeV/ c^2)
- ★ No $Q\bar{Q}$ pair production (too heavy)
- $\star\,$ 2nd-order perturbative RGPEP:

$$H_{QCD\,\lambda} = H_f + g H_{1,\lambda} + g^2 H_{2,\lambda} \qquad |\Psi_{\lambda}\rangle = |Q_{\lambda}\bar{Q}_{\lambda}\rangle + |Q_{\lambda}\bar{Q}_{\lambda}g_{\lambda}\rangle$$

*
$$k/m_Q \rightarrow 0$$
 simplifies the equations

Structure of the eigenvalue problem

Gluon-mass ansatz

$$\begin{bmatrix} \dots & \dots & \dots & \dots \\ \dots & H_f + g^2 H_{2,\lambda} & g H_{1,\lambda} \\ \dots & g H_{1,\lambda} & H_f + g^2 H_{2,\lambda} \end{bmatrix} \begin{bmatrix} \dots & & & \\ |Q_\lambda \bar{Q}_\lambda G_\lambda\rangle \\ |Q_\lambda \bar{Q}_\lambda\rangle \end{bmatrix} = E \begin{bmatrix} \dots & & & \\ |Q_\lambda \bar{Q}_\lambda G_\lambda\rangle \\ |Q_\lambda \bar{Q}_\lambda\rangle \end{bmatrix}$$
$$\downarrow$$
$$\begin{bmatrix} H_f + g^2 H_2 + m_G^2 & g H_1 \\ g H_1 & H_f + g^2 H_2 \end{bmatrix} \begin{bmatrix} |Q\bar{Q}G\rangle \\ |Q\bar{Q}\rangle \end{bmatrix} = E \begin{bmatrix} |Q\bar{Q}G\rangle \\ |Q\bar{Q}\rangle \end{bmatrix}$$

Reduction to the $|Q_{\lambda}\bar{Q}_{\lambda}\rangle$ component We follow [Wilson PRD 2 (1970) 1438]

$$H_{Q\bar{Q}\,\mathrm{eff},\lambda}|Q_{\lambda}\bar{Q}_{\lambda}\rangle = E|Q_{\lambda}\bar{Q}_{\lambda}\rangle$$

Remember: $m_g \neq m_G$ m_g : canonical gluon mass $(m_g > 0, m_g \rightarrow 0)$ m_G : Gluon-mass ansatz $(m_G \neq 0)$

The effective eigenvalue equation

potential terms \rightarrow : — logarithmic divergence

The effective eigenvalue equation

The eigenvalue equation in the NR limit (in the limit $m_g \to \infty$) is

$$\left[\frac{|\vec{k}_{12}|^2}{m} - B + \frac{\delta m_t^2}{2m} + \frac{\delta m_t^2}{2m}\right] \psi_{12}(\kappa_{12}^{\perp}, x_1) + \int \frac{d^3 \vec{k}_{1'2'}}{(2\pi)^3} V_{Q\bar{Q}}(\vec{k}_{12} - \vec{k}_{1'2'}) \psi_{1'2'}(\kappa_{1'2'}^{\perp}, x_{2'}) = 0$$

where

$$V_{Q\bar{Q}}(\vec{q}) = V_{C,BF}(\vec{q}) + W(\vec{q})$$

with

Remarks: If $m_G^2 = 0$, $W = 0 \Rightarrow$ QED If m_G^2 large \Rightarrow the possible divergence $\bar{q}^2 \rightarrow \infty$ cancels $\star\,$ Eigenvalue equation for a single particle

$$\begin{split} H_{\mathrm{eff}Q}|Q\rangle &= \infty |Q\rangle \\ H_{\mathrm{eff}\bar{Q}}|\bar{Q}\rangle &= \infty |\bar{Q}\rangle \end{split}$$

★ The divergence is canceled when the quarks are bound → result compatible with *confinement* Coulomb + Harmonic Oscillator

$$\left[\frac{\vec{k}^2}{m} - B\right]\psi(\vec{k}) + \int \frac{d^3q}{(2\pi)^3} V_{C,BF}(\vec{q})\,\psi(\vec{k} - \vec{q}) - \frac{4}{3}\frac{\alpha}{2\pi}b^{-3}\sum_i \tau_i \frac{\partial^2}{dk_i^2}\psi(\vec{k}) = 0$$

$$b = \frac{\sqrt{2m}}{\lambda_0^2}$$

The gluon-mass Ansatz term yields an additional interaction: harmonic oscillator

Position space

$$\left[2m - \frac{\Delta_{\vec{r}}}{m} - \frac{4}{3}\alpha\left(\frac{1}{r} + BF\right) + \frac{1}{2}\,\tilde{\kappa}\,r^2\right]\,\psi(\vec{r}) = (2m + B)\,\psi(\vec{r}) = M\,\psi(\vec{r}) \;.$$

[Serafin, Gomez-Rocha, More, Głazek, EPJ C78 (2018)], and [2023, in preparation]

The effective eigenvalue equation. Baryons

Eigenvalue equation for three quarks

$$H_{\text{eff}\,t}|3Q_t\rangle = \frac{M^2 + (P^{\perp})^2}{P^+}|3Q_t\rangle$$
$$|3Q_t\rangle = \int_{123} P^+ \tilde{\delta}_{P.123} \,\psi_t(123) \,\frac{\epsilon^{c_1 c_2 c_3}}{\sqrt{6}} b_{t\,1}^{\dagger} b_{t\,2}^{\dagger} b_{t\,3}^{\dagger}|0\rangle$$

The effective eigenvalue equation. Baryons

Harmonic oscillator term

$$\int \frac{d^3 K'_{12}}{(2\pi)^3} W^{12} \left[\psi(1'2'3) - \psi(123) \right] \approx -w^n \frac{\partial^2 \psi(123)}{\partial (K_{12}^n)^2}$$
$$\left(\frac{\partial}{\partial \mathbf{K}_{12}} \right)^2 + \left(\frac{\partial}{\partial \mathbf{K}_{23}} \right)^2 + \left(\frac{\partial}{\partial \mathbf{K}_{31}} \right)^2 = \frac{3}{2} \left(\frac{\partial}{\partial \mathbf{K}_{12}} \right)^2 + 2 \left(\frac{\partial}{\partial \mathbf{Q}_3} \right)^2$$
$$\omega_{\text{baryon}} = \frac{\sqrt{3}}{2} \sqrt{\frac{\alpha}{18\sqrt{2\pi}}} \frac{\lambda^3}{m^2}$$

Some numerical results: heavy mesons

[Serafin, Gomez-Rocha, More, Głazek, EPJ C78 (2018)]

Sac

Black: PDG masses, Blue: Our calculation

Green: average of many different approaches [MGR, Hilger, Krassnigg, PRD 93 (2016)]

Some numerical results: baryons

Lattice ccc: Padmanath et al. PRD 90 (2014) Lattice bbb: Mainel, PRD 85(2012) with/without spin int. The ground state differs from lattice in 06% for ccc and 0'2% for bbb

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

- 1. RGPEP is a Hamiltonian approach to QCD that connects phenomena at different energy regimes
- 2. Individual-term divergences cancel each other in physical problems within the formalism
- 3. Effective potential for quarkonium acquires a simple form in terms of effective particles
- 4. Even in this crude approximation \rightarrow reasonable spectra

For example

- Scattering: ππ, NN MGR, Arriola, PLB 800 (2020), PRD 101 (2020)
- Tetraquarks: K. Serafin et al. PRD 105 (2022)
- Proton Structure in Collisions
 S.D. Glazek, P. Kubiczek [Few Body Syst. 57 (2016) 7, 509-513]
- Structure functions for heavy hadrons:
 - K. Serafin, PhD Thesis (Warsaw U. 2019).

Thank you for your attention

