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Motivation

1. Hadrons in terms of quarks and gluons and their dynamics

2. QCD at different scales: from asymptotic freedom to confinement

3. Hamiltonian of QCD is complicated
→ It needs regularization
→ How to deal with an infinite number of particles??
→ Starting from QCD, derive an effective Hamiltonian
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Hadronic states in QCD

Every state in QCD is a superposition of infinitely many Fock components

|Ψmeson⟩ = c1|qq̄⟩ + c2|qq̄g⟩ + c3|qq̄gg⟩ + c4|qq̄qq̄gg⟩ + . . .

P|qq̄⟩ = |⟨qq̄|Ψmeson⟩|2 = c2
1

Masses are given by the eigenvalues of Hamiltonian operator acting on the
Fock space

HQCD|Ψmeson⟩ = En|Ψmeson⟩
En are the energy levels of the system, i.e. masses of hadrons
Problem:
In practice it is not feasible!



The method of calculation
Renormalization Group Procedure for Effective Particles



Main ingredients of the method

Hamiltonian approach

Connection with non-rel. physics: Schrödinger equation
Space of operators
Compatible with quantum simulations

Front-form dynamics

Connection with high-energy physics
Helps with vacuum problem
Helps with changes for reference frames

Renormalization GROUP

Connection between low- and high-energy physics
Reduce d.o.f.: define effective particles



The method of calculation

Originally Similarity Renormalization Group
[S.D. G lazek, K.G. Wilson, PRD49, PRD57]

Lagrangian density of QCD LQCD = ψ̄(i /D −m)ψ − 1
2trFµνFµν

1. Canonical Hamiltonian Use front-form dynamics:

• LQCD → T µν
QCD → HQCD =

∫
x+=0

HQCD(x)dx, A+ = 0

k+ = k0 + k3, k− = k0 − k3, k⃗⊥ = (k1, k2); x = k+/P+,
x

2. Regularization Interaction vertices and counterterms:
• UV- and small-x divergences

M2
bc = κ2

bc +m2

xbxc
fbc.a,tr = e−tr(M2

bc
−m2)2

3. Renormalization
Scale parameter t introduced by RGPEP

H0 → Ht = UtH0U
†
t



The method of calculation: RGPEP

Renormalization group procedure for effective particles
Originally Similarity Renormalization Group
[S.D. G lazek, K.G. Wilson, PRD49, PRD57]

Change of basis through a similarity transformation

Ht = UtH0U
†
t , Ut|ψ0⟩ = |ψt⟩ , H0|ψ0⟩ = Ht|ψt⟩ = E|ψ0⟩

Ut depends on an energy-scale parameter t, and preserves the eigenvalues
Ht satisfies

dHt

dt
= [Gt, Ht], where Gt is a generator

Generator:

Ut = T exp
(

−
∫ t

0
dτ Gτ

)
, Gt = [Hf ,HP t]
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The method of calculation

Effective quanta
Creation and annihilation operators become effective

a†|0⟩ = |g⟩ → a†
λ|0⟩ = |gλ⟩ a†

λ = Uλ a
† U†

λ

They create/annihilate particles of type λ = t−1/4 or of size s = 1/λ

[λ] = energy ∼ scale [s = 1/λ] = length ∼ size t = s4

Hadrons in terms effective particles
Hadrons can be described in terms of effective particles of type λ

|Ψmeson λ⟩ = c1,λ|qq̄⟩λ + c2,λ|qq̄g⟩λ + c3,λ|qq̄gg⟩λ + c4,λ|qq̄qq̄gg⟩λ + . . .

and describe from asymptotic freedom to bound states
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RGPEP

Solve the RGPEP equation perturbatively

H ′
λ = [[Hf , HP λ], Hλ] aλ = Uλ aU

†
λ

perturbatively, order by order

Hλ = Hf + gH1,λ + g2H2,λ + g3H3,λ + ...

→ Integration produces functions with form factors

e−(M2
a−M2

b
)2/λ4



The concept of effective particles

Effective particles of type λ can change their relative motion kinetic energy
through a single effective interaction by no more than about λ

s = 1/λ
fλ = e−(M2

1−M2
2)2/λ4

Figure adapted from Patryk Kubiczek
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Asymptotic freedom
Example of third-order calculation



Example of 3rd-order calculation:

→ The three-gluon vertex:

Yλ = gH1λ + g3H3λ

Yλ =
∑
123

∫
[123] Ỹλ(k1, k2, k3, σ) a†

1,λ
a†

2,λ
a3,λ +H.c.

→ We obtain the running coupling with the correct AF behavior in κ12 → 0:
⇒ gλ = g0 −

g3
0

48π2Nc 11 ln
λ

λ0
,

[MGR, G lazek, PRD 92], [Galvez-Viruet, MGR, PRD 108 (2023)]



Example of 3rd-order calculation:

The running coupling
Cutoff dependences cancel in mg → 0
even when every contribution diverge in this limit
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[Galvez-Viruet, MGR, PRD 108 (2023)]



Bound states
Example of second-order calculation



Effective theory for heavy quarks

Assumptions

⋆ QCD with only quarks of heavy mass
mb (4.18 GeV/c2), mc (1.5 GeV/c2)

⋆ No QQ̄ pair production (too heavy)
⋆ 2nd-order perturbative RGPEP:

HQCD λ = Hf + gH1,λ + g2H2,λ |Ψλ⟩ = |QλQ̄λ⟩ + |QλQ̄λ gλ⟩

⋆ k/mQ → 0 simplifies the equations



Structure of the eigenvalue problem

Gluon-mass ansatz
 ... ... ...

... Hf + g2H2,λ gH1,λ

... gH1,λ Hf + g2H2,λ

  ...

|QλQ̄λGλ⟩
|QλQ̄λ⟩

 = E

 ...

|QλQ̄λGλ⟩
|QλQ̄λ⟩


↓[

Hf + g2H2 +m2
G gH1

gH1 Hf + g2H2

] [
|QQ̄G⟩
|QQ̄⟩

]
= E

[
|QQ̄G⟩
|QQ̄⟩

]

Reduction to the |QλQ̄λ⟩ component
We follow [Wilson PRD 2 (1970) 1438]

HQQ̄ eff,λ|QλQ̄λ⟩ = E|QλQ̄λ⟩

Remember: mg ̸= mG

mg: canonical gluon mass (mg > 0, mg → 0)
mG: Gluon-mass ansatz (mG ̸= 0)



The effective eigenvalue equation

HQQ̄ eff λ|QλQ̄λ⟩ = E|QλQ̄λ⟩

mass terms gluon exch. terms inst. int.

|QtQ̄t⟩ =
∫

[1′2′]P+ δ̃(P − k′
1 − k′

2)ψ1′2′ (κ⊥
1′2′ , x1′ )

δc1′ c2′√
3

b†
1′,λd

†
2′,λ|0⟩

mass terms → + logarithmic divergence
potential terms →: − logarithmic divergence



The effective eigenvalue equation

The eigenvalue equation in the NR limit (in the limit mg → ∞) is

[
|⃗k12|2

m
−B +

δm2
t

2m
+
δm2

t

2m

]
ψ12(κ⊥

12, x1) +
∫

d3k⃗1′2′

(2π)3 VQQ̄(k⃗12 − k⃗1′2′ )ψ1′2′ (κ⊥
1′2′ , x2′ ) = 0

where

VQQ̄(q⃗) = VC,BF (q⃗) +W (q⃗)

with

⇒ VC,BF (q⃗) = −
4
3

4πα
|q⃗|2

+ BF

⇒ W (q⃗) =
4
3

4πα
[ 1
q⃗2 −

1
q2

z

]
m2

G

m2
G + q⃗2 e

−2m2 |q⃗2|2

q2
z λ4

Remarks: If m2
G = 0, W = 0 ⇒ QED

If m2
G large ⇒ the possible divergence q⃗2 → ∞ cancels



Remarks

⋆ Eigenvalue equation for a single particle

HeffQ|Q⟩ = ∞|Q⟩

HeffQ̄|Q̄⟩ = ∞|Q̄⟩

⋆ The divergence is canceled when the quarks are bound
→ result compatible with confinement



The effective eigenvalue equation

Coulomb + Harmonic Oscillator

[
k⃗2

m
−B

]
ψ(k⃗) +

∫
d3q

(2π)3 VC, BF (q⃗)ψ(k⃗ − q⃗) − 4
3
α

2π b
−3

∑
i

τi
∂2

dk2
i

ψ(k⃗) = 0

b =
√

2m
λ2

0
The gluon-mass Ansatz term yields an additional interaction:
harmonic oscillator

Position space

[
2m− ∆r⃗

m
− 4

3α
(1
r

+BF
)

+ 1
2 κ̃ r

2
]
ψ(r⃗) = (2m+B)ψ(r⃗) = M ψ(r⃗) .

[Serafin, Gomez-Rocha, More, G lazek, EPJ C78 (2018)],
and [2023, in preparation]



The effective eigenvalue equation. Baryons

Eigenvalue equation for three quarks



The effective eigenvalue equation. Baryons

Harmonic oscillator term



Some numerical results: heavy mesons

[Serafin, Gomez-Rocha, More, G lazek, EPJ C78 (2018)]

Black: PDG masses, Blue: Our calculation

Green: average of many different approaches [MGR, Hilger, Krassnigg, PRD 93 (2016)]



Some numerical results: baryons



Summary and Conclusions

1. RGPEP is a Hamiltonian approach to QCD that connects phenomena
at different energy regimes

2. Individual-term divergences cancel each other in physical problems
within the formalism

3. Effective potential for quarkonium acquires a simple form in terms of
effective particles

4. Even in this crude approximation → reasonable spectra



Other applications

For example
• Scattering: ππ, NN

MGR, Arriola, PLB 800 (2020), PRD 101 (2020)
• Tetraquarks: K. Serafin et al. PRD 105 (2022)
• Proton Structure in Collisions

S.D. Glazek, P. Kubiczek [Few Body Syst. 57 (2016) 7, 509-513]
• Structure functions for heavy hadrons:

K. Serafin, PhD Thesis (Warsaw U. 2019).
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