

Quantum Simulation of Light-Front Quantum Field Theory

Michael Kreshchuk, Physics Division,

Lawrence Berkeley National Laboratory

April 17, 2024 ILCAC Seminar

Outline

1. What quantum computers are?

2. How can QCs accelerate solving LF QFT?

3. Peculiarities of simulating LF QFT on QCs.

4. Past, Current, & Future work.

1. What is a QC?

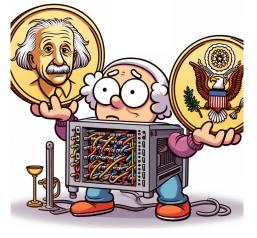
What is a QC?

• Wiki:

"A quantum computer is a computer that takes advantage of quantum mechanical phenomena."

• What I see:

"A system capable of naturally storing superpositions of states which can be manipulated and measured with sufficient precision to enable its utility as a computer."



Microsoft Designer Al

What is a QC? User perspective

• Wiki:

"A classical computer can solve the same computational problems as a quantum computer, given enough time. <u>Quantum advantage</u> <u>comes in the form of time complexity rather than computability.</u>"

• What I see:

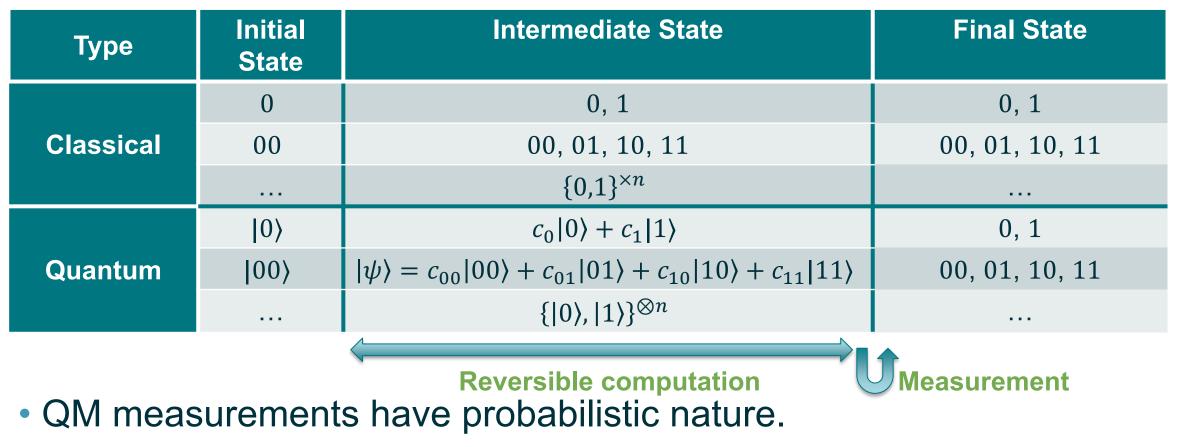
"Quantum computers are (potentially?) powerful calculators for (highly?) specific tasks."

What is a QC? Physicist perspective

Why would a physicist be interested in QC?

- Running previously inaccessible calculations / simulations
- Thinking differently (
 - Quantum-inspired classical algorithms (lin. alg.; q. chem; etc.);
 - Hamiltonian approaches to QFT* (ET Hamiltonian QFT offers many lessons for LF QFT);
 - Investigations of computational complexity.
- Scientific cross-pollination

• States of (deterministic) classical and quantum computers:

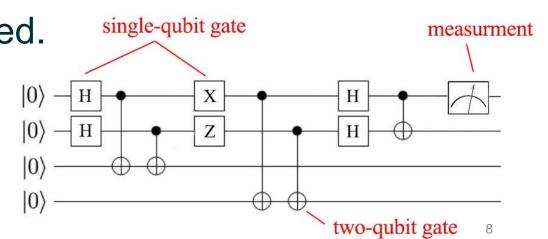


Quantum Computation

- Life story of a state in quantum computer:
 - Initialization 🤡
 - Unitary evolution
 - Measurement 🚊

$$\begin{split} |\psi_i\rangle &= |0\rangle^{\bigotimes n} \\ |\psi_f\rangle &= \dots U_3 U_2 U_1 |\psi_i\rangle \\ |\psi\rangle &\mapsto \{0,1\}^{\bigotimes n} \end{split}$$

- These stages can be conveniently represented by a circuit diagram:
- 1-, 2-, or many-qubit gates can be used.
- Efficient algorithm: #{qubits, gates, circuit runs} are input polynomial in problem parameters.



Quantum Simulation of Light-Front Quantum Field Theory | BERKELEY LAB

Quantum Simulation

- Choose a discretized model for the system of interest. Contingent on:
 - Observables of interest,
 - Choice of computational tools.

 $|f\rangle_{\bullet}$

• Mapping physical DOFs onto qubits, e.g., $c_0|\uparrow\rangle + c_1|\downarrow\rangle \rightarrow c_0|0\rangle + c_1|1\rangle$.

 $\langle f|O|f\rangle \approx \langle \tilde{f}|\tilde{O}|\tilde{f}\rangle$

• Quantum Computation:

 $|i\rangle$

Discretized

Quantum Computer

Juantum Simula

• $|\tilde{\iota}\rangle \rightarrow |\tilde{f}\rangle$ can but <u>does not have to</u> resemble some physical process. (Such as discretized time evolution or adiabatic interaction turn-on.)

Remarks

• "Fault-tolerance":

Errors in QCs accumulate at an exp rate \Rightarrow long circuits require error correction via quantum analogs of repetition codes, e.g. $|0\rangle \mapsto |000\rangle$.

• We are at an early stage (not even close to punch cards): Current quantum algorithms address operations on individual qubits.

• In the context of studying quantum physics, exponential advantage is likely to result from simulating **many-body** systems.

Quantum Simulation: Details

Manipulations with the state of a QC can be split into several stages:

- State preparation (eigenstates, thermal states, etc.);
- Time evolution (if necessary);
- Measurement (of particular observables—not of all the amplitudes!);

Algorithms achieving these tasks are based on a variety of methods:

- Product formulas $(e^{A+B+C+\cdots} \approx e^{\frac{A}{2}}e^{\frac{B}{2}}e^{\frac{C}{2}} \dots e^{\frac{C}{2}}e^{\frac{B}{2}}e^{\frac{A}{2}});$
- Hybrid quantum-classical methods (variational, subspace, etc.);

• Quantum Signal Processing (implement $|\psi\rangle \mapsto f(H)|\psi\rangle$ for some *H*).

Preparing Hamiltonian Eigenstates

- Variational: $E_0 \approx \min_{\vec{\theta}} \langle \psi(\vec{\theta}) | H | \psi(\vec{\theta}) \rangle$, where $| \psi(\vec{\theta}) \rangle = U(\vec{\theta}) | \psi_{\text{init}} \rangle$.
- Subspace methods (\approx Lanczos): { $|\psi_{init}\rangle$, $H|\psi_{init}\rangle$, $H^2|\psi_{init}\rangle$, ... }
- Adiabatic interaction turn-on.
- Filtering via Projection: $P_0 |\psi_{\rm init}\rangle = |\psi_0\rangle,$

where

- $\mathbf{P}_{0} = |\psi_{0}\rangle\langle\psi_{0}|.$
- Thermalization.

	$\ket{\psi_{ ext{init}}}$ optimization	Provably converges	Near- term	Fault- tolerant
Variational	✓	X	\checkmark	×
Subspace	\checkmark	\checkmark	\checkmark	✓
Adiabatic	×	?	×	✓
Filtering	\checkmark	\checkmark	×	√
Thermalization	×	?	×	✓

2. How can QCs accelerate solving LF QCD?

Hamiltonian operator

• Assume the following form of the LF Hamiltonian operator:

$$H = \sum_{\xi_1, \xi_2, \dots}^N c_{\xi_1 \xi_2 \dots} q_{\xi_1} q_{\xi_2} ,$$

where

- $\xi = \{n, \vec{n}_{\perp}, s, ...\}$ are the single-particle mode indices,
- q_{ξ} are boson/fermion creation/annihilation operators,
- $c_{\xi_1\xi_2...}$ are coefficients provided in the form of a lookup table or functional dependence (the latter may give extra advantage).

Exp vs Poly

- The number of states of the form $|\xi_1^{w_1}, \xi_2^{w_2}, ..., \xi_J^{w_J}\rangle$ scales as $\sim N^J$ for $J \ll N$, where N is the total number of modes.
- Classical simulation has exp(J) cost (memory, operations).
- Quantum simulation can be performed with poly(*J*) cost:
 - number of qubits: those used for storing the state + "ancillas",
 - number of quantum gates in a quantum circuit,
 - number of algorithm iterations.

Prerequisites

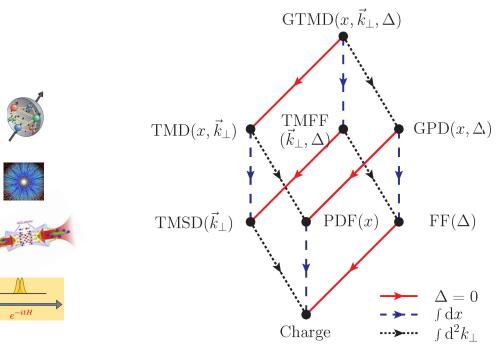
• Providing as input matrix elements of *H* in the basis of $|\xi_1^{w_1}, \xi_2^{w_2}, ...\rangle$ eliminates the possibility of exponential advantage.

• For an efficient simulation, it is crucial that the input is provided in the form of $c_{\xi_1\xi_2...}$ in $H = \sum_{\xi_1,\xi_2,...}^N c_{\xi_1\xi_2...} q_{\xi_1} q_{\xi_2}$.

• Therefore, a (properly renormalized) Hamiltonian operator acting on multi-particle states is required.

Scenarios

- Spectra and static observables,
- Thermodynamics,
- Background fields,
- Dynamics.



• • • •

Pasquini, Lorcé 2012

- Anything that can be calculated as $\langle \psi_2 | \hat{A} | \psi_1 \rangle$, where
 - $-\hat{A}$ is a known operator,
 - $-|\psi_{1,2}\rangle$ are states which one knows* how to prepare.

3. Peculiarities of simulating LF QFT on QCs.

Quantum Simulation of Light-Front Quantum Field Theory | BERKELEY LAB

What makes LF QCD an appealing application of QC?

- Resources: (hadron structure from LF) < (*ab initio* lattice dynamics):
 - Box size argument: fewer DOFs (N),
 - Harmonic resolution > 0: fewer occupied modes (J),
 - Fewer fermionic DOFs per spinor.
- Similarity with non-relativistic many-body physics:
 - Trivial vacuum*,
 - Straightforward treatment of fermions and bosons,
 - Easy to get observables from the wavefunction.
- Simple structure of Hamiltonian operator coefficients*.

Toy example: ϕ^4 theory Mapping onto qubits

• Binary encoding of an integer

(e.g., occupancy or momentum of a single bosonic DOF):

 $|0\rangle \mapsto |...00\rangle, |1\rangle \mapsto |...01\rangle, |2\rangle \mapsto |...10\rangle, |3\rangle \mapsto |...11\rangle, \text{ etc.}$

• Fock state encoding in ϕ^4 theory in 1+1D:

Encoding	Qubit Representation of $ 1^{5}; 2^{3}; 3\rangle \equiv 1^{5}; 2^{3}; 3^{1}; 4^{0}; 5^{0}; \rangle$	Qubit # Scaling	Qubit # Scaling for QCD
Direct	$ \underbrace{101}_{w_1=5}; \underbrace{011}_{w_2=3}; \underbrace{001}_{w_3=1}; \underbrace{000}_{w_4=0}; \underbrace{000}_{w_5=0};; \underbrace{000}_{w_K=0}\rangle$	$O(K \log K)$	$O(K\Lambda_{\perp}^{2}\log(K+\Lambda_{\perp}))$
Compact	$ \{\underbrace{001}_{n=1}, \underbrace{101}_{w_1=5}\}; \{\underbrace{010}_{n=2}, \underbrace{011}_{w_2=3}\}; \{\underbrace{010}_{n=3}, \underbrace{001}_{w_3=1}\}; 000 \dots \rangle$	$O(\sqrt{K}\log K)$	$O(K \log(K + \Lambda_{\perp}))$

• Not all the simulation techniques are compatible with Compact.

Toy example: ϕ^4 theory Measurement

• PDF measurement operator:

$$f(n/K) = \langle \psi | a_n^{\dagger} a_n | \psi \rangle.$$

• Corresponds to measuring the expectation value of the $a_n^{\dagger}a_n$ operator for the corresponding qubit register $| ...; ...; ... \rangle$.

• Generalizable to GPDs, GTMDs, etc.

What are the complications in QSim of LF QCD?

- What defines simulation cost:
 - Number of elementary operator terms in the Hamiltonian,
 - Locality of Hamiltonian,
 - Hamiltonian norm.
- Number of terms scales as N^3 or N^4 as compared to N in ET LGT.
- LF Hamiltonian is non-local **Wavelets!** (which is true for almost any basis other than real space lattice).
- A **tight** bound on $||H_{LF}||$ is not known (to me).

4. Past, Current, & Future work.

Quantum Simulation of Light-Front Quantum Field Theory | BERKELEY LAB

Existing work

- State preparation, fault-tolerant algorithms:
 - <u>2002.04016</u>, <u>2105.10941</u>, <u>2211.07826</u>.
- State preparation, near-term algorithms (variational):
 - <u>2009.07885</u>, <u>2011.13443</u>.
- Scattering with background field:

SFQED!

- <u>2307.09987</u>, <u>2310.13742</u>, <u>2404.00819</u>, <u>2205.07902</u>, <u>2311.18209</u>.
- Scattering of dynamical observables:
 - <u>2310.13742</u>, <u>2401.04496</u>.

Ongoing work: resource estimation for state preparation

- Motivation: estimating the size of a QC required for *ab initio* state preparation of the Sexaguark (*uuddss*) state, a SM DM candidate.
- DLCQ: $H = \dots + \sum_{\xi_1 \xi_2 \xi_3 \xi_4}^N h_{\xi_1 \xi_2 \xi_3 \xi_4} b_{\xi_1}^\dagger b_{\xi_2} a_{\xi_3}^\dagger a_{\xi_4} \delta(p_1 + p_3 p_3 p_4) + \dots$
- State preparation algorithm implements $|\psi\rangle \rightarrow P_0 |\psi\rangle$.
 - $-P_0$ is constructed using calls to the *Block Encoding* subroutine U_H .
 - $-U_{\mu}$ provides info about *H* by implementing $|\psi\rangle \rightarrow H|\psi\rangle$.

• State prep. cost =
$$\underbrace{\text{Cost}(U_H)}_{\sim N \checkmark} \times \underbrace{\text{Cost}(||H||)}_{\sim N^3???} \times \frac{1}{\Delta} \times \frac{1}{\frac{\gamma}{2??}} \times \log \frac{1}{\epsilon}.$$

Overtum Simulation of Light-Error Quantum Field Theory L BERKELEY LAB

Future work

- Deriving renormalized Hamiltonian operators.
- Reference state choice: utilizing best classically obtained solutions.
- Systematic analysis: uncertainties from truncation, ||*H*||, etc.
- Applying state-of-the-art simulation algorithms, e.g.:
 - Subspace methods; state preparation via thermalization; etc.
- Transverse LF lattice:
 - Taking advantage of locality in the transverse directions,
 - Suitable for scattering of dynamical composite particles?

Thank You!