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1. What is a QC?
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What is a QC?

• Wiki:
“A quantum computer is a computer that takes
advantage of quantum mechanical phenomena.”

• What I see:
“A system capable of naturally storing superpositions
of states which can be manipulated and measured with
sufficient precision to enable its utility as a computer.”
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What is a QC?
User perspective
• Wiki:

“A classical computer can solve the same computational problems 
as a quantum computer, given enough time. Quantum advantage 
comes in the form of time complexity rather than computability.”

• What I see:
“Quantum computers are (potentially?) powerful calculators for 
(highly?) specific tasks.”
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What is a QC?
Physicist perspective
Why would a physicist be interested in QC?
• Running previously inaccessible calculations / simulations �
• Thinking differently 🧐🧐

– Quantum-inspired classical algorithms (lin. alg.; q. chem; etc.);
– Hamiltonian approaches to QFT*

(ET Hamiltonian QFT offers many lessons for LF QFT);
– Investigations of computational complexity.

• Scientific cross-pollination 🍻🍻
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Digital QCs
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• States of (deterministic) classical and quantum computers:

• QM measurements have probabilistic nature.

Type Initial 
State

Intermediate State Final State

Classical
0 0, 1 0, 1

00 00, 01, 10, 11 00, 01, 10, 11
… 0,1 ×𝑛𝑛 …

Quantum
|0⟩ 𝑐𝑐0 0 + 𝑐𝑐1|1⟩ 0, 1

|00⟩ 𝜓𝜓 = 𝑐𝑐00 00 + 𝑐𝑐01 01 + 𝑐𝑐10 10 + 𝑐𝑐11|11⟩ 00, 01, 10, 11
… 0 , 1 ⊗𝑛𝑛 …

Reversible computation Measurement



Quantum Computation

• Life story of a state in quantum computer:
– Initialization 🍼🍼 𝜓𝜓𝑖𝑖 = 0 ⊗𝑛𝑛

– Unitary evolution 🧬🧬 |𝜓𝜓𝑓𝑓⟩ = …𝑈𝑈3 𝑈𝑈2𝑈𝑈1|𝜓𝜓𝑖𝑖⟩
– Measurement 🪦🪦 𝜓𝜓 ↦ 0, 1 ⊗𝑛𝑛

• These stages can be conveniently represented by a circuit diagram:
• 1-, 2-, or many-qubit gates can be used.
• Efficient algorithm:

#{qubits, gates, circuit runs} are
polynomial in problem parameters.
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Quantum Simulation
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• Choose a discretized model for the system of interest. Contingent on:
– Observables of interest,
– Choice of computational tools.

• Mapping physical DOFs onto qubits, e.g., 𝑐𝑐0 ↑ + 𝑐𝑐1 ↓ → 𝑐𝑐0 0 + 𝑐𝑐1|1⟩.
• Quantum Computation:

• ̃𝚤𝚤 → |𝑓𝑓⟩ can but does not have to resemble some physical process.
(Such as discretized time evolution or adiabatic interaction turn-on.)

𝑓𝑓𝑖𝑖
Discretized
Model 𝑓𝑓

̃𝚤𝚤 Quantum
Computer

𝑓𝑓 𝑂𝑂 𝑓𝑓 ≈ 𝑓𝑓 �𝑂𝑂 𝑓𝑓



Remarks

• “Fault-tolerance”:
Errors in QCs accumulate at an exp rate ⟹ long circuits require error 
correction via quantum analogs of repetition codes, e.g. 0 ↦ |000⟩.

• We are at an early stage (not even close to punch cards):
Current quantum algorithms address operations on individual qubits.

• In the context of studying quantum physics, exponential advantage is 
likely to result from simulating many-body systems.
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Quantum Simulation: Details

Manipulations with the state of a QC can be split into several stages:
• State preparation (eigenstates, thermal states, etc.);
• Time evolution (if necessary);
• Measurement (of particular observables—not of all the amplitudes!);

Algorithms achieving these tasks are based on a variety of methods:

• Product formulas (𝑒𝑒𝐴𝐴+𝐵𝐵+𝐶𝐶+⋯ ≈ 𝑒𝑒
𝐴𝐴
2𝑒𝑒

𝐵𝐵
2𝑒𝑒

𝐶𝐶
2 … 𝑒𝑒

𝐶𝐶
2𝑒𝑒

𝐵𝐵
2𝑒𝑒

𝐴𝐴
2);

• Hybrid quantum-classical methods (variational, subspace, etc.);
• Quantum Signal Processing (implement 𝜓𝜓 ↦ 𝑓𝑓(𝐻𝐻)|𝜓𝜓⟩ for some 𝐻𝐻).
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Preparing Hamiltonian Eigenstates

• Variational: 𝐸𝐸0 ≈ min
𝜽𝜽
⟨𝜓𝜓(�⃗�𝜃)|𝐻𝐻|𝜓𝜓(�⃗�𝜃)⟩, where |𝜓𝜓(�⃗�𝜃)⟩ = 𝑈𝑈(�⃗�𝜃)|𝜓𝜓init⟩.

• Subspace methods (≈Lanczos): {|𝜓𝜓init⟩,𝐻𝐻|𝜓𝜓init⟩,𝐻𝐻2|𝜓𝜓init⟩, … }
• Adiabatic interaction turn-on.
• Filtering via Projection:

P0|𝜓𝜓init⟩ = |𝜓𝜓0⟩,
where

P0 = |𝜓𝜓0⟩⟨𝜓𝜓0|.
• Thermalization.
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|𝜓𝜓init⟩
optimization

Provably 
converges

Near-
term

Fault-
tolerant

Variational ✔ ❌ ✔ ❌

Subspace ✔ ✔ ✔ ✔

Adiabatic ❌ ❓ ❌ ✔

Filtering ✔ ✔ ❌ ✔

Thermalization ❌ ❓ ❌ ✔



2. How can QCs accelerate 
solving LF QCD?
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Hamiltonian operator

• Assume the following form of the LF Hamiltonian operator:

𝐻𝐻 = �
𝜉𝜉1,𝜉𝜉2,…

𝑁𝑁

𝑐𝑐𝜉𝜉1𝜉𝜉2…𝑞𝑞𝜉𝜉1𝑞𝑞𝜉𝜉2 ,

where
• 𝜉𝜉 = 𝑛𝑛,𝑛𝑛⊥, 𝑠𝑠, … are the single-particle mode indices,
• 𝑞𝑞𝜉𝜉 are boson/fermion creation/annihilation operators,

• 𝑐𝑐𝜉𝜉1𝜉𝜉2… are coefficients provided in the form of a lookup table
or functional dependence (the latter may give extra advantage).
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Exp vs Poly

• The number of states of the form |𝜉𝜉1
𝑤𝑤1 , 𝜉𝜉2

𝑤𝑤2 , … , 𝜉𝜉𝐽𝐽
𝑤𝑤𝐽𝐽⟩ scales as ~𝑁𝑁𝐽𝐽

for 𝐽𝐽 ≪ 𝑁𝑁, where 𝑁𝑁 is the total number of modes.
• Classical simulation has exp(𝐽𝐽) cost (memory, operations).
• Quantum simulation can be performed with poly(𝐽𝐽) cost:

– number of qubits: those used for storing the state + “ancillas”,
– number of quantum gates in a quantum circuit,
– number of algorithm iterations.
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Prerequisites

• Providing as input matrix elements of 𝐻𝐻 in the basis of |𝜉𝜉1
𝑤𝑤1 , 𝜉𝜉2

𝑤𝑤2 , … ⟩
eliminates the possibility of exponential advantage.

• For an efficient simulation, it is crucial that the input is provided in 
the form of 𝑐𝑐𝜉𝜉1𝜉𝜉2… in 𝐻𝐻 = ∑𝜉𝜉1,𝜉𝜉2,…

𝑁𝑁 𝑐𝑐𝜉𝜉1𝜉𝜉2…𝑞𝑞𝜉𝜉1𝑞𝑞𝜉𝜉2.

• Therefore, a (properly renormalized) Hamiltonian operator acting on 
multi-particle states is required.
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Scenarios

• Spectra and static observables,
• Thermodynamics,
• Background fields,
• Dynamics.
• …

• Anything that can be calculated as 𝜓𝜓2 �̂�𝐴 𝜓𝜓1 , where
– �̂�𝐴 is a known operator,
– |𝜓𝜓1,2⟩ are states which one knows* how to prepare.
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Pasquini, Lorcé 2012



3. Peculiarities of simulating LF 
QFT on QCs.
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What makes LF QCD an appealing application of QC?

• Resources: (hadron structure from LF) < (ab initio lattice dynamics):
– Box size argument: fewer DOFs (𝑁𝑁),
– Harmonic resolution > 0: fewer occupied modes (𝐽𝐽),
– Fewer fermionic DOFs per spinor.

• Similarity with non-relativistic many-body physics:
– Trivial vacuum*,
– Straightforward treatment of fermions and bosons,
– Easy to get observables from the wavefunction.

• Simple structure of Hamiltonian operator coefficients*.
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Toy example: 𝜙𝜙4 theory
Mapping onto qubits
• Binary encoding of an integer

(e.g., occupancy or momentum of a single bosonic DOF):
|0⟩ ↦ | … 00⟩, |1⟩ ↦ | … 01⟩, |2⟩ ↦ | … 10⟩, |3⟩ ↦ | … 11⟩, etc.

• Fock state encoding in 𝜙𝜙4 theory in 1+1D:

• Not all the simulation techniques are compatible with Compact.
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Encoding Qubit Representation of
𝟏𝟏𝟓𝟓;𝟐𝟐𝟑𝟑;𝟑𝟑 ≡ |𝟏𝟏𝟓𝟓;𝟐𝟐𝟑𝟑;𝟑𝟑𝟏𝟏;𝟒𝟒𝟎𝟎;𝟓𝟓𝟎𝟎; … ⟩

Qubit # 
Scaling

Qubit # Scaling 
for QCD

Direct | �101
𝑤𝑤1=5

; �011
𝑤𝑤2=3

; �001
𝑤𝑤3=1

; �000
𝑤𝑤4=0

; �000
𝑤𝑤5=0

; … ; �000
𝑤𝑤𝐾𝐾=0

⟩ 𝑂𝑂(𝐾𝐾 log𝐾𝐾) 𝑂𝑂(𝐾𝐾Λ⊥2 log(𝐾𝐾 + Λ⊥))

Compact |{�001
𝑛𝑛=1

, �101
𝑤𝑤1=5

}; {�010
𝑛𝑛=2

, �011
𝑤𝑤2=3

}; {�010
𝑛𝑛=3

, �001
𝑤𝑤3=1

}; 000 … ⟩ 𝑂𝑂( 𝐾𝐾 log𝐾𝐾) 𝑂𝑂(𝐾𝐾 log(𝐾𝐾 + Λ⊥))



Toy example: 𝜙𝜙4 theory
Measurement
• PDF measurement operator:

𝑓𝑓 𝑛𝑛/𝐾𝐾 = ⟨𝜓𝜓|𝑎𝑎𝑛𝑛
†𝑎𝑎𝑛𝑛 𝜓𝜓 .

• Corresponds to measuring the expectation value of the 𝑎𝑎𝑛𝑛
†𝑎𝑎𝑛𝑛

operator for the corresponding qubit register | … ; ⏟…
𝑛𝑛

; … ⟩.

• Generalizable to GPDs, GTMDs, etc.
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What are the complications in QSim of LF QCD?

• What defines simulation cost:
– Number of elementary operator terms in the Hamiltonian,
– Locality of Hamiltonian,
– Hamiltonian norm.

• Number of terms scales as 𝑁𝑁3 or 𝑁𝑁4 as compared to 𝑁𝑁 in ET LGT.
• LF Hamiltonian is non-local

(which is true for almost any basis other than real space lattice).
• A tight bound on | 𝐻𝐻𝐿𝐿𝐿𝐿 | is not known (to me).
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Wavelets!



4. Past, Current, & Future work.
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Existing work

• State preparation, fault-tolerant algorithms:
– 2002.04016, 2105.10941, 2211.07826.

• State preparation, near-term algorithms (variational):
– 2009.07885, 2011.13443.

• Scattering with background field:
– 2307.09987, 2310.13742, 2404.00819, 2205.07902, 2311.18209.

• Scattering of dynamical observables:
– 2310.13742, 2401.04496.
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SFQED!

https://arxiv.org/abs/2002.04016
https://arxiv.org/abs/2105.10941
https://arxiv.org/abs/2211.07826
https://arxiv.org/abs/2009.07885
https://arxiv.org/abs/2011.13443
https://arxiv.org/abs/2307.09987
https://arxiv.org/abs/2310.13742
https://arxiv.org/abs/2404.00819
https://arxiv.org/abs/2205.07902
https://arxiv.org/abs/2311.18209
https://arxiv.org/abs/2310.13742
https://arxiv.org/abs/2401.04496


Ongoing work: resource estimation for state preparation

• Motivation: estimating the size of a QC required for ab initio state 
preparation of the Sexaquark (uuddss) state, a SM DM candidate.

• DLCQ: 𝐻𝐻 = ⋯+ ∑𝜉𝜉1𝜉𝜉2𝜉𝜉3𝜉𝜉4
𝑁𝑁 ℎ𝜉𝜉1𝜉𝜉2𝜉𝜉3𝜉𝜉4𝑏𝑏𝜉𝜉1

† 𝑏𝑏𝜉𝜉2𝑎𝑎𝜉𝜉3
† 𝑎𝑎𝜉𝜉4𝛿𝛿 𝑝𝑝1 + 𝑝𝑝3 − 𝑝𝑝3 − 𝑝𝑝4 + ⋯

• State preparation algorithm implements 𝜓𝜓 → P0 𝜓𝜓 .
– P0 is constructed using calls to the Block Encoding subroutine 𝑈𝑈𝐻𝐻.
– 𝑈𝑈𝐻𝐻 provides info about 𝐻𝐻 by implementing 𝜓𝜓 → 𝐻𝐻 𝜓𝜓 .

• State prep. cost = Cost(𝑼𝑼𝑯𝑯)
~𝑵𝑵✓

× Cost(||𝐻𝐻||)
~𝑁𝑁3???

× 1
Δ

× 1
⏟𝛾𝛾

???

× log 1
𝜖𝜖
.
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Δ = E1 − E0 & 𝛾𝛾 = 𝜓𝜓init 𝜓𝜓0 & 𝜖𝜖 = 1 − 𝜓𝜓init 𝜓𝜓0
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Future work

• Deriving renormalized Hamiltonian operators.
• Reference state choice: utilizing best classically obtained solutions.
• Systematic analysis: uncertainties from truncation, ||𝐻𝐻||, etc.
• Applying state-of-the-art simulation algorithms, e.g.:

– Subspace methods; state preparation via thermalization; etc.
• Transverse LF lattice:

– Taking advantage of locality in the transverse directions,
– Suitable for scattering of dynamical composite particles?
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Thank You!
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