Two Approaches to Adjoint QCD2

Silviu S. Pufu
Princeton University

Based on:
- arXiv:2101.05432 with Ross Dempsey and Igor Klebanov
- arXiv:2210.10895 with Ross Dempsey, Igor Klebanov, and Loki Lin
- arXiv:2311.09334 with Ross Dempsey, Igor Klebanov, and Benjamin Søgaard

February 21, 2024

Introduction: two-dimensional gauge theories

- Two-dimensional gauge theories are useful toy models for:
- confinement and mass gap; generalized symms, anomalies (HET)
- numerical algorithms (cond-mat)
- quantum simulators (atomic physics)
- Simpler, b/c gluons are non-dynamical
- Naively: Coulomb potential is linear, so all gauge theories w/o (fundamental) quarks should be confining.
- Pure $\operatorname{SU}\left(N_{C}\right)$ gauge theory
- confining, fundamental string tension $\sim g_{\mathrm{YM}}^{2} N_{C}$, no particles
- 't Hooft model: $\operatorname{SU}\left(N_{C}\right)$ gauge theory +1 fundamental Dirac fermion (quark) of mass $m_{\text {fund }}$.
- particles: mesons. (Large N_{0} single-trace spectrum: discrete, one Regge trajectory, solved using light-cone quantization
- maybe a bit too simple b/c it lacks adjoint d.o.f.'s

Introduction: two-dimensional gauge theories

- Two-dimensional gauge theories are useful toy models for:
- confinement and mass gap; generalized symms, anomalies (HET)
- numerical algorithms (cond-mat)
- quantum simulators (atomic physics)
- Simpler, b/c gluons are non-dynamical
- Naively: Coulomb potential is linear, so all gauge theories w/o (fundamental) quarks should be confining.
- Pure $S U\left(N_{c}\right)$ gauge theory
- confining, fundamental string tension $\sim g_{\mathrm{YM}}^{2} N_{C}$, no particles

Introduction: two-dimensional gauge theories

- Two-dimensional gauge theories are useful toy models for:
- confinement and mass gap; generalized symms, anomalies (HET)
- numerical algorithms (cond-mat)
- quantum simulators (atomic physics)
- Simpler, b/c gluons are non-dynamical
- Naively: Coulomb potential is linear, so all gauge theories w/o (fundamental) quarks should be confining.
- Pure $S U\left(N_{c}\right)$ gauge theory
- confining, fundamental string tension $\sim g_{\mathrm{YM}}^{2} N_{C}$, no particles
- 't Hooft model: $\operatorname{SU}\left(N_{c}\right)$ gauge theory +1 fundamental Dirac fermion (quark) of mass $m_{\text {fund }}$.
- particles: mesons. (Large N_{c} single-trace spectrum: discrete, one Regge trajectory, solved using light-cone quantization ['t Hooft '74])

Introduction: two-dimensional gauge theories

- Two-dimensional gauge theories are useful toy models for:
- confinement and mass gap; generalized symms, anomalies (HET)
- numerical algorithms (cond-mat)
- quantum simulators (atomic physics)
- Simpler, b/c gluons are non-dynamical
- Naively: Coulomb potential is linear, so all gauge theories w/o (fundamental) quarks should be confining.
- Pure $S U\left(N_{c}\right)$ gauge theory
- confining, fundamental string tension $\sim g_{\mathrm{YM}}^{2} N_{C}$, no particles
- 't Hooft model: $\operatorname{SU}\left(N_{c}\right)$ gauge theory +1 fundamental Dirac fermion (quark) of mass $m_{\text {fund }}$.
- particles: mesons. (Large N_{c} single-trace spectrum: discrete, one Regge trajectory, solved using light-cone quantization ['t Hooft '74])
- maybe a bit too simple b/c it lacks adjoint d.o.f.'s

$S U\left(N_{c}\right)+$ adjoint Majorana fermion

- This talk: $S U\left(N_{C}\right)$ gauge theory
+1 adjoint Majorana fermion (gluino) of mass m

$$
L=\operatorname{tr}\left(-\frac{1}{2 g_{\mathrm{YM}}^{2}} F_{\mu \nu}^{2}+i \bar{\Psi} \not D \Psi-m \bar{\Psi} \Psi\right)
$$

- studied at large N_{c} using discretized light-cone quantization (DLCQ)
or using
light-cone Hamiltonian truncation
- $m=0$: mass gap, screening of charges in the fundamental representation (!)
- $m>0$: mass gap, confining
- particles: gluinoballs

$S U\left(N_{c}\right)+$ adjoint Majorana fermion

- This talk: $S U\left(N_{C}\right)$ gauge theory
+1 adjoint Majorana fermion (gluino) of mass m

$$
L=\operatorname{tr}\left(-\frac{1}{2 g_{\mathrm{YM}}^{2}} F_{\mu \nu}^{2}+i \bar{\Psi} \not D \Psi-m \bar{\Psi} \Psi\right)
$$

- studied at large N_{c} using discretized light-cone quantization (DLCQ) [Dalley, Klebanov '92; Kutasov '93; Bhanot, Demeterfi, Klebanov '93; Dempsey, Klebanov, SSP '21; Dempsey, Klebanov, Lin, SSP '22] or using light-cone Hamiltonian truncation [Katz, Tavares, Xu '13]
- $m=0$: mass gap, screening of charges in the fundamental representation (!) [Gross, Klebanov, Matytsin, Smilga '95; Komargodski, Ohmori, Roumpedakis, Seifnashri '20; Dempsey, Klebanov, SSP '21] (see also [Lenz, Shifman, Thies '94; Cherman, Jacobson, Tanizaki, Unsal '20; Cherman, Jacobson, Neuzil '21]). Deep IR: coset $\frac{S O\left(N_{c}^{2}-1\right)_{1}}{S U\left(N_{c}\right) N_{c}} \mathbf{w} / c=0$.
- $m>0$: mass gap, confining
- particles: gluinoballs

Outline

(1) Adjoint QCD 2 in DLCQ at large N_{c}.
(2) Probe fundamental string tension with additional massive quarks [Dempsey, Klebanov, SSP '21].
(3) Spectrum of adjoint QCD_{2} at finite N_{c} using DLCQ [Dempsey, Klebanov, Lin, SSP '22].
(4) A Hamiltonian lattice model for adjoint $\mathrm{QCD}_{2}+$ numerical results [Dempsey, Klebanov, SSP, Søgaard '23].

Light-cone quantization

Think of $\left\langle\begin{array}{l}x^{+}=\frac{t+x}{\sqrt{2}} \text { as time } \\ x^{-}=\frac{t-x}{\sqrt{2}} \text { as space }\end{array}\right.$ and perform canonical quantization.

- Choose gauge $A_{-}=0$ and write $\psi_{i j}=\binom{\psi_{i j}}{\chi_{i j}}$
- A_{+}, χ are not dynamical (no x^{+}derivatives) \rightarrow can be eliminated.
- To compute mass spectrum first compute light-cone momentum P^{+}and light-cone Hamiltonian P^{-}, and then $M^{2}=2 P^{+} P^{-}$:

where $J_{i j}^{+}=\psi_{i k} \psi_{k j}-\frac{1}{N_{c}} \delta_{i j} \psi_{k l} \psi_{k}$ is the $S U\left(N_{C}\right)$ current.

Light-cone quantization

Think of $\left\{\begin{array}{l}X^{+}=\frac{t+x}{\sqrt{2}} \text { as time } \\ x^{-}=\frac{t-x}{\sqrt{2}} \text { as space }\end{array}\right.$ and perform canonical quantization.

- Choose gauge $A_{-}=0$ and write $\Psi_{i j}=\binom{\psi_{i j}}{\chi_{i j}}$.
- A_{+}, χ are not dynamical (no x^{+}derivatives) \rightarrow can be eliminated.
- To compute mass spectrum, first compute light-cone momentum and light-cone Hamiltonian P^{-}, and then $M^{2}=2 P^{+} P^{-}$:

where $J_{i j}^{+}=\psi_{i k} \psi_{k j}-\frac{1}{N_{c}} \delta_{i j} \psi_{k l} \psi_{l k}$ is the $S U\left(N_{C}\right)$ current.

Light-cone quantization

Think of

$$
\left\langle\begin{array}{l}
x^{+}=\frac{t+x}{\sqrt{2}} \text { as time } \\
x^{-}=\frac{t-x}{\sqrt{2}} \text { as space }
\end{array}\right.
$$

and perform canonical quantization.

- Choose gauge $A_{-}=0$ and write $\psi_{i j}=\binom{\psi_{i j}}{\chi_{i j}}$.
- A_{+}, χ are not dynamical (no x^{+}derivatives) \rightarrow can be eliminated.
- To compute mass spectrum, first compute light-cone momentum P^{+}and light-cone Hamiltonian P^{-}, and then $M^{2}=2 P^{+} P^{-}$:

$$
\begin{aligned}
P^{+} & =\int d x^{-} \operatorname{tr}\left(i \psi \partial_{-} \psi\right) \\
P^{-} & =-\int d x^{-} \operatorname{tr}\left(g_{\mathrm{YM}}^{2} J^{+} \frac{1}{\partial_{-}^{2}} J^{+}+i m^{2} \psi \frac{1}{\partial_{-}} \psi\right)
\end{aligned}
$$

where $J_{i j}^{+}=\psi_{i k} \psi_{k j}-\frac{1}{N_{c}} \delta_{i j} \psi_{k l} \psi_{l k}$ is the $S U\left(N_{c}\right)$ current.

Discretized light-cone quantization

- Discretization: compactify x^{-}into a circle of radius L with anti-periodic BC's for fermions [Brodsky, Hornbostel, Pauli '88]

$$
\left.\psi_{i j}\left(x^{-}\right)=\frac{1}{\sqrt{4 \pi L}} \sum_{o d d} n>0 \text { (} B_{i j}(n) e^{-i n x^{-} / 2 L}+B_{j i}^{\dagger}(n) e^{i n x^{-} / 2 L}\right)
$$

- Creation ops $B_{i j}^{\dagger}(n)$, annihilation ops $B_{i j}(n)$, for $n=1,3,5, \ldots$.
- States: act w/ $B^{\dagger}\left(n_{i}\right)$'s on $|0\rangle$, contract all $\operatorname{SU}\left(N_{C}\right)$ indices.

Discretized light-cone quantization

- Discretization: compactify x^{-}into a circle of radius L with anti-periodic BC's for fermions [Brodsky, Hornbostel, Pauli '88]

$$
\psi_{i j}\left(x^{-}\right)=\frac{1}{\sqrt{4 \pi L}} \sum_{\text {odd } n>0}\left(B_{i j}(n) e^{-i n x^{-} / 2 L}+B_{j i}^{\dagger}(n) e^{i n x^{-} / 2 L}\right)
$$

- Creation ops $B_{i j}^{\dagger}(n)$, annihilation ops $B_{i j}(n)$, for $n=1,3,5, \ldots$.
- States: act w/ $B^{\dagger}\left(n_{i}\right)$'s on $|0\rangle$, contract all $\operatorname{SU}\left(N_{c}\right)$ indices.

Discretized light-cone quantization

Procedure to obtain mass spectrum:

- Write all states (finitely many) with $\sum_{i} n_{i}=K$ and $P^{+}=\frac{K}{2 L}$.
- We have $<\begin{aligned} & \text { bosons for even } K \\ & \text { fermions for odd } K\end{aligned}$
- Compute P^{-}and diagonalize $M^{2}=2 P^{+} P^{-}$.
- Extrapolate to $K \rightarrow \infty$.
- Charge conjugation symmetry $\mathcal{C} \psi_{i j} \mathcal{C}^{-1}=\psi_{j i}$ splits the states into \mathbb{Z}_{2}-even (bosons \& fermions) and \mathbb{Z}_{2}-odd (bosons \& fermions).
- Start with large N_{C} b/c it is simpler: single trace sector decouples.

Discretized light-cone quantization

Procedure to obtain mass spectrum:

- Write all states (finitely many) with $\sum_{i} n_{i}=K$ and $P^{+}=\frac{K}{2 L}$.
- We have $<\begin{aligned} & \text { bosons for even } K \\ & \text { fermions for odd } K\end{aligned}$
- Compute P^{-}and diagonalize $M^{2}=2 P^{+} P^{-}$.
- Extrapolate to $K \rightarrow \infty$.
- Charge conjugation symmetry $\mathcal{C} \psi_{i j} \mathcal{C}^{-1}=\psi_{j i}$ splits the states into \mathbb{Z}_{2}-even (bosons \& fermions) and \mathbb{Z}_{2}-odd (bosons \& fermions).
- Start with large $N_{C} \mathrm{~b} / \mathrm{c}$ it is simpler: single trace sector decouples.

Discretized light-cone quantization

Procedure to obtain mass spectrum:

- Write all states (finitely many) with $\sum_{i} n_{i}=K$ and $P^{+}=\frac{K}{2 L}$.
- We have $<\begin{aligned} & \text { bosons for even } K \\ & \text { fermions for odd } K\end{aligned}$
- Compute P^{-}and diagonalize $M^{2}=2 P^{+} P^{-}$.
- Extrapolate to $K \rightarrow \infty$.
- Charge conjugation symmetry $\mathcal{C} \psi_{i j} \mathcal{C}^{-1}=\psi_{j i}$ splits the states into \mathbb{Z}_{2}-even (bosons \& fermions) and \mathbb{Z}_{2}-odd (bosons \& fermions).
- Start with large $N_{c} \mathrm{~b} / \mathrm{c}$ it is simpler: single trace sector decouples.

Numerical results for gluinoballs for $m=0$

- Gluinoballs: First done in the '90's.
- Lowest state: \mathbb{Z}_{2}-even fermion w/ $M_{1}^{2} \approx 5.72$ (units of $g_{\mathrm{YM}}^{2} N_{c} / 2 \pi$), almost entirely 3-bit

Fermions, \mathbb{Z}_{2} Even

Numerical results for gluinoballs for $m=0$

- In each sector, it looks like there's a continuum starting at $4 M_{1}^{2}$! (Very surprising-these are single trace states!)

Numerical results for gluinoballs for $m=0$

- In each sector, it looks like there's a continuum starting at $4 M_{1}^{2}$! (Very surprising-these are single trace states!)

Numerical results for gluinoballs for $m=0$

- The largest matrix we diagonalized has $\operatorname{dim} 9030450$ at $K=41$!

Bosons, \mathbb{Z}_{2} Odd

Numerical results for gluinoballs for $m=0$

- Exact degeneracies (in the discretized problem!) of the form [Gross, Hashimoto, Klebanov '97]

$$
P^{-}(K)=\sum_{i=1}^{\mathfrak{n}} P^{-}\left(K_{i}\right), \quad K=\sum_{i=1}^{\mathfrak{n}} K_{i}
$$

for any fermionic gluinoballs with $P^{-}\left(K_{i}\right)$.

- The orange points in the plots obey this exact relation.
- \Longrightarrow For any set of fermionic trajectories that asymptote to M_{i} as $K \rightarrow \infty$, there's a continuum starting at $M_{\text {threshold }}=\sum_{i=1}^{n} M_{i}$ in the fermionic/bosonic spectrum if \mathfrak{n} is odd/even.
- If $m>0$, the continuum disappears.

Numerical results for gluinoballs for $m=0$

- Exact degeneracies (in the discretized problem!) of the form [Gross, Hashimoto, Klebanov '97]

$$
P^{-}(K)=\sum_{i=1}^{\mathfrak{n}} P^{-}\left(K_{i}\right), \quad K=\sum_{i=1}^{\mathfrak{n}} K_{i}
$$

for any fermionic gluinoballs with $P^{-}\left(K_{i}\right)$.

- The orange points in the plots obey this exact relation.
- \Longrightarrow For any set of fermionic trajectories that asymptote to M_{i} as $K \rightarrow \infty$, there's a continuum starting at $M_{\text {threshold }}=\sum_{i=1}^{\mathfrak{n}} M_{i}$ in the fermionic/bosonic spectrum if \mathfrak{n} is odd/even.
- If $m>0$, the continuum disappears.

Numerical results for gluinoballs for $m=0$

- Exact degeneracies (in the discretized problem!) of the form [Gross, Hashimoto, Klebanov '97]

$$
P^{-}(K)=\sum_{i=1}^{\mathfrak{n}} P^{-}\left(K_{i}\right), \quad K=\sum_{i=1}^{\mathfrak{n}} K_{i}
$$

for any fermionic gluinoballs with $P^{-}\left(K_{i}\right)$.

- The orange points in the plots obey this exact relation.
- \Longrightarrow For any set of fermionic trajectories that asymptote to M_{i} as $K \rightarrow \infty$, there's a continuum starting at $M_{\text {threshold }}=\sum_{i=1}^{\mathfrak{n}} M_{i}$ in the fermionic/bosonic spectrum if \mathfrak{n} is odd/even.
- If $m>0$, the continuum disappears.

Universality of massive spectrum

- "Explanation" for degeneracies: universality of massive spectrum + large N_{C} factorization [Kutasov, Schwimmer '95; Dempsey, Klebanov, SSP '21]
- For 2d QCD w/ $m_{\text {ferm }}=0$ (in any rep), in the discretized problem:

where $J(n)$ are the Fourier modes of the $\operatorname{SU}\left(N_{c}\right)$ current.
e The current obeys a Kac-MMoody (KMM) algebra at lovel Kikn

$$
\left[J_{i j}(n), J_{k l}(m)\right]=\delta_{k j} J_{j l}(n+m)-\delta_{i l} J_{k j}(n+m)+k_{K M} \frac{n \delta_{n,-m}}{2}\left(\delta_{i l} \delta_{k j}-\frac{1}{N_{c}} \delta_{i j} \delta_{k l}\right)
$$

Universality of massive spectrum

- "Explanation" for degeneracies: universality of massive spectrum + large N_{C} factorization [Kutasov, Schwimmer '95; Dempsey,
Klebanov, SSP '21]
- For 2d QCD w/ $m_{\text {ferm }}=0$ (in any rep), in the discretized problem:

$$
P^{-}=\frac{2 g^{2} L}{\pi} \sum_{\text {even } n>0} \frac{\operatorname{tr}[J(-n) J(n)]}{n^{2}}
$$

where $J(n)$ are the Fourier modes of the $S U\left(N_{c}\right)$ current.

- The current obeys a Kac-Moody (KM) algebra at level KkM

Universality of massive spectrum

- "Explanation" for degeneracies: universality of massive spectrum + large N_{c} factorization [Kutasov, Schwimmer '95; Dempsey,
Klebanov, SSP '21]
- For 2d QCD w/ $m_{\mathrm{ferm}}=0$ (in any rep), in the discretized problem:

$$
P^{-}=\frac{2 g^{2} L}{\pi} \sum_{\text {even } n>0} \frac{\operatorname{tr}[J(-n) J(n)]}{n^{2}}
$$

where $J(n)$ are the Fourier modes of the $S U\left(N_{c}\right)$ current.

- The current obeys a Kac-Moody (KM) algebra at level $k_{\text {KM }}$

$$
\left[J_{i j}(n), J_{k l}(m)\right]=\delta_{k j} J_{i l}(n+m)-\delta_{i l} J_{k j}(n+m)+k_{\mathrm{KM}} \frac{n \delta_{n,-m}}{2}\left(\delta_{i l} \delta_{k j}-\frac{1}{N_{c}} \delta_{i j} \delta_{k l}\right)
$$

Kac-Moody blocks

- States (gauge-invariant and non-gauge invariant) split into current blocks (KM irreps):
- KM primary $|\chi\rangle_{I}$ annihilated by all $J_{i j}(n)$ with $n>0$. I labels states in irrep of $\operatorname{SU}\left(N_{c}\right)$.
- KM descendants $J_{i j}\left(-n_{1}\right) J_{k l}\left(-n_{2}\right) \cdots|\chi\rangle_{।}$
- Physical states are annihilated by $J(0)$.
- P^{-}e'values depend only on

KM irrep

[Kutasov, Schwimmer '95]
\Longrightarrow two (or more) KM irreps (either in the same theory or in different theories with same $k_{k m}$) give same P^{-}e'values.

Kac-Moody blocks

- States (gauge-invariant and non-gauge invariant) split into current blocks (KM irreps):
- KM primary $|\chi\rangle_{I}$ annihilated by all $J_{i j}(n)$ with $n>0$. I labels states in irrep of $S U\left(N_{c}\right)$.
- KM descendants $J_{i j}\left(-n_{1}\right) J_{k l}\left(-n_{2}\right) \cdots|\chi\rangle_{l}$
- Physical states are annihilated by $J(0)$.
- P^{-}e'values depend only on
[Kutasov, Schwimmer '95]
\Longrightarrow two (or more) KM irreps (either in the same theory or in different theories with same k_{KM}) give same P^{-}e'values.

Kac-Moody blocks

\(\left.\begin{array}{|c}(massless) adj Q C D_{2}

k_{\mathrm{KM}}=N_{c}

B_{i j}^{\dagger}\end{array}\right) \longleftrightarrow\)| (massless) QCD_{2} |
| :---: |
| $+N_{c}$ fundamental quarks |
| $k_{\mathrm{KM}}=N_{c}$ |
| $C_{i \alpha}^{\dagger}, D_{i \alpha}^{\dagger}, \alpha=1, \ldots, N_{c}$ |

share some of the same P^{-}spectrum. Schematically,

Kac-Moody blocks

(massless) adj QCD 2

$$
\begin{gathered}
k_{\mathrm{KM}}=N_{C} \\
B_{i j}^{\dagger}
\end{gathered}
$$

$$
\begin{gathered}
\text { (massless) } Q^{2} D_{2} \\
+N_{c} \text { fundamental quarks } \\
k_{\mathrm{KM}}=N_{C} \\
C_{i \alpha}^{\dagger}, D_{i \alpha}^{\dagger}, \alpha=1, \ldots, N_{c}
\end{gathered}
$$

share some of the same P^{-}spectrum. Schematically,

- $\mathfrak{n}=0$: bosonic gluinoballs
$\operatorname{tr}\left[J\left(-n_{1}\right) \cdots J\left(-n_{p}\right)\right]|0\rangle \longleftrightarrow \operatorname{tr}\left[J\left(-n_{1}\right) \cdots J\left(-n_{p}\right)\right]|0\rangle$.
- $\mathfrak{n}=1$: fermionic gluinoballs \longrightarrow single string states
$\operatorname{tr}\left[B^{\dagger}(1) J\left(-n_{1}\right) \cdots J\left(-n_{p}\right)\right]|0\rangle \longleftrightarrow C_{\alpha}^{\dagger}(1) J\left(-n_{1}\right) \cdots J\left(-n_{p}\right) D_{\beta}^{\dagger}(1)|0\rangle$
- $\mathfrak{n}=2$: bosonic gluinoballs \longrightarrow double string states $\operatorname{tr}\left[B^{\dagger}(1) J \cdots J B^{\dagger}(1) J \cdots J\right]|0\rangle \longleftrightarrow C_{\alpha}^{\dagger}(1) J \cdots J D_{\beta}^{\dagger}(1) C_{\gamma}^{\dagger}(1) J \cdots J D_{\delta}^{\dagger}(1)|0\rangle$ degenerate $\mathrm{w} /$ sums of single string states
- $\mathfrak{n}=3$: fermionic gluinoballs \longrightarrow triple string states, etc.

Gluinoball degeneracies

- At large N_{c}, the P^{-}e'values of $\mathfrak{n}>1$ states (orange dots in previous plots) are sums of e'values of $\mathfrak{n}=1$ states (black dots in previous plots of fermionic e'vals).
- These arguments prove the existence of continuum starting at
$2 M_{1}$ in bosonic spectrum (where M_{1} is the lowest fermionic
gluinoball).

Gluinoball degeneracies

- At large N_{c}, the P^{-}e'values of $\mathfrak{n}>1$ states (orange dots in previous plots) are sums of e'values of $\mathfrak{n}=1$ states (black dots in previous plots of fermionic e'vals).
- These arguments prove the existence of continuum starting at $2 M_{1}$ in bosonic spectrum (where M_{1} is the lowest fermionic gluinoball).

Additional massive quark and meson spectrum

- Continuum was suspected to be related to the fact that the massless theory is screening of fundamental charges [Gross, Hashimoto, Klebanov '97] .
- Can gain more insight by adding a very massive fundamental quark: $S U\left(N_{c}\right)$ gauge theory + 1 Majorana adjoint fermion (gluino) +1 fundamental fermion (quark)

- Use DLCQ to compute the meson spectrum.
- Focus on miund >0 (quark is a probe of adj QCD)
- Set $m_{\text {fund }}^{2}=1$ (in units of $g^{2} N_{c} / 2 \pi$) in the following plots as an example.

Additional massive quark and meson spectrum

- Continuum was suspected to be related to the fact that the massless theory is screening of fundamental charges [Gross, Hashimoto, Klebanov '97].
- Can gain more insight by adding a very massive fundamental quark: $S U\left(N_{c}\right)$ gauge theory + 1 Majorana adjoint fermion (gluino)
+1 fundamental fermion (quark)

$$
L=\operatorname{tr}\left(-\frac{1}{2 g_{\mathrm{YM}}^{2}} F_{\mu \nu}^{2}+\frac{i}{2} \bar{\Psi} \not D \psi-\frac{m}{2} \bar{\Psi} \psi\right)+\left(i \bar{q} \not D q-m_{\mathrm{fund}} \bar{q} q\right)
$$

- Use DLCQ to compute the meson spectrum.
- Focus on $m_{\text {fund }}>0$ (quark is a probe of adj QCD)
- Set $m_{\text {fund }}^{2}=1$ (in units of $g^{2} N_{c} / 2 \pi$) in the following plots as an example.

Additional massive quark and meson spectrum

- Continuum was suspected to be related to the fact that the massless theory is screening of fundamental charges [Gross, Hashimoto, Klebanov '97].
- Can gain more insight by adding a very massive fundamental quark: $S U\left(N_{c}\right)$ gauge theory + 1 Majorana adjoint fermion (gluino)
+1 fundamental fermion (quark)

$$
L=\operatorname{tr}\left(-\frac{1}{2 g_{\mathrm{YM}}^{2}} F_{\mu \nu}^{2}+\frac{i}{2} \bar{\Psi} \not D \psi-\frac{m}{2} \bar{\Psi} \psi\right)+\left(i \bar{q} \not D q-m_{\mathrm{fund}} \bar{q} q\right)
$$

- Use DLCQ to compute the meson spectrum.
- Focus on $m_{\text {fund }}>0$ (quark is a probe of adj QCD)
- Set $m_{\text {fund }}^{2}=1$ (in units of $g^{2} N_{c} / 2 \pi$) in the following plots as an example.

Additional massive quark and meson spectrum

- Continuum was suspected to be related to the fact that the massless theory is screening of fundamental charges [Gross, Hashimoto, Klebanov '97].
- Can gain more insight by adding a very massive fundamental quark: $S U\left(N_{c}\right)$ gauge theory + 1 Majorana adjoint fermion (gluino)
+1 fundamental fermion (quark)

$$
L=\operatorname{tr}\left(-\frac{1}{2 g_{\mathrm{YM}}^{2}} F_{\mu \nu}^{2}+\frac{i}{2} \bar{\Psi} \not D \psi-\frac{m}{2} \bar{\Psi} \psi\right)+\left(i \bar{q} \not D q-m_{\mathrm{fund}} \bar{q} q\right)
$$

- Use DLCQ to compute the meson spectrum.
- Focus on $m_{\text {fund }}>0$ (quark is a probe of adj QCD)
- Set $m_{\text {fund }}^{2}=1$ (in units of $g^{2} N_{c} / 2 \pi$) in the following plots as an example.

Fermions, \mathbb{Z}_{2} odd

Fermions, \mathbb{Z}_{2} even

Bosons, \mathbb{Z}_{2} odd
$2 \pi M^{2}$
$g_{\mathrm{YM}}^{2} N_{c}$

Bosons, \mathbb{Z}_{2} even

Degeneracies when $m_{\text {fund }}>0$

- Degeneracies: the following theories share P^{-}evalues
\(\left.\begin{array}{|c}THEORY \mathcal{T}

S U\left(N_{c}\right)

+1 massless adjoint

+1 massive fundamental\end{array}\right\} \longleftrightarrow\)| THEORY \mathcal{T}^{\prime} |
| :---: |
| $S U\left(N_{c}\right)$ |
| $+N_{c}$ massless fundamentals |
| (L) |
| +1 massive fundamental (H) |

\square
\square

Degeneracies when $m_{\text {fund }}>0$

- Degeneracies: the following theories share P^{-}evalues

$\longleftrightarrow |$| THEORY \mathcal{T}^{\prime} |
| :---: |
| $S U\left(N_{c}\right)$ |
| $+N_{C}$ massless fundamentals |
| (L) |
| +1 massive fundamental (H) |

Mesons in $\mathcal{T} \longleftrightarrow$ states in \mathcal{T}^{\prime} of the form $\left[C^{\dagger} J \cdots J D^{\dagger}\right]\left[C^{\dagger} J \ldots J D^{\dagger}\right] \cdots|0\rangle$:

- $\mathfrak{m}=0$: bosonic mesons in $\mathcal{T} \longleftrightarrow[H-H]$ in \mathcal{T}^{\prime}
- $\mathfrak{m}=1$: fermionic mesons in $\mathcal{T} \longleftrightarrow[H-L][L-H]$ in \mathcal{T}^{\prime}
- $\mathfrak{m}=2$: bosonic mesons in $\mathcal{T} \longleftrightarrow[H-L][L-L][L-H]$ in \mathcal{T}^{\prime} (same P^{-}as sum of $\mathfrak{m}=1$ meson and $\mathfrak{n}=1$ gluinoball in \mathcal{T})
- $\mathfrak{m}=3$: fermionic mesons in $\mathcal{T} \longleftrightarrow[H-L][L-L][L-L][L-H]$ in \mathcal{T}^{\prime} (same P^{-}as sum of $\mathfrak{m}=1$ meson and two $\mathfrak{n}=1$ gluinoballs in \mathcal{T})
- etc.
- All fermionic (and some bosonic) P^{-}e'values in theory \mathcal{T} are sums of P^{-}e'values in $\mathcal{T}^{\prime} \Longrightarrow$ continuous spectrum in \mathcal{T} \Longrightarrow quark-antiquark potential levels off \Longrightarrow screening in adj QCD
- Bound state $(\mathrm{s}) \Longrightarrow$ quark-antiquark potential is not exactly flat:

- All fermionic (and some bosonic) P^{-}e'values in theory \mathcal{T} are sums of P^{-}e'values in $\mathcal{T}^{\prime} \Longrightarrow$ continuous spectrum in \mathcal{T} \Longrightarrow quark-antiquark potential levels off
- Bound state $(\mathrm{s}) \Longrightarrow$ quark-antiquark potential is not exactly flat:

- All fermionic (and some bosonic) P^{-}e'values in theory \mathcal{T} are sums of P^{-}e'values in $\mathcal{T}^{\prime} \Longrightarrow$ continuous spectrum in \mathcal{T} \Longrightarrow quark-antiquark potential levels off \Longrightarrow screening in adj QCD

- Bound state(s) \Longrightarrow quark-antiquark potential is not exactly flat:

- All fermionic (and some bosonic) P^{-}e'values in theory \mathcal{T} are sums of P^{-}e'values in $\mathcal{T}^{\prime} \Longrightarrow$ continuous spectrum in \mathcal{T}
\Longrightarrow quark-antiquark potential levels off \Longrightarrow screening in adj QCD

- Bound state $(\mathrm{s}) \Longrightarrow$ quark-antiquark potential is not exactly flat:

Estimating V_{∞}

- Can estimate V_{∞} from where the continuum starts. At large $m_{\text {fund }}$,

$$
M_{\mathrm{cont}} \approx 2 m_{\mathrm{fund}}+V_{\infty}
$$

where $M_{\text {cont }}=2 M_{[H-L]}$ in \mathcal{T}^{\prime}.
($M_{[H-L]}$ and hence $M_{\text {cont }}$ can be found more precisely w/ DLCQ directly in \mathcal{T}^{\prime}.)

We find

$$
\begin{array}{r}
\frac{M_{\text {cont }}}{\sqrt{g_{\mathrm{YM}}^{2} N_{c} / 2 \pi}} \\
20 \\
15
\end{array}
$$

$$
V_{\infty} \approx 1.1 \sqrt{\frac{g_{\mathrm{YM}}^{2} N_{C}}{2 \pi}}
$$

Numerics at finite N_{c}

- Finite N_{c} : Must include multi-trace states, e.g. $\left(\operatorname{tr}\left(B^{\dagger}(1) B^{\dagger}(3)\right)\right)^{2}|0\rangle$ [Antonuccio, Pinsky '98]
- Also: there are $\operatorname{SU}\left(N_{C}\right)$ trace relations (null states)
- E.g. in $S U(2): \operatorname{tr}\left(B^{\dagger}(1) B^{\dagger}(1) B^{\dagger}(3) B^{\dagger}(3)\right)-\left(\operatorname{tr}\left(B^{\dagger}(1) B^{\dagger}(3)\right)\right)^{2}=0$
- Main challenge: determine the trace relations!
- For example, when $K=35$:

There are 3,421,191 single trace + multi-trace states.
For $N_{c}=2$, only 350 of them are not null.
For $N_{C}=3$, only 19,954 of them are not null, etc.

- Very difficult to remove null states from basis via inner products, but we developed an efficient method that avoids inner products

Numerics at finite N_{c}

- Finite N_{c} : Must include multi-trace states, e.g. $\left(\operatorname{tr}\left(B^{\dagger}(1) B^{\dagger}(3)\right)\right)^{2}|0\rangle$ [Antonuccio, Pinsky '98]
- Also: there are $S U\left(N_{c}\right)$ trace relations (null states).
- E.g. in $S U(2): \operatorname{tr}\left(B^{\dagger}(1) B^{\dagger}(1) B^{\dagger}(3) B^{\dagger}(3)\right)-\left(\operatorname{tr}\left(B^{\dagger}(1) B^{\dagger}(3)\right)\right)^{2}=0$.
- Main challenge: determine the trace relations!
- For example, when $K=35$:

There are $3,421,191$ single trace + multi-trace states.
For $N_{c}=2$, only 350 of them are not null.
For $N_{C}=3$, only 19,954 of them are not null, etc.

- Very difficult to remove null states from basis via inner products, but we developed an efficient method that avoids inner products

Numerics at finite N_{c}

- Finite N_{C} : Must include multi-trace states, e.g. $\left(\operatorname{tr}\left(B^{\dagger}(1) B^{\dagger}(3)\right)\right)^{2}|0\rangle$ [Antonuccio, Pinsky '98]
- Also: there are $S U\left(N_{c}\right)$ trace relations (null states).
- E.g. in $S U(2)$: $\operatorname{tr}\left(B^{\dagger}(1) B^{\dagger}(1) B^{\dagger}(3) B^{\dagger}(3)\right)-\left(\operatorname{tr}\left(B^{\dagger}(1) B^{\dagger}(3)\right)\right)^{2}=0$.
- Main challenge: determine the trace relations!
- For example, when $K=35$:

There are $3,421,191$ single trace + multi-trace states.
For $N_{c}=2$, only 350 of them are not null.
For $N_{c}=3$, only 19,954 of them are not null, etc.

- Very difficult to remove null states from basis via inner products, but we developed an efficient method that avoids inner products

Numerics at finite N_{c}

- Finite N_{C} : Must include multi-trace states, e.g. $\left(\operatorname{tr}\left(B^{\dagger}(1) B^{\dagger}(3)\right)\right)^{2}|0\rangle$ [Antonuccio, Pinsky '98]
- Also: there are $S U\left(N_{c}\right)$ trace relations (null states).
- E.g. in $S U(2)$: $\operatorname{tr}\left(B^{\dagger}(1) B^{\dagger}(1) B^{\dagger}(3) B^{\dagger}(3)\right)-\left(\operatorname{tr}\left(B^{\dagger}(1) B^{\dagger}(3)\right)\right)^{2}=0$.
- Main challenge: determine the trace relations!
- For example, when $K=35$:

There are $3,421,191$ single trace + multi-trace states.
For $N_{c}=2$, only 350 of them are not null.
For $N_{c}=3$, only 19,954 of them are not null, etc.

- Very difficult to remove null states from basis via inner products, but we developed an efficient method that avoids inner products [Dempsey, Klebanov, Lin, SSP '21].

Large N_{c} spectrum for massless theory

- To get oriented: Single-trace + multi-trace states at large N_{C} :
[Dempsey, Klebanov, SSP '21]

Gluinoball spectrum for $S U(2)+$ adjoint

Gluinoball spectrum for $S U(3)+$ adjoint

Gluinoball spectrum for $S U(4)+$ adjoint

$1 / N_{c}$ corrections

- Large N_{c} corrections are very small:

$$
\begin{aligned}
& M^{2}=\frac{g_{Y M}^{2} N_{c}}{2 \pi}\left(a_{0}+a_{1} / N_{c}^{2}+O\left(N_{c}^{-4}\right)\right) . \\
& \frac{2 \pi \Delta M^{2}}{g_{\mathrm{YM}}^{2} N_{c}}
\end{aligned}
$$

- For lowest state $a_{0} \approx 5.72$ and $a_{1} \approx 0.0034$.

Turning on mass for adjoint fermion

- Can turn on mass m for the adjoint fermion.
- At $m^{2}=g_{\mathrm{YM}}^{2} N_{c} /(2 \pi)$: $(1,1)$ supersymmetry [Kutasov '93; Boorstein, Kutasov '94; Popov '22]

LEFT: Lightest fermion and boson mass for varying m for $N_{C}=2$.
RIGHT: Spectrum of $N_{c}=2$ theory at $m^{2}=g_{\mathrm{YM}}^{2} / \pi$.

Turning on mass for adjoint fermion

- Can turn on mass m for the adjoint fermion.
- At $m^{2}=g_{\mathrm{YM}}^{2} N_{c} /(2 \pi)$: $(1,1)$ supersymmetry [Kutasov '93; Boorstein, Kutasov '94; Popov '22]

In $S U(2)$ adjoint QCD_{2} theory:

LEFT: Lightest fermion and boson mass for varying m for $N_{c}=2$. RIGHT: Spectrum of $N_{c}=2$ theory at $m^{2}=g_{\mathrm{YM}}^{2} / \pi$.

Beyond DLCQ

- Potential problem: DLCQ does not distinguish b/w $\operatorname{SU}\left(N_{c}\right)$ and $S U\left(N_{C}\right) / \mathbb{Z}_{N_{c}}$ gauge group, but spectra are different.
- For $S U\left(N_{C}\right)$, there are N_{C} distinct "universes"/flux tube sectors
- For $\operatorname{SU}\left(N_{C}\right) / \mathbb{Z}_{N_{c}}$: choose one of the N_{c} flux sectors depending on the value of a discrete theta angle.
- For which theory/universe is DLCQ computing the spectrum??

> Rest of the talk: Hamiltonian lattice gauge theory model.
> Lagrangian LGT \rightarrow discretize both space and Euclidean time Hamiltonian LGT \rightarrow discretize space, keep time continuous

Beyond DLCQ

- Potential problem: DLCQ does not distinguish b/w $\operatorname{SU}\left(N_{c}\right)$ and $S U\left(N_{C}\right) / \mathbb{Z}_{N_{c}}$ gauge group, but spectra are different.
- For $S U\left(N_{c}\right)$, there are N_{c} distinct "universes"/flux tube sectors [Witten '79, ... Komargdoski, Roumpedakis, Seifnashri '20] .
- For $\operatorname{SU}\left(N_{C}\right) / \mathbb{Z}_{N_{c}}$: choose one of the N_{C} flux sectors depending on the value of a discrete theta angle.
e For which theory/universe is DICQ computing the spectrum??

> Rest of the talk: Hamiltonian lattice gauge theory model.
> Lagrangian LGT \rightarrow discretize both space and Euclidean time Hamiltonian LGT \rightarrow discretize space, keep time continuous

Beyond DLCQ

- Potential problem: DLCQ does not distinguish b/w $\operatorname{SU}\left(N_{c}\right)$ and $S U\left(N_{C}\right) / \mathbb{Z}_{N_{c}}$ gauge group, but spectra are different.
- For $S U\left(N_{c}\right)$, there are N_{c} distinct "universes"/flux tube sectors [Witten '79, ..., Komargdoski, Roumpedakis, Seifnashri '20] .
- For $\operatorname{SU}\left(N_{c}\right) / \mathbb{Z}_{N_{c}}$: choose one of the N_{c} flux sectors depending on the value of a discrete theta angle.
- For which theory/universe is DLCQ computing the spectrum??

Rest of the talk: Hamiltonian lattice gauge theory model.
Lagrangian IGT \rightarrow discretize both space and Euclidean time Hamiltonian LGT \rightarrow discretize space, keep time continuous

Beyond DLCQ

- Potential problem: DLCQ does not distinguish b/w $\operatorname{SU}\left(N_{c}\right)$ and $S U\left(N_{C}\right) / \mathbb{Z}_{N_{c}}$ gauge group, but spectra are different.
- For $S U\left(N_{c}\right)$, there are N_{c} distinct "universes"/flux tube sectors [Witten '79, ..., Komargdoski, Roumpedakis, Seifnashri '20] .
- For $\operatorname{SU}\left(N_{c}\right) / \mathbb{Z}_{N_{c}}$: choose one of the N_{c} flux sectors depending on the value of a discrete theta angle.
- For which theory/universe is DLCQ computing the spectrum??

> Rest of the talk: Hamiltonian lattice gauge theory model.
> Lagrangian LGT \rightarrow discretize both space and Euclidean time Hamiltonian LGT \rightarrow discretize space, keep time continuous

Beyond DLCQ

- Potential problem: DLCQ does not distinguish $\mathrm{b} / \mathrm{w} \operatorname{SU}\left(N_{c}\right)$ and $\operatorname{SU}\left(N_{c}\right) / \mathbb{Z}_{N_{c}}$ gauge group, but spectra are different.
- For $\operatorname{SU}\left(N_{c}\right)$, there are N_{c} distinct "universes"/flux tube sectors [Witten '79, ..., Komargdoski, Roumpedakis, Seifnashri '20].
- For $\operatorname{SU}\left(N_{c}\right) / \mathbb{Z}_{N_{c}}$: choose one of the N_{c} flux sectors depending on the value of a discrete theta angle.
- For which theory/universe is DLCQ computing the spectrum??

Rest of the talk: Hamiltonian lattice gauge theory model.
Lagrangian LGT \rightarrow discretize both space and Euclidean time Hamiltonian LGT \rightarrow discretize space, keep time continuous

Hamiltonian lattice model

- First, let's consider one Majorana fermion Ψ with

$$
L=\frac{i}{2} \bar{\Psi} \not \partial \Psi-\frac{m}{2} \bar{\Psi} \Psi .
$$

- With $\gamma^{0}=\sigma_{2}, \gamma^{1}=-i \sigma_{3}, \gamma^{5}=\gamma^{0} \gamma^{1}=\sigma_{1}$, write $\Psi(x)=\binom{\psi_{u}(x)}{\psi_{d}(x)}$ and discretize ψ_{u} and ψ_{d} in a staggered way:

$$
\chi_{n}= \begin{cases}\sqrt{2 \boldsymbol{a}} \psi_{u}\left(x_{n}\right), & \text { if } n \text { is even } \\ \sqrt{\mathbf{2 a}} \psi_{d}\left(x_{n}\right), & \text { if } n \text { is odd }\end{cases}
$$

where $x_{n}=n a$ and a is the lattice spacing.

Hamiltonian lattice model

- The discretization gives the Hamiltonian for a Majorana chain:

$$
H=\sum_{n=0}^{N-1}\left[-\frac{i}{a} \chi_{n} \chi_{n+1}-i m(-1)^{n} \chi_{n} \chi_{n+1}\right]
$$

where $n \sim n+N$ and the lattice fermions χ_{n} obey $\left\{\chi_{n}, \chi_{m}\right\}=\delta_{n m}$.

- For $S U\left(N_{c}\right)$ gauge thy w/ adj. Majorana, start w/ $N_{c}^{2}-1$ Majorana chains and add gauge d.o.f's.
- $A_{1}(x) \rightarrow$ group elements $U_{n} \in S U\left(N_{C}\right)$ on links
$E(x) \rightarrow$ Lie alg. elements $L_{n}, R_{n} \in \mathfrak{s u}\left(N_{c}\right)$ acting on left/right of link

Hamiltonian lattice model

- The discretization gives the Hamiltonian for a Majorana chain:

$$
H=\sum_{n=0}^{N-1}\left[-\frac{i}{a} \chi_{n} \chi_{n+1}-i m(-1)^{n} \chi_{n} \chi_{n+1}\right]
$$

where $n \sim n+N$ and the lattice fermions χ_{n} obey $\left\{\chi_{n}, \chi_{m}\right\}=\delta_{n m}$.

- For $\operatorname{SU}\left(N_{c}\right)$ gauge thy w/ adj. Majorana, start w/ $N_{c}^{2}-1$ Majorana chains and add gauge d.o.f's.
- $A_{1}(x) \rightarrow$ group elements $U_{n} \in S U\left(N_{c}\right)$ on links
$E(x) \rightarrow$ Lie alg. elements $L_{n}, R_{n} \in \mathfrak{s u}\left(N_{c}\right)$ acting on left/right of link

$$
\cdots \xrightarrow[L_{0}]{R_{0}} L_{1} \quad R_{1}: L_{2}
$$

Hamiltonian lattice model

- Lattice Hamiltonian (for $n=0, \ldots, N-1$ and $A, B=1, \ldots N_{c}^{2}-1$)

$$
H_{m}=\sum_{n=0}^{N-1}\left[\frac{g_{\mathrm{YM}}^{2} a}{2} L_{n}^{A} L_{n}^{A}-\frac{i}{a} \chi_{n}^{A} U_{n}^{A B} \chi_{n+1}^{B}-i m(-1)^{n} \chi_{n}^{A} U_{n}^{A B} \chi_{n+1}^{B}\right]
$$

where $n \sim n+N$ and $U_{n}^{A B} \equiv 2 \operatorname{tr}\left(T^{A} U_{n} T^{B} U_{n}^{-1}\right)$ performs the parallel transport in the adjoint representation.

- Commutation relations (note $L_{n}^{A}=U_{n}^{A B} R_{n}^{B}$):

- Gauss law:

Hamiltonian lattice model

- Lattice Hamiltonian (for $n=0, \ldots, N-1$ and $A, B=1, \ldots N_{c}^{2}-1$)

$$
H_{m}=\sum_{n=0}^{N-1}\left[\frac{g_{\mathrm{YM}}^{2} a}{2} L_{n}^{A} L_{n}^{A}-\frac{i}{a} \chi_{n}^{A} U_{n}^{A B} \chi_{n+1}^{B}-i m(-1)^{n} \chi_{n}^{A} U_{n}^{A B} \chi_{n+1}^{B}\right]
$$

where $n \sim n+N$ and $U_{n}^{A B} \equiv 2 \operatorname{tr}\left(T^{A} U_{n} T^{B} U_{n}^{-1}\right)$ performs the parallel transport in the adjoint representation.

- Commutation relations (note $L_{n}^{A}=U_{n}^{A B} R_{n}^{B}$):

$$
\begin{aligned}
\left\{\chi_{n}^{A}, \chi_{m}^{B}\right\} & =\delta_{n m} \delta^{A B} \\
{\left[L_{n}^{A}, L_{m}^{B}\right] } & =-i \delta_{n m} f^{A B C} L_{n}^{C}, \quad\left[L_{n}, U_{m}\right]=\delta_{n m} T^{A} U_{n} \\
{\left[R_{n}^{A}, R_{m}^{B}\right] } & =i \delta_{n m} f^{A B C} R_{n}^{C}, \quad\left[R_{n}, U_{m}\right]=\delta_{n m} U_{n} T^{A}, \quad \text { etc. }
\end{aligned}
$$

- Gauss law:

Hamiltonian lattice model

- Lattice Hamiltonian (for $n=0, \ldots, N-1$ and $A, B=1, \ldots N_{c}^{2}-1$)

$$
H_{m}=\sum_{n=0}^{N-1}\left[\frac{g_{\mathrm{YM}}^{2} a}{2} L_{n}^{A} L_{n}^{A}-\frac{i}{a} \chi_{n}^{A} U_{n}^{A B} \chi_{n+1}^{B}-i m(-1)^{n} \chi_{n}^{A} U_{n}^{A B} \chi_{n+1}^{B}\right]
$$

where $n \sim n+N$ and $U_{n}^{A B} \equiv 2 \operatorname{tr}\left(T^{A} U_{n} T^{B} U_{n}^{-1}\right)$ performs the parallel transport in the adjoint representation.

- Commutation relations (note $L_{n}^{A}=U_{n}^{A B} R_{n}^{B}$):

$$
\begin{aligned}
\left\{\chi_{n}^{A}, \chi_{m}^{B}\right\} & =\delta_{n m} \delta^{A B} \\
{\left[L_{n}^{A}, L_{m}^{B}\right] } & =-i \delta_{n m} f^{A B C} L_{n}^{C}, \quad\left[L_{n}, U_{m}\right]=\delta_{n m} T^{A} U_{n} \\
{\left[R_{n}^{A}, R_{m}^{B}\right] } & =i \delta_{n m} f^{A B C} R_{n}^{C}, \quad\left[R_{n}, U_{m}\right]=\delta_{n m} U_{n} T^{A}, \quad \text { etc. }
\end{aligned}
$$

- Gauss law:

$$
L_{n}^{A}-R_{n-1}^{A}=Q_{n}^{A}=-\frac{i}{2} f^{A B C} \chi_{n}^{B} \chi_{n}^{C}
$$

Symmetries

- Focus on $N_{c}=2$ for concreteness and simplicity.
- Spectrum (from diagonalizing H) can be split into:
- Bosons and Fermions. Fermion Hilbert sp. of $\operatorname{dim} 2^{3 \mathrm{~N} / 2}$ is a rep. of the $50(3 \mathrm{~N})$ Clifford alg. The $50(3 \mathrm{~N})$ chirality matrix $=$ fermion parity operator.
- Two "universes" (trivial flux tube and fundamental flux tube) Roughly: gauge field irreps on links are integer / half-integer. More precise: Fermionic states are doublets of su(2) on each site.

with $\left|\ell_{n}-\ell_{n+1}\right|=1 / 2$.
- Translation by one lattice site takes simultaneously $m \rightarrow-m$, bosons \leftrightarrow fermions, trivial universe \leftrightarrow non-trivial universe while preserving the energy! (Same as \mathbb{Z}_{2} axial rotation in continuum.)

Symmetries

- Focus on $N_{c}=2$ for concreteness and simplicity.
- Spectrum (from diagonalizing H) can be split into:
- Bosons and Fermions.

Fermion Hilbert sp. of dim $2^{3 N / 2}$ is a rep. of the $\mathfrak{s o (3 N)}$ Clifford alg. The $\mathfrak{s o}(3 N)$ chirality matrix $=$ fermion parity operator.

- Two "universes" (trivial flux tube and fundamental flux tube) Roughly: gauge field irreps on links are integer / half-integer. More precise: Fermionic states are doublets of $\mathfrak{s u}(2)$ on each site

with $\left|\ell_{n}-\ell_{n+1}\right|=1 / 2$.
- Translation by one lattice site takes simultaneously $m \rightarrow-m$, bosons \leftrightarrow fermions, trivial universe \leftrightarrow non-trivial universe while preserving the energy! (Same as \mathbb{Z}_{2} axial rotation in continuum.)

Symmetries

- Focus on $N_{c}=2$ for concreteness and simplicity.
- Spectrum (from diagonalizing H) can be split into:
- Bosons and Fermions.

Fermion Hilbert sp. of dim $2^{3 N / 2}$ is a rep. of the $\mathfrak{s o (3 N)}$ Clifford alg.
The $\mathfrak{s o}(3 N)$ chirality matrix $=$ fermion parity operator.

- Two "universes" (trivial flux tube and fundamental flux tube) Roughly: gauge field irreps on links are integer / half-integer. More precise: Fermionic states are doublets of $\mathfrak{s u}(2)$ on each site.

- Translation by one lattice site takes simultaneously $m \rightarrow-m$, bosons \leftrightarrow fermions, trivial universe \leftrightarrow non-trivial universe while preserving the energy! (Same as \mathbb{Z}_{2} axial rotation in continuum.)

Symmetries

- Focus on $N_{c}=2$ for concreteness and simplicity.
- Spectrum (from diagonalizing H) can be split into:
- Bosons and Fermions.

Fermion Hilbert sp. of dim $2^{3 N / 2}$ is a rep. of the $\mathfrak{s o (3 N)}$ Clifford alg.
The $\mathfrak{s o}(3 N)$ chirality matrix $=$ fermion parity operator.

- Two "universes" (trivial flux tube and fundamental flux tube) Roughly: gauge field irreps on links are integer / half-integer. More precise: Fermionic states are doublets of $\mathfrak{s u}(2)$ on each site.

with $\left|\ell_{n}-\ell_{n+1}\right|=1 / 2$.
- Translation by one lattice site takes simultaneously $m \rightarrow-m$, bosons \leftrightarrow fermions, trivial universe \leftrightarrow non-trivial universe while preserving the energy! (Same as \mathbb{Z}_{2} axial rotation in continuum.)

Numerical exact diagonalization

- Numerics: exact diagonalization of H restricted to gauge-invariant sector
- For cutoff $\ell_{n} \leq \ell_{\text {max }}$, the number of gauge-invariant states is

$\ell_{\max } \backslash N$	4	6	8	10	12
2	40	224	1312	7808	46720
3	64	384	2432	15872	105472
4	88	544	3552	23936	164608

- Total \# of states is much larger \Longrightarrow find and work only with gauge-invariant states.

Numerics at $m=0$

- To extract mass spectrum: diagonalization, then $N \rightarrow \infty, a \rightarrow 0$. (Careful, b/c behavior on small circle is very different.)
- First, $m=0$. (We did $N=6,8,10,12$ for a range of a values.)

- Extrapolating lightest fermionic/bosonic states:

Good agreement w/ DLCQ! $\left(M_{f}^{2} \approx 5.7 g_{Y M}^{2} / \pi, M_{b}^{2} \approx 10.8 g_{Y M}^{2} / \pi\right)$

Numerics at $m=0$

- To extract mass spectrum: diagonalization, then $N \rightarrow \infty, a \rightarrow 0$. (Careful, b/c behavior on small circle is very different.)
- First, $m=0$. (We did $N=6,8,10,12$ for a range of a values.)

- Extrapolating lightest fermionic/bosonic states:

Good agreement w/ DLCQ! $\left(M_{f}^{2} \approx 5.7 g_{Y M}^{2} / \pi, M_{b}^{2}\right.$

Numerics at $m=0$

- To extract mass spectrum: diagonalization, then $N \rightarrow \infty, a \rightarrow 0$. (Careful, b / c behavior on small circle is very different.)
- First, $m=0$. (We did $N=6,8,10,12$ for a range of a values.)

- Extrapolating lightest fermionic/bosonic states:

$$
\begin{array}{lll}
M_{f} \approx 1.35 g_{\mathrm{YM}} & \Longrightarrow \quad & M_{f}^{2} \approx 5.7 g_{\mathrm{YM}}^{2} / \pi \\
M_{b} \approx 1.83 g_{\mathrm{YM}} & \Longrightarrow \quad & M_{b}^{2} \approx 10.5 g_{\mathrm{YM}}^{2} / \pi
\end{array}
$$

Good agreement w/ DLCQ! $\left(M_{f}^{2} \approx 5.7 g_{\mathrm{YM}}^{2} / \pi, M_{b}^{2} \approx 10.8 g_{\mathrm{YM}}^{2} / \pi\right)$

Fermion bilinear condensate

- Can also compute $\langle\bar{\psi} \psi\rangle$.
- Trivial universe: Extrapolation gives $\langle\bar{\psi} \psi\rangle \approx-0.37 g_{\mathrm{YM}}$.

- $\langle\bar{\psi} \psi\rangle$ has opposite sign in the other universe.

Changing the fermion mass

- Plot difference b/w lowest fermionic and bosonic energy levels in each universe.
- Matches well the lowest fermionic gluinoball mass M_{f} obtained from DLCQ for $m \geq 0$!

Recall:

$$
\begin{aligned}
m_{\mathrm{SUSY}} & =\frac{1}{\sqrt{\pi}} g_{\mathrm{YM}} \\
& \approx 0.56 g_{\mathrm{YM}}
\end{aligned}
$$

- Gap vanishes at $m=-m_{\text {SUSY }}$ (in trivial universe) or at $m=m_{\text {SUSY }}$ (in non-trivial universe) \Longrightarrow massless goldstino due to SUSY breaking by the flux tube.
- Agreement b/w lattice and DLCQ only for $m \geq 0$ in trivial universe and $m \leq 0$ in non-trivial universe.

Conclusion

- 2d gauge theories with adjoint matter are interesting toy models.
- DLCQ and Hamiltonian lattice gauge theory give good quantitative handles on the bound state spectrum and other observables.

For the future:

- More lattice numerics (for $N_{c}>2$ and more precise studies, perhaps using DMRG).
- Add four-fermion interactions to adjoint QCD $_{2}$ (Gross-Neveu adjoint $Q C D_{2}$) as in
- Determine the precise quark-anti-quark potential in adjoint Q_{2}.
- Study all the flux tube sectors in DLCQ, if possible.

Conclusion

- 2d gauge theories with adjoint matter are interesting toy models.
- DLCQ and Hamiltonian lattice gauge theory give good quantitative handles on the bound state spectrum and other observables.

For the future:

- More lattice numerics (for $N_{c}>2$ and more precise studies, perhaps using DMRG).
- Add four-fermion interactions to adjoint QCD $_{2}$ (Gross-Neveu adjoint QCD_{2}) as in [Cherman, Jacobson, Tanizaki, Unsal '20; Komargodski, Ohmori, Roumpedakis, Seifnashri '20]
- Determine the precise quark-anti-quark potential in adjoint QCD $_{2}$.
- Study all the flux tube sectors in DLCQ, if possible.

