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Introduction: two-dimensional gauge theories
Two-dimensional gauge theories are useful toy models for:

confinement and mass gap; generalized symms, anomalies (HET)

numerical algorithms (cond-mat)

quantum simulators (atomic physics)

Simpler, b/c gluons are non-dynamical

Naively: Coulomb potential is linear, so all gauge theories w/o
(fundamental) quarks should be confining.

Pure SU(Nc) gauge theory
confining, fundamental string tension ∼ g2

YMNc , no particles

’t Hooft model: SU(Nc) gauge theory + 1 fundamental Dirac
fermion (quark) of mass mfund.

particles: mesons. (Large Nc single-trace spectrum: discrete, one
Regge trajectory, solved using light-cone quantization [’t Hooft ’74] )

maybe a bit too simple b/c it lacks adjoint d.o.f.’s
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SU(Nc) + adjoint Majorana fermion

This talk: SU(Nc) gauge theory
+ 1 adjoint Majorana fermion (gluino) of mass m

L = tr

(
− 1

2g2
YM

F 2
µν + iΨ̄ /DΨ−mΨ̄Ψ

)
.

studied at large Nc using discretized light-cone quantization
(DLCQ) [Dalley, Klebanov ’92; Kutasov ’93; Bhanot, Demeterfi, Klebanov ’93;
Dempsey, Klebanov, SSP ’21; Dempsey, Klebanov, Lin, SSP ’22] or using
light-cone Hamiltonian truncation [Katz, Tavares, Xu ’13]

m = 0: mass gap, screening of charges in the fundamental
representation (!) [Gross, Klebanov, Matytsin, Smilga ’95; Komargodski,
Ohmori, Roumpedakis, Seifnashri ’20; Dempsey, Klebanov, SSP ’21] (see also
[Lenz, Shifman, Thies ’94; Cherman, Jacobson, Tanizaki, Unsal ’20; Cherman,

Jacobson, Neuzil ’21] ). Deep IR: coset SO(N2
c−1)1

SU(Nc)Nc
w/ c = 0.

m > 0: mass gap, confining

particles: gluinoballs
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Outline

1 Adjoint QCD2 in DLCQ at large Nc .

2 Probe fundamental string tension with additional massive quarks
[Dempsey, Klebanov, SSP ’21] .

3 Spectrum of adjoint QCD2 at finite Nc using DLCQ [Dempsey, Klebanov,

Lin, SSP ’22] .

4 A Hamiltonian lattice model for adjoint QCD2 + numerical results
[Dempsey, Klebanov, SSP, Søgaard ’23] .
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Light-cone quantization

Think of

x+ = t+x√
2

as time

x− = t−x√
2

as space
and perform canonical quantization.

Choose gauge A− = 0 and write Ψij =

(
ψij
χij

)
.

A+, χ are not dynamical (no x+ derivatives)→ can be eliminated.

To compute mass spectrum, first compute light-cone momentum
P+ and light-cone Hamiltonian P−, and then M2 = 2P+P−:

P+ =

∫
dx− tr (iψ∂−ψ) ,

P− = −
∫

dx− tr

(
g2

YMJ+ 1
∂2
−

J+ + im2ψ
1
∂−
ψ

)
.

where J+
ij = ψikψkj − 1

Nc
δijψklψlk is the SU(Nc) current.
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Discretized light-cone quantization

Discretization: compactify x− into a circle of radius L with
anti-periodic BC’s for fermions [Brodsky, Hornbostel, Pauli ’88]

ψij (x−) =
1√
4πL

∑
odd n > 0

(
Bij (n)e−inx−/2L + B†ji (n)einx−/2L

)

Creation ops B†ij (n), annihilation ops Bij(n), for n = 1,3,5, . . ..

States: act w/ B†(ni)’s on |0〉, contract all SU(Nc) indices.
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Discretized light-cone quantization

Procedure to obtain mass spectrum:

Write all states (finitely many) with
∑

i ni = K and P+ = K
2L .

We have
bosons for even K

fermions for odd K

Compute P− and diagonalize M2 = 2P+P−.

Extrapolate to K →∞.

Charge conjugation symmetry CψijC−1 = ψji splits the states into
Z2-even (bosons & fermions) and Z2-odd (bosons & fermions).

Start with large Nc b/c it is simpler: single trace sector decouples.
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Numerical results for gluinoballs for m = 0

Gluinoballs: First done in the ’90’s.
Lowest state: Z2-even fermion w/ M2

1 ≈ 5.72 (units of g2
YMNc/2π),

almost entirely 3-bit
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Numerical results for gluinoballs for m = 0

In each sector, it looks like there’s a continuum starting at 4M2
1 !

(Very surprising—these are single trace states!)
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Numerical results for gluinoballs for m = 0

The largest matrix we diagonalized has dim 9 030 450 at K = 41!
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Numerical results for gluinoballs for m = 0

Exact degeneracies (in the discretized problem!) of the form [Gross,

Hashimoto, Klebanov ’97]

P−(K ) =
n∑

i=1

P−(Ki) , K =
n∑

i=1

Ki

for any fermionic gluinoballs with P−(Ki).

The orange points in the plots obey this exact relation.

=⇒ For any set of fermionic trajectories that asymptote to Mi as
K →∞, there’s a continuum starting at Mthreshold =

∑n
i=1 Mi in the

fermionic/bosonic spectrum if n is odd/even.

If m > 0, the continuum disappears.
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Universality of massive spectrum

“Explanation” for degeneracies: universality of massive
spectrum + large Nc factorization [Kutasov, Schwimmer ’95; Dempsey,

Klebanov, SSP ’21]

For 2d QCD w/ mferm = 0 (in any rep), in the discretized problem:

P− =
2g2L
π

∑
even n > 0

tr[J(−n)J(n)]

n2

where J(n) are the Fourier modes of the SU(Nc) current.

The current obeys a Kac-Moody (KM) algebra at level kKM

[Jij(n), Jkl(m)] = δkjJil(n+m)−δilJkj(n+m)+kKM
nδn,−m

2

(
δilδkj −

1
Nc
δijδkl

)
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Kac-Moody blocks

States (gauge-invariant and non-gauge invariant) split into
current blocks (KM irreps):

KM primary |χ〉I annihilated by all Jij (n) with n > 0.
I labels states in irrep of SU(Nc).

KM descendants Jij (−n1)Jkl (−n2) · · · |χ〉I

Physical states are annihilated by J(0).

P− e’values depend only on
KM irrep

KM level kKM
[Kutasov, Schwimmer ’95]

=⇒ two (or more) KM irreps (either in the same theory or in
different theories with same kKM) give same P− e’values.
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Kac-Moody blocks

(massless) adj QCD2
kKM = Nc

B†ij
←→

(massless) QCD2
+Nc fundamental quarks

kKM = Nc
C†iα, D†iα, α = 1, . . . ,Nc

share some of the same P− spectrum. Schematically,
n = 0: bosonic gluinoballs
tr [J(−n1) · · · J(−np)] |0〉 ←→ tr [J(−n1) · · · J(−np)] |0〉 .

n = 1: fermionic gluinoballs −→ single string states
tr
[
B†(1)J(−n1) · · · J(−np)

]
|0〉 ←→ C†α(1)J(−n1) · · · J(−np)D†β(1)|0〉

n = 2: bosonic gluinoballs −→ double string states
tr
[
B†(1)J · · · JB†(1)J · · · J

]
|0〉 ←→ C†α(1)J · · · JD†β(1)C†γ(1)J · · · JD†δ(1)|0〉

degenerate w/ sums of single string states

n = 3: fermionic gluinoballs −→ triple string states, etc.
Silviu Pufu (Princeton University) 2-21-2024 15 / 41



Kac-Moody blocks

(massless) adj QCD2
kKM = Nc

B†ij
←→

(massless) QCD2
+Nc fundamental quarks

kKM = Nc
C†iα, D†iα, α = 1, . . . ,Nc

share some of the same P− spectrum. Schematically,
n = 0: bosonic gluinoballs
tr [J(−n1) · · · J(−np)] |0〉 ←→ tr [J(−n1) · · · J(−np)] |0〉 .

n = 1: fermionic gluinoballs −→ single string states
tr
[
B†(1)J(−n1) · · · J(−np)

]
|0〉 ←→ C†α(1)J(−n1) · · · J(−np)D†β(1)|0〉

n = 2: bosonic gluinoballs −→ double string states
tr
[
B†(1)J · · · JB†(1)J · · · J

]
|0〉 ←→ C†α(1)J · · · JD†β(1)C†γ(1)J · · · JD†δ(1)|0〉

degenerate w/ sums of single string states

n = 3: fermionic gluinoballs −→ triple string states, etc.
Silviu Pufu (Princeton University) 2-21-2024 15 / 41



Gluinoball degeneracies

At large Nc , the P− e’values of n > 1 states (orange dots in
previous plots) are sums of e’values of n = 1 states (black dots in
previous plots of fermionic e’vals).

These arguments prove the existence of continuum starting at
2M1 in bosonic spectrum (where M1 is the lowest fermionic
gluinoball).
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Additional massive quark and meson spectrum

Continuum was suspected to be related to the fact that the
massless theory is screening of fundamental charges [Gross,

Hashimoto, Klebanov ’97] .

Can gain more insight by adding a very massive fundamental
quark: SU(Nc) gauge theory + 1 Majorana adjoint fermion (gluino)
+ 1 fundamental fermion (quark)

L = tr

(
− 1

2g2
YM

F 2
µν +

i
2

Ψ̄ /DΨ− m
2

Ψ̄Ψ

)
+
(
i q̄ /Dq −mfundq̄q

)
.

Use DLCQ to compute the meson spectrum.

Focus on mfund > 0 (quark is a probe of adj QCD)

Set m2
fund = 1 (in units of g2Nc/2π) in the following plots as an

example.
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Degeneracies when mfund > 0

Degeneracies: the following theories share P− evalues

THEORY T
SU(Nc)

+ 1 massless adjoint
+ 1 massive fundamental

←→

THEORY T ′
SU(Nc)

+ Nc massless fundamentals
(L)

+ 1 massive fundamental (H)

Mesons in T ←→ states in T ′ of the form [C†J · · · JD†][C†J · · · JD†] · · · |0〉:
m = 0: bosonic mesons in T ←→ [H − H] in T ′
m = 1: fermionic mesons in T ←→ [H − L][L− H] in T ′
m = 2: bosonic mesons in T ←→ [H − L][L− L][L− H] in T ′
(same P− as sum of m = 1 meson and n = 1 gluinoball in T )
m = 3: fermionic mesons in T ←→ [H − L][L− L][L− L][L− H] in T ′
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Degeneracies when mfund > 0

Degeneracies: the following theories share P− evalues
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All fermionic (and some bosonic) P− e’values in theory T are
sums of P− e’values in T ′ =⇒ continuous spectrum in T
=⇒ quark-antiquark potential levels off =⇒ screening in adj QCD

q

q

⇠=

q

q

(a)

⇠=
(b)

Figure 7: The degeneracies among di↵erent states can be interpreted as splitting a string. In
(a), we show an m = 1 meson in theory T which splits into a two-string state [H � L][L � H]
in theory T 0. In (b), we show an n = 1 gluinoball in T which splits into a one-string state
[L � L] in theory T 0. Diagram (a) illustrates the origin of the continuous spectrum of mesons
in theory T .

other states in theory T . These states are marked in black in Figures 5c and 5d, and

they correspond to states of the form [H � H] in T 0.

• There are fermionic mesons (namely with m = 1) whose P� eigenvalues are unrelated

to other states in theory T . They are marked in blue in Figures 5a and 5b, and they

correspond to states of the form [H � L][L � H] in T 0.

• The remaining bosonic mesons (namely with m = 2, 4, 6, . . .) are degenerate with a

sum of n = 1 fermionic mesons and an odd number m � 1 of n = 1 gluinoballs, with

the same total K. They are marked in orange in Figures 5c and 5d.

• The remaining fermionic mesons (namely with m = 1, 3, 5, . . .) are degenerate with a

sum of n = 1 fermionic mesons and an even number m � 1 of n = 1 gluinoballs, with

the same total K. They are marked in orange in Figures 5a and 5b.

The last two bullet points explain the degeneracies noticed in the previous section.

The second bullet point above has remarkable implications. It states that the P� eigen-

values of all fermionic mesons with m = 1 at resolution parameter K in theory T can be

written as sums of two eigenvalues of [H � L] states in theory T 0 with total resolution pa-

rameter K + 1. From this information, we can reconstruct the [H � L] spectrum of P�

eigenvalues in theory T 0.

For example, at K = 3 in T we have only meson state, C†(1)B†(1)D†(1) with P�

eigenvalue 2yfund. The only possibility is that this is the sum of two K = 2 [H � L] states

50

Bound state(s) =⇒ quark-antiquark potential is not exactly flat:

V∞~ gYM
2Nc

~
1

gYM
2Nc

x

Veff
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Estimating V∞
Can estimate V∞ from where the continuum starts. At large mfund,

Mcont ≈ 2mfund + V∞ ,

where Mcont = 2M[H − L] in T ′.
(M[H − L] and hence Mcont can be found more precisely w/ DLCQ
directly in T ′.)

We find

V∞ ≈ 1.1

√
g2

YMNc

2π

5 10 15 20

5

10

15

20
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Numerics at finite Nc

Finite Nc: Must include multi-trace states,
e.g. (tr(B†(1)B†(3)))2|0〉 [Antonuccio, Pinsky ’98]

Also: there are SU(Nc) trace relations (null states).
E.g. in SU(2): tr(B†(1)B†(1)B†(3)B†(3))−

(
tr(B†(1)B†(3))

)2
= 0 .

Main challenge: determine the trace relations!

For example, when K = 35:
There are 3,421,191 single trace + multi-trace states.
For Nc = 2, only 350 of them are not null.
For Nc = 3, only 19,954 of them are not null, etc.

Very difficult to remove null states from basis via inner products,
but we developed an efficient method that avoids inner products
[Dempsey, Klebanov, Lin, SSP ’21] .
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Large Nc spectrum for massless theory

To get oriented: Single-trace + multi-trace states at large Nc :
[Dempsey, Klebanov, SSP ’21]

Lightest fermion:
M2

f ≈ 5.7g2
YMNc
2π

Lightest boson:
M2

b ≈ 10.8g2
YMNc
2π
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Gluinoball spectrum for SU(2) + adjoint
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Gluinoball spectrum for SU(3) + adjoint
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Gluinoball spectrum for SU(4) + adjoint
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1/Nc corrections

Large Nc corrections are very small:

M2 =
g2

YMNc

2π

(
a0 + a1/N2

c + O(N−4
c )
)
.

1

32
1

52
1

72
1

92

0.001

0.002

0.003

0.004

0.005

0.006

For lowest state a0 ≈ 5.72 and a1 ≈ 0.0034.
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Turning on mass for adjoint fermion

Can turn on mass m for the adjoint fermion.

At m2 = g2
YMNc/(2π): (1,1) supersymmetry [Kutasov ’93; Boorstein,

Kutasov ’94; Popov ’22]

In SU(2) adjoint QCD2 theory:

Lightest Boson

Lightest Fermion

0.2 0.4 0.6 0.8 1.0

5
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15

20

25
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50

70

110

LEFT: Lightest fermion and boson mass for varying m for Nc = 2.
RIGHT: Spectrum of Nc = 2 theory at m2 = g2

YM/π.
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Beyond DLCQ

Potential problem: DLCQ does not distinguish b/w SU(Nc) and
SU(Nc)/ZNc gauge group, but spectra are different.

For SU(Nc), there are Nc distinct “universes”/flux tube sectors
[Witten ’79, . . . , Komargdoski, Roumpedakis, Seifnashri ’20] .

For SU(Nc)/ZNc : choose one of the Nc flux sectors depending on
the value of a discrete theta angle.

For which theory/universe is DLCQ computing the spectrum??

Rest of the talk: Hamiltonian lattice gauge theory model.

Lagrangian LGT→ discretize both space and Euclidean time
Hamiltonian LGT→ discretize space, keep time continuous
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Hamiltonian lattice model

First, let’s consider one Majorana fermion Ψ with

L =
i
2

Ψ̄/∂Ψ− m
2

Ψ̄Ψ .

With γ0 = σ2, γ1 = −iσ3, γ5 = γ0γ1 = σ1, write Ψ(x) =

(
ψu(x)
ψd (x)

)
and discretize ψu and ψd in a staggered way:

χn =

{√
2aψu(xn) , if n is even√
2aψd (xn) , if n is odd

where xn = na and a is the lattice spacing.

χ0 χ1 χ2 χ3 χ4 χ5

a
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Hamiltonian lattice model

The discretization gives the Hamiltonian for a Majorana chain:

H =
N−1∑
n=0

[
− i

a
χnχn+1 − im(−1)nχnχn+1

]
where n ∼ n + N and the lattice fermions χn obey {χn, χm} = δnm.

For SU(Nc) gauge thy w/ adj. Majorana, start w/ N2
c − 1 Majorana

chains and add gauge d.o.f’s.

A1(x)→ group elements Un ∈ SU(Nc) on links
E(x)→ Lie alg. elements Ln,Rn ∈ su(Nc) acting on left/right of link

χ0 χ1 χ2 χ3 χ4 χ5U0 U1 U2 U3 U4

L0 R0 L1 R1 L2 R2 L3 R3 L4 R4

a
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Hamiltonian lattice model

Lattice Hamiltonian (for n = 0, . . . ,N − 1 and A,B = 1, . . .N2
c − 1)

Hm =
N−1∑
n=0

[
g2

YMa
2

LA
n LA

n −
i
a
χA

n UAB
n χB

n+1 − im(−1)nχA
n UAB

n χB
n+1

]
where n ∼ n + N and UAB

n ≡ 2 tr(T AUnT BU−1
n ) performs the

parallel transport in the adjoint representation.

Commutation relations (note LA
n = UAB

n RB
n ):

{χA
n , χ

B
m} = δnmδ

AB

[LA
n ,L

B
m] = −iδnmf ABCLC

n , [Ln,Um] = δnmT AUn ,

[RA
n ,R

B
m] = iδnmf ABCRC

n , [Rn,Um] = δnmUnT A , etc.

Gauss law:

LA
n − RA

n−1 = QA
n = − i

2
f ABCχB

nχ
C
n .
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[LA
n ,L

B
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n , [Ln,Um] = δnmT AUn ,

[RA
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B
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n , [Rn,Um] = δnmUnT A , etc.

Gauss law:

LA
n − RA

n−1 = QA
n = − i

2
f ABCχB

nχ
C
n .
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Hamiltonian lattice model
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Symmetries

Focus on Nc = 2 for concreteness and simplicity.

Spectrum (from diagonalizing H) can be split into:

Bosons and Fermions.
Fermion Hilbert sp. of dim 23N/2 is a rep. of the so(3N) Clifford alg.
The so(3N) chirality matrix = fermion parity operator.

Two “universes” (trivial flux tube and fundamental flux tube)
Roughly: gauge field irreps on links are integer / half-integer.
More precise: Fermionic states are doublets of su(2) on each site.

ℓ0 ℓ1 ℓ2 ℓ3 ℓ4

with |`n − `n+1| = 1/2.

Translation by one lattice site takes simultaneously m→ −m,
bosons↔ fermions, trivial universe↔ non-trivial universe while
preserving the energy! (Same as Z2 axial rotation in continuum.)

Silviu Pufu (Princeton University) 2-21-2024 36 / 41



Symmetries

Focus on Nc = 2 for concreteness and simplicity.

Spectrum (from diagonalizing H) can be split into:

Bosons and Fermions.
Fermion Hilbert sp. of dim 23N/2 is a rep. of the so(3N) Clifford alg.
The so(3N) chirality matrix = fermion parity operator.

Two “universes” (trivial flux tube and fundamental flux tube)
Roughly: gauge field irreps on links are integer / half-integer.
More precise: Fermionic states are doublets of su(2) on each site.

ℓ0 ℓ1 ℓ2 ℓ3 ℓ4

with |`n − `n+1| = 1/2.

Translation by one lattice site takes simultaneously m→ −m,
bosons↔ fermions, trivial universe↔ non-trivial universe while
preserving the energy! (Same as Z2 axial rotation in continuum.)

Silviu Pufu (Princeton University) 2-21-2024 36 / 41



Symmetries

Focus on Nc = 2 for concreteness and simplicity.

Spectrum (from diagonalizing H) can be split into:

Bosons and Fermions.
Fermion Hilbert sp. of dim 23N/2 is a rep. of the so(3N) Clifford alg.
The so(3N) chirality matrix = fermion parity operator.

Two “universes” (trivial flux tube and fundamental flux tube)
Roughly: gauge field irreps on links are integer / half-integer.
More precise: Fermionic states are doublets of su(2) on each site.

ℓ0 ℓ1 ℓ2 ℓ3 ℓ4

with |`n − `n+1| = 1/2.

Translation by one lattice site takes simultaneously m→ −m,
bosons↔ fermions, trivial universe↔ non-trivial universe while
preserving the energy! (Same as Z2 axial rotation in continuum.)

Silviu Pufu (Princeton University) 2-21-2024 36 / 41



Symmetries

Focus on Nc = 2 for concreteness and simplicity.

Spectrum (from diagonalizing H) can be split into:

Bosons and Fermions.
Fermion Hilbert sp. of dim 23N/2 is a rep. of the so(3N) Clifford alg.
The so(3N) chirality matrix = fermion parity operator.

Two “universes” (trivial flux tube and fundamental flux tube)
Roughly: gauge field irreps on links are integer / half-integer.
More precise: Fermionic states are doublets of su(2) on each site.

ℓ0 ℓ1 ℓ2 ℓ3 ℓ4

with |`n − `n+1| = 1/2.

Translation by one lattice site takes simultaneously m→ −m,
bosons↔ fermions, trivial universe↔ non-trivial universe while
preserving the energy! (Same as Z2 axial rotation in continuum.)

Silviu Pufu (Princeton University) 2-21-2024 36 / 41



Numerical exact diagonalization

Numerics: exact diagonalization of H restricted to gauge-invariant
sector

For cutoff `n ≤ `max, the number of gauge-invariant states is

`max\N 4 6 8 10 12
2 40 224 1312 7808 46720
3 64 384 2432 15872 105472
4 88 544 3552 23936 164608

Total # of states is much larger =⇒ find and work only with
gauge-invariant states.
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Numerics at m = 0

To extract mass spectrum: diagonalization, then N →∞, a→ 0.
(Careful, b/c behavior on small circle is very different.)

First, m = 0. (We did N = 6,8,10,12 for a range of a values.)

Lowest Fermion Lowest Boson

0.00 0.05 0.10 0.15 0.20

1.0

1.2

1.4

1.6

1.8

2.0

Extrapolating lightest fermionic/bosonic states:

Mf ≈ 1.35gYM =⇒ M2
f ≈ 5.7 g2

YM/π

Mb ≈ 1.83gYM =⇒ M2
b ≈ 10.5 g2

YM/π

Good agreement w/ DLCQ! (M2
f ≈ 5.7 g2

YM/π, M2
b ≈ 10.8 g2

YM/π)
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Fermion bilinear condensate

Can also compute 〈ψ̄ψ〉.
Trivial universe: Extrapolation gives 〈ψ̄ψ〉 ≈ −0.37gYM.

N = 6

N = 8

N = 10

N = 12

0.0 0.5 1.0 1.5 2.0

0.

-0.1

-0.2

-0.3

-0.37

〈ψ̄ψ〉 has opposite sign in the other universe.
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Changing the fermion mass

Plot difference b/w lowest fermionic and bosonic energy levels in
each universe.
Matches well the lowest fermionic gluinoball mass Mf obtained
from DLCQ for m ≥ 0!

Recall:

mSUSY =
1√
π

gYM

≈ 0.56gYM

Lattice (p = 0 universe)

Lattice (p = 1 universe)

DLCQ

-1.0 -0.5 0.0 0.5 1.0

0

1

2

3

4

Gap vanishes at m = −mSUSY (in trivial universe) or at m = mSUSY
(in non-trivial universe) =⇒ massless goldstino due to SUSY
breaking by the flux tube.
Agreement b/w lattice and DLCQ only for m ≥ 0 in trivial universe
and m ≤ 0 in non-trivial universe.
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Conclusion

2d gauge theories with adjoint matter are interesting toy models.

DLCQ and Hamiltonian lattice gauge theory give good quantitative
handles on the bound state spectrum and other observables.

For the future:
More lattice numerics (for Nc > 2 and more precise studies, perhaps
using DMRG).

Add four-fermion interactions to adjoint QCD2 (Gross-Neveu adjoint
QCD2) as in [Cherman, Jacobson, Tanizaki, Unsal ’20; Komargodski, Ohmori,

Roumpedakis, Seifnashri ’20]

Determine the precise quark-anti-quark potential in adjoint QCD2.

Study all the flux tube sectors in DLCQ, if possible.
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