Data Acquisition with Fast Electronics

Min Sang RYU CHEP/KNU

- Basic Introduction
- Detection efficiency and Accidental Coincidence
- How to get the charge value with VME ADC?
 - Energy Measurement, Calibration, and Resolution
- How to get the time value with VME TDC?
 - Time Measurement, Calibration, and resolution

2024.01.17

SPDAK 2024 (Daegu)

Radiation Science Research Institute Kyungpook National University

Motion of Charged Particles in E & B fields

Particle Track in Time Projection Chamber (TPC)

D.R. Nygren in 1974 PEP summer study eConf C740805 (1974) 58 The Time Projection Chamber: A New 4 pi Detector for Charged Particles

Readout scheme for data acquisition (DAQ)

Track reconstruction from detector hit information

$$\mathbf{F}_{\text{centripetal}} = \mathbf{F}_{\mathbf{B}} \rightarrow \frac{mv^2}{r} = qBv \rightarrow r = \frac{mv}{qB}$$

Transverse momentum $p_T = mv_T = m\left(\frac{qB}{m}\right)r = qBr = Br$ where $v_T = \omega r$ and angular velocity $\omega = \frac{v}{r} = \frac{qB}{m}$

According to 1 GeV =
$$1.6 \times 10^{-10}$$
 J, and $B(T)$, $r(m)$
 $p_T[GeV/c] = 10^{-9}Br\left(\frac{GeV}{m/s}\right) = 10^{-9}Br\left(\frac{GeV}{c}\right) 3 \times 10^8 = 0.3Br$

Longitudinal momentum

$$p_{Z} = \frac{p_{T}}{\tan \theta}$$

First TPC: PEP-4 TPC

PEP-4 TPC detector at SLAC

 $\sigma_{XY} = 160 \pm 2 \,\mu m$ $\sigma_Z = 340 \pm 5 \,\mu m \text{ with } v_d = 5 \,\text{cm}/\mu s$ Spatial resolution of the PEP-4 Time Projection Chamber H. Aihara, et al. IEEE Transactions on Nuclear Science, Vol. NS-30, No.1, Feb 1983 Recent results from the PEP-4 TPC Ronald J. Madaras LBL—17806

Gas: Ar/CH₄ = 80/20 at 8.5 atm

HV: -75 kV at a central membrane for 150 kV/m E field in the drift volume

Direction: Parallel in between E & B (4 kG)

Readout method:

Y: 183 sense wires with 4 mm spacing (80 cm length) in each sector

 \rightarrow total 2,196 wires are used to measure the ionization energy loss (dE/dx)

X: segmented cathode (7x7.5 mm² pads) 4 mm under the wires

→ total 13,823 pads are connected analog shift register (CCD), which records pulse height in 100 ns intervals

Z: electron drift time

PEP-4: Positron Electron Project-4

Data Acquisition (DAQ)

From Detectors to Data Storage

Detector with HVPS

Fast Electronics (NIM or VME)

VME system

Charge of signal (analog and digital)

Electric charge of analog signal with assumption:

$$\boldsymbol{Q}(\boldsymbol{C}) = \frac{V(V) \cdot \boldsymbol{t}(s)}{2 \cdot R(\Omega)} = \frac{-0.1 \, V \cdot 20 \, ns}{2 \cdot 50 \Omega} = -20 \, \boldsymbol{pC}$$

Charge of signal (analog and digital)

Analog Pulse Processing on Fast Electronics

Fan-In Fan-Out (FIFO) Preamplifier (Preamp)

NIM bin/crate

Nuclear Instrumentation Module (NIM): mechanical and electrical specifications for electronics modules used in experimental particle and nuclear physics.

First defined by the U.S. Atomic Energy Commission's report TID-20893 in 1968-1969, **NIM was most recently revised in 1990 (DOE/ER-0457T)**.

Output voltage: ±6V, ±12V, and ±24V DC

Size: H222xW34.3xD246 mm (except backplane power connector)

NIM

Device impedances

A basic concept in the processing of pulses from radiation detectors is the impedance of the devices that comprise the signal-processing chain.

Voltage (V_L) appearing across a loading (Z_L) by voltage-divider relation

$$V_L = V_S \frac{Z_L}{Z_0 + Z_L}$$

For the open-circuit or unloaded $(Z_L = \infty)$, voltage is $V_L = V_S$. \rightarrow not for the real experiment

To preserve maximum signal level, one normally wants V_L to be as large a fraction of V_S as possible. For $Z_L \gg Z_0$ then $V_L \cong V_S \rightarrow$ Fan-In & Fan-Out, Discriminator, ADC, etc

For $Z_L = Z_0$ then $V_L = V_S/2$ \rightarrow Divider or Splitter

Fan-In and Fan-Out (FIFO)

Fan-in: maximum number of input signals feeding into the input of a logic system

Fan-out: maximum number of output signals from the output of a logic system

Fan-In and Fan-Out (FIFO)

Ser. n.

 (\mathbf{O})

0 0 0

Õ

> > Ø

DISCRIMINATOR OUTPUT CONNECTOR

CAEN N625 Quad Linear Fan In / Fan Out

Preamplifier

Roleconverting a raw signal from the detector into output signal with gainLocationplacing close to the detector to reduce the noise and avoid the signal loss

✓ Specification for design

- Dynamic range
- Size of input signal
- Pulse pileup
- Signal-to-noise ratio
- Power consumption

✓ Configuration

- Voltage-sensitive preamplifiers
- Current-sensitive preamplifiers
- Charge-sensitive preamplifiers

Voltage-sensitive preamplifiers

https://www.sciencedirect.com/topics/physics-and-astronomy/preamplifiers

Charge-sensitive preamplifiers

https://www.sciencedirect.com/topics/physics-and-astronomy/preamplifiers

Basic principle of Q-sensitive preamp

The **dependence of a voltage-sensitive preamplifier on the input capacitance** (C_f) is a serious problem for many detection systems. \rightarrow to develop Q-sensitive preamplifiers

The charge (Q_d) accumulated on the electrode (C_d) is integrated on feedback capacitor (C_f) .

Then the potential (V_f) on that capacitor is then directly proportional to the original charge (Q_d) on the detector.

$$out \propto rac{Q_f}{C_f} \propto rac{Q_d}{C_f}$$

V

The condition that $Q_f \approx Q_d$ can only be achieved if no current flows into the preamplifier's input with $R_a \rightarrow \infty$.

Preamplifiers

https://www.caen.it

INPUTS:

- 50Ω impedance.

Reflection coefficient: ≤ 6% over input dynamic range.

Quiescent voltage: < ± 5 mV.

OUTPUTS:

Risetime: ≤ 3.0 ns.

Falltime: ≤ 2.0 ns.

- Maximum positive amplitude (linear): 400 mV (50Ω impedance).
- Maximum negative amplitude (linear): -4 V (50Ω impedance).
- Overshoot: ± 10% for input risetimes of 2 ns and with the 2nd output terminated in 50Ω.
- Quiescent voltage adjustable (via front panel trimmer for each channel) in the range from -20 mV to +50 mV.

GENERAL:

- Gain: fixed 10 ± 3%, non-inverting.

- Coupling: direct.

I/O delay: ≤ 12 ns.

Noise: less than 1 mV, referred to input.

- Interchannel crosstalk: better than -56 dB in the worst test condition, and with both the outputs of the tested channel terminated in 50Ω.
- Bandwidth:
- 160 MHz (with both the channel's outputs terminated in 50Ω);

180 MHz (single ended output).

CAEN N412 8ch Fast Amplifier

Digital Pulse Processing on Fast Electronics

Discriminator (Disc.) Coincidence Logic Unit (Coin.)

Discriminator (DISC)

Role: generating the logical output pulse when the input pulse exceeds the discriminator preset level

→ If input voltages exceeds the threshold value +V then diode D_1 conducts and DISC generates the logical output pulses.

Timing jitter and walk

http://www.peo-radiation-technology.com/wp-content/uploads/2015/09/ort_15_fast-timing-discriminators_datasheet_peo.pdf

The contribution of noise to the (Timing) Jitter

Timing Jitter = $e_{noise}/(dV/dt)$

 $\mathbf{e}_{\text{noise}}$: voltage amplitude of the noise superimposed on the analog pulse

dV/dt: slope of the signal when its leading edge crosses the discriminator threshold

"(Timing) Walk" is the systematic dependence of the time marker on the amplitude of the input pulse.

LED and **CFD**

http://www.peo-radiation-technology.com/wpcontent/uploads/2015/09/ort_15_fast-timing-discriminators_datasheet_peo.pdf

Time resolution: $\sigma_{CFD} < \sigma_{LED}$

Role of Logic Unit

OUTPUT

Q

0

1

Role: generating the gating pulse when the preset of logical algorism against with inputs is true

Logic Unit

UAD COINCIDENCE LOGIC UNIT Mod. N455 0 0 0 AND 0 0 0 WDT 0 0 VP OU 0 0 AND 0 0 0 \odot 0 VP OUT 0 AND 0 0 0 OUT WDT 0 0 VP OU 0 0 AND 0 0 OR 0

https://www.caen.it

CAEN N455 Quad Coincidence Logic Unit

How many accidental events will occur?

Single random pulse trains $\begin{array}{c} I_{1} & I_{2} & I_{3} & I_{4} \\ I_{1} & I_{2} & I_{3} & I_{4} \\ I_{1} & I_{1} & I_{2} & I_{3} & I_{4} \\ I_{1} & I_{1} & I_{1} & I_{1} & I_{1} & I_{1} \\ I_{1} & I_{1} \\ I_{1} & I_{1} \\ I_{1} & I_{1$

Counting statistics of random events

Coincidence rate (R₂) of two random pulse trains $R = 2r_A r_B T_W$ Rate of single random pulse train: r_A and r_B in Hz Time width of each pulse: T_W in sec If r_A = 10 Hz, r_B = 20 Hz, and T_W = 50 ns, $R = 2r_A r_B T_W = 2 \cdot 10 \cdot 20 \cdot 50 \cdot 10^{-9}$ (Hz) = 20 μ Hz = $\frac{20}{10^6 s} = \frac{20}{\sim 278h} = \frac{20}{11.6 days}$

Coincidence rate (R₃) of three random pulse trains (single rate: r_A, r_B, and r_C in Hz) $R = 3r_A r_B r_C T_W^2$ If r_A = 10 Hz, r_B = 20 Hz, r_C = 20 Hz, and T_W = 50 ns, $R = 3r_A r_B r_C T_W^2 = 3 \cdot 10 \cdot 20 \cdot 20 \cdot (50 \times 10^{-9})^2 = 3 \times 10^{-11} (Hz) = 30 \ pHz = \frac{30}{10^{12} s} = \frac{30}{31709 years}$

Oscilloscope

Oscilloscope

Components of waveform

Base line Pulse height Pulse width

Proximal line: 10% of pulse heightMesial line: 50% of pulse heightDistal line: 90% of pulse height

Rise time (or attack time) at leading edge
Fall time (or decay time) at trailing edge
→ These depend on the polarity of waveform.

Overshoot Undershoot Ringing

Time period

Time (s)

Amplitude Ambiguity of Pulse Shape

Bandwidth:

오실로스코프 회로를 거치면서 최소 진폭 감쇠가 나타나는 최대 주파수 값

Maximum frequency of an input signal which can pass through the analog front end of the scope with minimal amplitude loss

Bandwidth derating curve

If you require **3% accuracy** of sine wave, you need to derate it by a factor of ~0.3 x (Bandwidth of scope). → A **350 MHz scope** can **accurately measure 105 MHz within 3% accuracy**.

Time Ambiguity of Pulse Shape

Sampling rate: <mark>1초당 최대 샘플수</mark>

Maximum number of samples per second

T = 1 sec

Cables & Connectors

Radio Guide (RG) Cables

RG174/U	NO	MINAL ATTEN	UATION
Norraio V	MHz	db/100 ft	db/100n
80.110 in.	50	5.8	19.0
Nominal	100	8.4	27.6
	400	12.5	62.3
50 Ohm Impedance	1000	34.0	111.5
RG316/U	NO	MINAL ATTEN	UATION
Kasto,e	MHz	db/100 ft	db/100m
20.098 in.	50	5.6	18.4
Nominal	100	8.3	27.2
A	200	12.0	39.4
50 Ohm Impedance	1000	17.5	05.1
	1000	29.0	35.1
RG58C/U	NO	MINAL ATTEN	IUATION
Contractory of Contra	MHz	db/100 ft	db/100n
60.195 in.	50	3.3	10.8
Nominal	100	4.9	16.1
	200	1.3	23.9
50 Ohm Impedance 🕴 📍	1000	20.0	65.6
RG59A/U	NOMINAL ATTENUATION		
Maggins.	MHZ	db/100 ft	ab/100m
(10.240 in.	100	2.8	9.2
	200	5.9	19.4
	400	8.5	27.9
75 Ohm Impedance 🕇	1000	13.8	45.3
RG59B/U	NO	MINAL ATTEN	UATION
WALKING .	MHz	db/100 ft	db/100m
00.242 in.	50	2.4	7.9
Nominal	100	3.4	11.1
	200	4.9	16.1
75 Ohm Impedance	400	7.0	23.0
75 Onin impedance	1000	12.0	39.3
RG6/U ¥	NOM	VINAL ATTEN	UATION
Contraction of the local division of the loc	MHz	db/100 ft	db/100m
20.270 h.	50	1.5	4.9
Norman Norman	100	2.1	6.9
	400	45	14.8
75 Ohm Impedance	1000	7.3	23.9
			and the second second

How fast signals move in cables? $v_{signal} = -5 \text{ ns/m}$

	c (m/s)	Velocity Fraction (%)	v (m/s)	v (m/ns)	v (cm/ns)	Connector type
Vacuum	3.00E+08	1	3.00E+08	0.300	30.0	
RG174	3.00E+08	0.66	1.98E+08	0.198	19.8	LEMO
RG316	3.00E+08	0.79	2.37E+08	0.237	23.7	LEMO
RG58	3.00E+08	0.66	1.98E+08	0.198	19.8	BNC

Power loss $\alpha_P(dB/km) = \frac{10}{L} log_{10}^{(P_1/P_2)}$

 α_{P} = power attenuation, or loss between source and destination, unit (dB/km) P_{1} = power at the beginning (Source), unit (W) P_{2} = power at the end (Destination), unit (W) L = distance between P_{1} and P_{2} , unit (km)

If P₁ = 1 W, P₂ = 0.5 W, and L = 0.1 km, $\alpha_P = \frac{10}{0.1} log_{10}^{(1/0.5)} = 3.01 \text{ dB/100m}$

Power at the distance (L) : $P_2 = P_1 \cdot \exp(-\alpha_P L)$

RG58/U: 20 AWG (Φ0.812 mm) bare copper (28.5 pF/ft) RG58A/U: 20 AWG standard thin copper (30.8 pF/ft) RG58C/U: same as RG58A/U but not same outer jacket material

RG59A/U: 22 AWG (Φ0.644 mm) bare compacted copper RG59B/U: 22 AWG solid bare copper covered steel

U: Universal AWG: American Wire Gauge

HV transmission

Signal transmission

Connectors for signal pulse and high voltage

Signal connection

LEMO (company founder, engineer **Lé**on **Mo**uttet) name of an electronic and fibre optic connector manufacturer push-pull connectors NIM, CAMAC, VME, detector, and etc

BNC (Bayonet Neill-concelman) connector: miniature quick connect/disconnect 50 or 75 ohm impedance frequencies below 4 GHz

> voltage below 500 V NIM, audio, video, detector and etc

High voltage connection

MHV (miniature high voltage): type of RF connector used for terminating a coaxial cable

SHV (safe high voltage) connector: safer handling HV than other connectors standard: up to5 kV (5 A) higher-version: 20 kV or more NIM, detector, and etc

VME (ADC and TDC)

VersaModular Eurocard (VME)

1 U rack size = 4.445 cm

VME bus J1/P1 Pinouts PIN DOM/ D BOWIC D01 BCLR* D09 ACFAIL D02 D 10 D03 BG0IN* 4 D11 5 D04 BG0OUT* D12 D05 BG1IN* D13 6 7 D06 BG10UT* D 14 D07 BG2IN* D 15 8 GND BG2OUT* GND SYSCLK SYSFAIL* 10 BG3IN* 11 GND BERR* BG3OUT* DS1* BR0* SYSRESET 12 DS0* BR 1* 13 LWORD* 14 WRITE' BR2* AM5 15 GND BR3* A23 16 DTACK AM0 A22 GND AM1 A21 17 18 AS* AM2 A20 GND АМЗ A 19 19 20 IACK* GND A 18 IACKIN SERCLK A17 21 SERDAT 22 IACKOUT' A 16 23 AM4 GND A 15 24 A07 IRQ7* A 14 25 A06 IRQ6* A13 26 A05 IRQ5* A12 27 A04 IRQ4* A11 28 A03 IRQ3* A 10 29 A02 IRQ2* A09 30 A01 A08 IRQ 1* 31 -12V +5VSTDBY +12V 32 +5V +5V +5V

Analog-to-Digital Converter (ADC)

Charge-to-Digital Converter (QDC)

Charge measurements with ADC

Scintillation counter/detector: Scintillator + **P**hoto**M**ultiplier **T**ube (PMT)

How to record charge in ADC?

Block diagram of PEAK section in CAEN V1785 8ch Dual Range Peak ADC

COMMON STOP mode

The **GATE signal** closes the **switch SW1** thus allowing the **capacitor C1** to be charged as the **diode D1** is forward-biased by the signal.

As the SW1 is open again, the signal is digitized by the 12-bit ADCs.

After digitization the **SW2 switch** is closed by the CLEAR signal which allows the discharge of the **capacitor C1**.

Both the GATE and CLEAR signals are controlled by the CONTROL LOGIC section.

https://www.caen.it

ADC and signal conversion timing

CAEN V1785 8ch Dual Range Peak

Dual input range: 0 ÷ 4 V / 0 ÷ 500 mV Gain: 1 mV/count and 125 uV/count for High and Low ranges

40

ADC calibration

Full Dynamic Range (FDR) = 1 pC with 10 bit

1	рC
1024	bin
0.00097656	pC/bin

Input charge (pC)	unit charge (pC/bin)	Measured Charge (ADC bin)
0.1	0.000976563	102.4
0.2	0.000976563	204.8
0.3	0.000976563	307.2
0.4	0.000976563	409.6
0.5	0.000976563	512
0.6	0.000976563	614.4
0.7	0.000976563	716.8
0.8	0.000976563	819.2
0.9	0.000976563	921.6
1	0.000976563	1024

Time domain of signals for ADC calibration

 Δt_1 and Δt_2 depends on charge and shape of signal (ex, 10 ns or more).

Measured Charge (ADC bin) vs input charge (pC)

41

Energy Calibration and Resolution

(0-60)LYSO BKGO arb. 1) Calibration Constant $E_{in}(eV)$ $< Q_1 > (ADC \ count)$ 1.170 MeV Eg= 1.17 Mev 1170 ADC counts keV ADC count Eg=1.33 MeV $\sigma_2 = 133$ ADC count $\begin{pmatrix} 0 \\ 409t \end{pmatrix}$ 2) Energy Resolution (%) $= \frac{\sigma_2}{\langle Q_1 \rangle} \times 100(\%)$ $= \frac{133}{1330} \times 100(\%) = 10\%$ Q2 Q, 1330 1170

Time-to-Digital Converter (TDC)

How to record time in TDC?

Block diagram of TAC section in CAEN V775N 16ch MultiEvent TDCs A Start signal closes the **switch SW1** thus allowing a constant current to flow through an integrator; a Stop signal opens the **switch SW1** again.

The constant current generates a **linear ramp voltage which is stopped at an amplitude proportional to the time interval** between Start and Stop pulses. → accumulation on C1

After digitization the **SW2 switch** is closed by the CLEAR signal which allows the discharge of the **capacitor C1**.

Both the COMMON and CLEAR signals are controlled by the CONTROL LOGIC section.

TDC and signal conversion timing

CAEN V775N 16ch MultiEvent TDCs

Time measurements with TDC

Time-to-Digital Converter (TDC)

Operation mode of TDC

TDC Linearity Test for Calibration

 $T_full = 100$ ns with 10 bit (1024) data set

100	ns
1024	bin
0.09765625	ns/bin

delay (ns)	u	nit time (ns/bin)	Measured Time (TDC bin)	
1	0	0.09765625	102	2.4
2	0	0.09765625	204	1.8
3	0	0.09765625	307	7.2
4	0	0.09765625	409	9.6
5	0	0.09765625	51	12
6	0	0.09765625	614	1.4
7	0	0.09765625	716	5.8
8	0	0.09765625	819	9.2
9	0	0.09765625	921	.6
10	0	0.09765625	102	24

TDC Linearity = measured Time (ns) / delayed Time (ns)

COMMON START MODE

COMMON STOP MODE

TDC tips: Best Coincidence with 3 inputs

When events occur, the input signals from many detectors can be matched with Logic Unit.

Coincidence with timing walk

Time resolution with slewing correction

M. S. RYU et al, JKPS 52 (2008) 1748 Characteristics of Multigap timing RPC

At 6.4 kV with Gas 1

New Time-of-flight system of FOPI detector

Plastic barrel	New MMRPC barrel
180 scintillators for 30 sectors $39^{\circ} \le \theta_{lab} \le 130^{\circ} \Rightarrow 67^{\circ} \le \theta_{lab} \le 140^{\circ}$	140 MMRPCs for 28 supermodules $37^{\circ} \le \theta_{lab} \le 68^{\circ}$
$\sigma_t \le 200 \mathrm{ps}$	$\sigma_t \le 100 \mathrm{ps}$
$p_{lab} \le 0.5 \mathrm{GeV}$	$p_{lab} \le 1 \mathrm{GeV}$

M.S. Ryu, B. Hong, T. I. Kang, JKPS 59 1605 (2011) M. Kis et al., NIM A 646 27 (2011)

$$\Delta t \approx \frac{lc}{2p^2} \left(m_1^2 - m_2^2 \right)$$

$$\int \mathbf{T} = FWHM \\ \sigma_{\Delta t} = FWHM / 2.35 \\ \int \Delta t = 373.8 ps, \quad \sigma_{\Delta t} = 159.1 ps \\ \int \mathbf{T} = \mathbf{T} \int \mathbf$$

Summary

"DAQ with Fast Electronics" are a main component of particle detection system to see what happens in the HEP experiments.