GPDs from lattice QCD: new developments beyond leading twist

Martha Constantinou
Temple University

The Golden Circle

What is the physics we are after?

How can we achieve our goals?

Why is it important?

The Golden Circle

why

WHAT

What is the physics we are after?

How can we achieve our goals?

Why is it important?
\star - Map the 3D structure of the proton in terms of their partonic content.

- Characterize hadron structure in new ways
* Numerical simulations of QCD (lattice QCD):
- billions of degrees of freedom
- mathematical \&e computational challenges
\star Comprehend and interpret the core of the visible matter

Outline

PHYSICAL REVIEW D 102, 111501(R) (2020)
 Rapid communications Edifors' Suggestion Lattice

Insights on proton structure from lattice QCD:
The twist-3 parton distribution function $g_{T}(x)$
Shohini Bhattacharya@, ${ }^{1}$ Krzysztof Cichy, ${ }^{2}$ Martha Constantinou®, ${ }^{1}$ Andreas Metz, ${ }^{1}$ Aurora Scapellato, ${ }^{2}$ and Fernanda Steffens ${ }^{3}$

Collaborators

S. Bhattacharya
Brookhaven National Lab

K. Cichy
Adam Mickiewicz University

B J. Dodson Temple University

* A. Metz

Temple University
B J. Miller
Temple University

- A. Scapellato

Temple University

F Fteffens
University of Bonn
PHYSICAL REVIEW D 104, 114510 (2021)

In the quest of solving complex problems

In the quest of solving complex problems

In the quest of solving complex problems

Alexander the Great while cutting the Gordian knot

In the quest of solving complex problems

Alexander the Great while cutting the Gordian knot

In the quest of solving complex problems

 Simntatemon-anatical systems simuiate non-anayticat systems

In the quest of solving complex problems

Cow Sinnuirite on ansucuczu suguerna \#, menning
 Alexander the Great whil
cutting the Gordian knot

Lattice QCD:

太 First principle formulation of QCD
\star Space-time discretization of the theory (finite degrees of freedom)
\star Same parameters as QCD in continuum
\star Discretization is not unique
\star Serves as a regulator:

- UV cut-off: inverse lattice spacing
- IR cut-off: inverse lattice size
\star Removal of regulator:
- zero lattice spacing
- infinite volume
* Quantum fluctuations in the vacuum dictate observables
\star Statistical mechanics methods may be utilized

Exploration of hadron structure

\star Structure of hadrons explored in high-energy scattering processes, e.g.,
\Rightarrow Inclusive processes

\Rightarrow Exclusive reactions

DVCS

[X.-D. Ji, PRD 55, 7114 (1997)]

- Exclusive pion-nucleon diffractive production of a γ pair of high p_{\perp}

[J. Qiu et al, JHEP 103 (2022)]

Exploration of hadron structure

\star Structure of hadrons explored in high-energy scattering processes, e.g.,
\Rightarrow Inclusive processes

\Rightarrow Exclusive reactions

DVCS

[X.-D. Ji, PRD 55, 7114 (1997)]
\Rightarrow Exclusive pion-nucleon diffractive
production of a γ pair of high p_{\perp}
[J. Qiu et al, JHEP 103 (2022)]

* Due to asymptotic freedom, e.g.

$$
\sigma_{\mathrm{DIS}}\left(x, Q^{2}\right)=\sum\left[H_{\mathrm{DIS}}^{i} \otimes f_{i}\right]\left(x, Q^{2}\right) \quad[a \otimes b](x) \equiv \int_{x}^{1} \frac{d \xi}{\xi} a\left(\frac{x}{\xi}\right) b(\xi)
$$

Non-Perturb. part
(process "independent")

Exploration of hadron structure

\star Structure of hadrons explored in high-energy scattering processes, e.g.,
\Rightarrow Inclusive processes

\Rightarrow Exclusive reactions

[X.-D. Ji, PRD 55, 7114 (1997)]
\Rightarrow Exclusive pion-nucleon diffractive production of a γ pair of high p_{\perp}

[J. Qiu et al, JHEP 103 (2022)]
\star Due to asymptotic freedom, e.g.

$$
\sigma_{\mathrm{DIS}}\left(x, Q^{2}\right)=\sum\left[H_{\mathrm{DIS}}^{i} \otimes f_{i}\right]\left(x, Q^{2}\right) \quad[a \otimes b](x) \equiv \int_{x}^{1} \frac{d \xi}{\xi} a\left(\frac{x}{\xi}\right) b(\xi)
$$

Non-Perturb. part (process "independent")

- Non-pert. component provides information on, e.g., distribution of partons inside hadron

Nucleon Characterization

Wigner distributions

* provide multi-dimensional images of the parton distributions in phase space
\star encode both TMDs and GPDs in a unified picture

[Belitsky, Ji, Yuan, PRD, 074014 (2004)]

Nucleon Characterization

Wigner distributions

* provide multi-dimensional images of the parton distributions in phase space
\star encode both TMDs and GPDs in a unified picture \qquad Study of GPDs is crucial in mapping hadron tomography

[Ji, PRL 91, 062001 (2003)]
[Belitsky, Ji, Yuan, PRD, 074014 (2004)]

Nucleon Characterization

Wigner distributions

* provide multi-dimensional images of the parton distributions in phase space
\star encode both TMDs and GPDs in a unified picture \qquad Study of GPDs is crucial in mapping hadron tomography

GPDs

* "Parent" functions for PDFs, FFs, GFFs
\star Multi-dimensional objects
\star Provide correlation between transverse position and longitudinal momentum of the partons in the hadron
\star Information on the hadron's mechanical properties (OAM, pressure, etc.)
[Ji, PRL 91, 062001 (2003)]
[Belitsky, Ji, Yuan, PRD, 074014 (2004)]

Generalized Parton Distributions

[H. Abramowicz et al., whitepaper for NSAC LRP, 2007]
$1_{\text {mom }}+2_{\text {coord }}$ tomographic images of quark distribution in nucleon at fixed longitudinal momentum

3-D image from FT of the longitudinal momentum transfer

Generalized Parton Distributions

[H. Abramowicz et al., whitepaper for NSAC LRP, 2007]
$\mathbf{1}_{\text {mom }}+2_{\text {coord }}$ tomographic images of quark distribution in nucleon at fixed longitudinal momentum

3-D image from FT of the longitudinal momentum transfer

* GPDs are not well-constrained experimentally:
- x-dependence extraction is not direct. \quad DVCS amplitude: $\mathscr{H}=\int_{-1}^{+1} \frac{H(x, \xi, t)}{x-\xi+i \epsilon} d x$
(SDHEP [J. Qiu et al, JHEP 103 (2022)] gives access to x)
- independent measurements to disentangle GPDs
- GPDs phenomenology more complicated than PDFs (multi-dimensionality)
- and more challenges ...

Generalized Parton Distributions

[H. Abramowicz et al., whitepaper for NSAC LRP, 2007]
$1_{\text {mom }}+2_{\text {coord }}$ tomographic images of quark distribution in nucleon at fixed longitudinal momentum

3-D image from FT of the longitudinal momentum transfer

* GPDs are not well-constrained experimentally:
- x-dependence extraction is not direct. \quad DVCS amplitude: $\mathscr{H}=\int_{-1}^{+1} \frac{H(x, \xi, t)}{x-\xi+i \epsilon} d x$
(SDHEP [J. Qiu et al, JHEP 103 (2022)] gives access to x)
- independent measurements to disentangle GPDs
- GPDs phenomenology more complicated than PDFs (multi-dimensionality)
- and more challenges ...

Essential to complement the knowledge on GPD from lattice QCD

Twist-classification of GPDs

$f_{i}=f_{i}^{(0)}+\frac{f_{i}^{(1)}}{Q}+\frac{f_{i}^{(2)}}{Q^{2}} \cdots$
Q : hard scale

Twist-classification of GPDs

$$
f_{i}=f_{i}^{(0)}+\frac{f_{i}^{(1)}}{Q}+\frac{f_{i}^{(2)}}{Q^{2}} \cdots
$$

Q : hard scale

	$\mathrm{U}\left(\gamma^{+}\right)$	$L\left(\gamma^{+} \gamma^{5}\right)$	$\mathrm{T}\left(\sigma^{+j}\right)$
U	$\begin{array}{r} H(x, \xi, t) \\ E(x, \xi, t) \\ \text { unpolarized } \end{array}$		
L		$\begin{aligned} & \widetilde{H}(x, \xi, t) \\ & \begin{array}{l} \widetilde{E}(x, \xi, t) \\ \text { helicity } \end{array} \end{aligned}$	
T			$\begin{gathered} {\underset{H}{T}}^{H_{T}, E_{T}}, \widetilde{E}_{T} \\ \text { transversity } \end{gathered}$

Probabilistic interpretation

U

L

Twist-classification of GPDs

Twist-2 $\left(f_{i}^{(0)}\right)$

Q : hard scale

	$\mathrm{U}\left(\gamma^{+}\right)$	$L\left(\gamma^{+} \gamma^{5}\right)$	$\mathrm{T}\left(\sigma^{+j}\right)$
U	$\begin{array}{r} H(x, \xi, t) \\ E(x, \xi, t) \\ \text { unpolarized } \end{array}$		
L		$\begin{aligned} & \widetilde{H}(x, \xi, t) \\ & \begin{array}{l} \widetilde{E}(x, \xi, t) \\ \text { helicity } \end{array} \end{aligned}$	
T			$\begin{gathered} H_{T}, E_{T} \\ \underset{\substack{H_{T} \\ \text { transversity }}}{\widetilde{E}_{T}} \end{gathered}$

Probabilistic interpretation

U

T

Twist-3 $\left(f_{i}^{(1)}\right)$ (Selected)

	γ^{j}	$\gamma^{j} \gamma^{5}$	$\sigma^{j k}$
U	$\begin{aligned} & G_{1}, G_{2} \\ & G_{3}, G_{4} \end{aligned}$		
L		$\begin{aligned} & \widetilde{G}_{1}, \widetilde{G}_{2} \\ & \widetilde{G_{3}}, \widetilde{G}_{4} \end{aligned}$	
T			$\begin{aligned} & H_{2}^{\prime}(x, \xi, t) \\ & E_{2}^{\prime}(x, \xi, t) \end{aligned}$

* Lack density interpretation, but not-negligible
* Contain info on quark-gluon-quark correlators
* Physical interpretation, e.g., transverse force
\star Kinematically suppressed
Difficult to isolate experimentally
* Theoretically: contain $\delta(x)$ singularities

Twist-3 PDFs / GPDs

* Certain observables require the use of twist-3 correlators
\star Proton collinear twist-3 PDFs: $\quad g_{T}(x), e(x), h_{L}(x)$

$$
f_{i}=f_{i}^{(0)}+\frac{f_{i}^{(1)}}{Q}+\frac{f_{i}^{(2)}}{Q^{2}} \cdots
$$

- chiral-even $g_{T}(x)$ couples to inclusive DIS
- $e(x), h_{L}(x)$: chiral-odd (need e.g. chirality flip process)
- $h_{L}(x)$: double-polarized Drell-Yan process,
single-inclusive particle production in proton-proton collisions
* Twist-3 GPDs practically unknown; several challenges
- inverse problem - shadow GPDS [Phys.Rev.D 103 (2021) 11, 114019, Phys.Rev.D 108 (2023) 3, 036027]
\star Twist-3 GPDs contain physical information
- $\widetilde{H}+\widetilde{G}_{2}$ related to tomography of $\mathrm{F} \perp$ acting on the active q in DIS off a transversely polarized N right after the virtual photon absorbing [Phys.Rev.D 88 (2013) 114502, Phys.Rev.D 100 (2019) 9, 096021]
- Related to certain spin-orbit correlations [Phys.Lett.B 735 (2014) 344, Phys.Lett.B 774 (2017) 435]
- $G_{2}(x, \xi, t)$ related to $L_{q}^{\text {kin }}{ }_{\text {[Phys.Lett.B }}$ 491 (2000) 96]

$$
L_{q}^{\mathrm{kin}}=-\int_{-1}^{1} d x x G_{2}^{q}(x, \xi, t=0)
$$

GPDs

From Lattice QCD

Accessing information on GPDs

$$
\sigma_{\mathrm{DIS}}\left(x, Q^{2}\right)=\sum_{i}\left[H_{\mathrm{DIS}}^{i} \otimes f_{i}\right]\left(x, Q^{2}\right)
$$

Accessing information on GPDs

$$
\sigma_{\mathrm{DIS}}\left(x, Q^{2}\right)=\sum_{\substack{\left.i \\ \\ \\ \\ \text { Calculable in lattice } Q C D \\ H_{\mathrm{DIS}}^{i} \otimes f_{i}\right]}}\left(x, Q^{2}\right)
$$

Accessing information on GPDs

$$
\sigma_{\mathrm{DIS}}\left(x, Q^{2}\right)=\sum_{\substack{\left.i \\ \\ \\ \text { Calculable in lattice } Q C D \\ H_{\mathrm{DIS}}^{i} \otimes f_{i}\right]}}\left(x, Q^{2}\right)
$$

* Mellin moments (local OPE expansion)

$$
\bar{q}\left(-\frac{1}{2} z\right) \gamma^{\sigma} W\left[-\frac{1}{2} z, \frac{1}{2} z\right] q\left(\frac{1}{2} z\right)=\sum_{n=0}^{\infty} \frac{1}{n!} z_{\alpha_{1}} \ldots z_{\alpha_{n}}\left[\bar{\gamma} \sigma^{\left.\sigma^{\alpha^{\alpha_{1}}} \ldots \overleftrightarrow{D}^{\alpha_{n}} q\right]}\right.
$$

Accessing information on GPDs

$$
\begin{aligned}
& \sigma_{\mathrm{DIS}}\left(x, Q^{2}\right)= \sum_{i}\left[H_{\mathrm{DIS}}^{i} \triangleq f_{i}\right] \\
&\text { Calculable in lattice } \left.Q C, Q^{2}\right) \\
& \text { QCD }
\end{aligned}
$$

* Mellin moments (local OPE expansion)

$$
\bar{q}\left(-\frac{1}{2} z\right) \gamma^{\sigma} W\left[-\frac{1}{2} z, \frac{1}{2} z\right] q\left(\frac{1}{2} z\right)=\sum_{n=0}^{\infty} \frac{1}{n!} z_{\alpha_{1}} \ldots z_{\alpha_{n}} \frac{\left[\bar{q} \gamma^{\sigma} \stackrel{\leftrightarrow}{D}^{\alpha_{1}} \ldots \stackrel{\leftrightarrow}{D^{\alpha_{n}}} q\right]}{\|}
$$

Accessing information on GPDs

$$
\begin{aligned}
& \sigma_{\mathrm{DIS}}\left(x, Q^{2}\right)= \sum_{i}\left[H_{\mathrm{DIS}}^{i} \otimes f_{i}\right] \\
&\text { Calculable in lattice } \left.Q C, Q^{2}\right) \\
& \text { QCD }
\end{aligned}
$$

* Mellin moments (local OPE expansion)

$$
\bar{q}\left(-\frac{1}{2} z\right) \gamma^{\sigma} W\left[-\frac{1}{2} z, \frac{1}{2} z\right] q\left(\frac{1}{2} z\right)=\sum_{n=0}^{\infty} \frac{1}{n!} z_{\alpha_{1}} \ldots z_{\alpha_{n}} \frac{\left[\bar{q} \gamma^{\sigma} \stackrel{\leftrightarrow}{D}^{\alpha_{1}} \ldots \stackrel{\leftrightarrow}{D^{\alpha_{n}}} q\right]}{\text { local operators }}
$$

$$
\left.\left.\left.\left\langle N\left(P^{\prime}\right)\right| \mathcal{O}_{V}^{\mu \mu_{1} \cdots \mu_{n-1}}|N(P)\rangle \sim \sum_{\substack{i=0 \\ \text { even }}}^{n-1}\left\{\gamma^{\{\mu} \Delta^{\mu_{1}} \cdots \Delta^{\mu_{i}} \bar{P}^{\mu_{i+1}} \cdots \bar{P}^{\left.\mu_{n-1}\right\}} A_{n, i}(t)-i \frac{\Delta_{\alpha} \sigma^{\alpha\{\mu}}{2 m_{N}} \Delta^{\mu_{1}} \cdots \Delta^{\mu_{i}} \bar{P}^{\mu_{i+1}} \cdots \bar{P}^{\left.\mu_{n-1}\right\}} B_{n, i}(t)\right\}+\left.\frac{\Delta^{\mu} \Delta^{\mu_{1}} \ldots \Delta^{\mu_{n-1}}}{m_{N}} C_{n, 0}\left(\Delta^{2}\right)\right|_{n \text { even }}\right)\right\}+\left.\frac{\Delta^{\mu} \Delta^{\mu_{1}} \cdots \Delta^{\mu_{n-1}}}{m_{N}} C_{n, 0}\left(\Delta^{2}\right)\right|_{n \text { even }}\right] U(P)
$$

Accessing information on GPDs

$$
\sigma_{\mathrm{DIS}}\left(x, Q^{2}\right)=\sum_{i}\left[H_{\mathrm{DIS}}^{i} \otimes f_{i}\right]\left(x, Q^{2}\right)
$$

* Mellin moments (local OPE expansion)

$$
\begin{array}{r}
\bar{q}\left(-\frac{1}{2} z\right) \gamma^{\sigma} W\left[-\frac{1}{2} z, \frac{1}{2} z\right] q\left(\frac{1}{2} z\right)=\sum_{n=0}^{\infty} \frac{1}{n} z_{\alpha_{1}} \ldots z_{\alpha_{n}} \frac{\left[\bar{q} \gamma^{\circ} \stackrel{D}{D}^{\alpha_{1}} \ldots \overleftrightarrow{D}^{\alpha_{n}} q\right]}{\downarrow} \\
\text { local operators }
\end{array}
$$

$\left.\left.\left.\left\langle N\left(P^{\prime}\right)\right| \mathcal{O}_{V}^{\mu \mu_{1} \cdots \mu_{n-1}}|N(P)\rangle \sim \sum_{\substack{i=0 \\ \text { even }}}^{n-1}\left\{\gamma^{\{\mu} \Delta^{\mu_{1}} \cdots \Delta^{\mu_{i}} \bar{P}^{\mu_{i+1}} \cdots \bar{P}^{\left.\mu_{n-1}\right\}} A_{n, i}(t)-i \frac{\Delta_{\alpha} \sigma^{\alpha\{\mu}}{2 m_{N}} \Delta^{\mu_{1}} \cdots \Delta^{\mu_{i}} \bar{P}^{\mu_{i+1}} \cdots \bar{P}^{\left.\mu_{n-1}\right\}} B_{n, i}(t)\right\}+\left.\frac{\Delta^{\mu} \Delta^{\mu_{1}} \ldots \Delta^{\mu_{n-1}}}{m_{N}} C_{n, 0}\left(\Delta^{2}\right)\right|_{n \text { even }}\right)\right\}+\left.\frac{\Delta^{\mu} \Delta^{\mu_{1}} \cdots \Delta^{\mu_{n-1}}}{m_{N}} C_{n, 0}\left(\Delta^{2}\right)\right|_{n \text { even }}\right] U(P)$

* Matrix elements of non-local operators
(quasi-GPDs, pseudo-GPDs, ...)

$$
\left\langle N\left(P_{f}\right)\right| \bar{\Psi}(z) \frac{\Gamma \mathscr{W}(z, 0) \Psi(0)\left|N\left(P_{i}\right)\right\rangle_{\mu}}{\substack{\downarrow \\ \text { Wilson line }}}
$$

$$
\left\langle N\left(P^{\prime}\right)\right| O_{A}^{\mu}(x)|N(P)\rangle=\bar{U}\left(P^{\prime}\right)\left\{\gamma^{\mu} \gamma_{5} \widetilde{H}(x, \xi, t)+\frac{\gamma_{5} \Delta^{\mu}}{2 m_{N}} \widetilde{E}(x, \xi, t)\right\} U(P)+\mathrm{ht},
$$

$$
\left\langle N\left(P^{\prime}\right)\right| O_{T}^{\mu \nu}(x)|N(P)\rangle=\bar{U}\left(P^{\prime}\right)\left\{i \sigma^{\mu \nu} H_{T}(x, \xi, t)+\frac{\gamma^{\mu} \Delta^{\nu]}}{2 m_{N}} E_{T}(x, \xi, t)+\frac{\bar{P}^{[\mu} \Delta^{\nu]}}{m_{N}^{2}} \widetilde{H}_{T}(x, \xi, t)+\frac{\gamma^{[\mu} \bar{P}^{\nu]}}{m_{N}} \widetilde{E}_{T}(x, \xi, t)\right\} U(P)+\mathrm{ht}
$$

Generalized Form Factors

* Advantages
- Frame independence
- Several values of momentum transfer with same computational cost
- Form factors extracted with controlled statistical uncertainties

Generalized Form Factors

* Advantages
- Frame independence
- Several values of momentum transfer with same computational cost
- Form factors extracted with controlled statistical uncertainties
* Disadvantages
- x dependence is integrated out
- GFFs are skewness independence
- Geometrical twist classification (coincides with dynamical twist of scattering processes only at leading order)
- Signal-to-noise ratio decays with the addition of covariant derivatives
- Power-divergent mixing for high Mellin moments (derivatives >3)
- Number of GFFs increases with order of Mellin moment

Generalized Form Factors

* Advantages
- Frame independence
- Several values of momentum transfer with same computational cost
- Form factors extracted with controlled statistical uncertainties
\star Disadvantages
- x dependence is integrated out
- GFFs are skewness independence
- Geometrical twist classification (coincides with dynamical twist of scattering processes only at leading order)
- Signal-to-noise ratio decays with the addition of covariant derivatives
- Power-divergent mixing for high Mellin moments (derivatives >3)
- Number of GFFs increases with order of Mellin moment

Form Factors \& Generalizations

* Ultra-local operators (FFS)

$$
\begin{aligned}
\left\langle N\left(P^{\prime}\right)\right| \bar{q}(0) \gamma^{\mu} q(0)|N(P)\rangle & =\bar{U}\left(P^{\prime}\right)\left\{\gamma^{\mu} F_{1}(t)+\frac{i \sigma^{\mu \nu} \Delta_{\nu}}{2 m_{N}} F_{2}(t)\right\} U(P), \\
\left\langle N\left(P^{\prime}\right)\right| \bar{q}(0) \gamma^{\mu} \gamma_{5} q(0)|N(P)\rangle & =\bar{U}\left(P^{\prime}\right)\left\{\gamma^{\mu} \gamma_{5} G_{A}(t)+\frac{\gamma_{5} \Delta^{\mu}}{2 m_{N}} G_{P}(t)\right\} U(P)
\end{aligned}
$$

Form Factors \& Generalizations

* Ultra-local operators (FFS)

$$
\begin{aligned}
\left\langle N\left(P^{\prime}\right)\right| \bar{q}(0) \gamma^{\mu} q(0)|N(P)\rangle & =\bar{U}\left(P^{\prime}\right)\left\{\gamma^{\mu} F_{1}(t)+\frac{i \sigma^{\mu \nu} \Delta_{\nu}}{2 m_{N}} F_{2}(t)\right\} U(P), \\
\left\langle N\left(P^{\prime}\right)\right| \bar{q}(0) \gamma^{\mu} \gamma_{5} q(0)|N(P)\rangle & =\bar{U}\left(P^{\prime}\right)\left\{\gamma^{\mu} \gamma_{5} G_{A}(t)+\frac{\gamma_{5} \Delta^{\mu}}{2 m_{N}} G_{P}(t)\right\} U(P)
\end{aligned}
$$

- Simulations at physical point available by multiple groups
- Precision data era
- Towards control of systematic uncertainties

Form Factors \& Generalizations

* Ultra-local operators (FFS)

$$
\begin{aligned}
\left\langle N\left(P^{\prime}\right)\right| \bar{q}(0) \gamma^{\mu} q(0)|N(P)\rangle & =\bar{U}\left(P^{\prime}\right)\left\{\gamma^{\mu} F_{1}(t)+\frac{i \sigma^{\mu \nu} \Delta_{\nu}}{2 m_{N}} F_{2}(t)\right\} U(P), \\
\left\langle N\left(P^{\prime}\right)\right| \bar{q}(0) \gamma^{\mu} \gamma_{5} q(0)|N(P)\rangle & =\bar{U}\left(P^{\prime}\right)\left\{\gamma^{\mu} \gamma_{5} G_{A}(t)+\frac{\gamma_{5} \Delta^{\mu}}{2 m_{N}} G_{P}(t)\right\} U(P)
\end{aligned}
$$

- Simulations at physical point available by multiple groups
- Precision data era
- Towards control of systematic uncertainties
$\left\langle N\left(p^{\prime}, s^{\prime}\right)\right| \mathcal{O}_{V}^{\mu \nu}|N(p, s)\rangle=\bar{u}_{N}\left(p^{\prime}, s^{\prime}\right) \frac{1}{2}\left[A_{20}\left(q^{2}\right) \gamma^{\{\mu} P^{\nu\}}+B_{20}\left(q^{2}\right) \frac{i \sigma^{\{\mu \alpha} q_{\alpha} P^{\nu\}}}{2 m_{N}}+C_{20}\left(q^{2}\right) \frac{1}{m_{N}} q^{\{\mu} q^{\nu\}}\right] u_{N}(p, s)$, $\left\langle N\left(p^{\prime}, s^{\prime}\right)\right| \mathcal{O}_{A}^{\mu \nu}|N(p, s)\rangle=\bar{u}_{N}\left(p^{\prime}, s^{\prime}\right) \frac{i}{2}\left[\tilde{A}_{20}\left(q^{2}\right) \gamma^{\{\mu} P^{\nu\}} \gamma^{5}+\tilde{B}_{20}\left(q^{2}\right) \frac{q^{\{\mu} P^{\nu\}}}{2 m_{N}} \gamma^{5}\right] u_{N}(p, s)$,

[M. Constantinou et al. (2020 PDFLattice Report), Prog.Part.Nucl.Phys. 121 (2021) 103908, arXiv:2006.08636]

Form Factors \& Generalizations

* Ultra-local operators (FFS)

$$
\begin{aligned}
\left\langle N\left(P^{\prime}\right)\right| \bar{q}(0) \gamma^{\mu} q(0)|N(P)\rangle & =\bar{U}\left(P^{\prime}\right)\left\{\gamma^{\mu} F_{1}(t)+\frac{i \sigma^{\mu \nu} \Delta_{\nu}}{2 m_{N}} F_{2}(t)\right\} U(P), \\
\left\langle N\left(P^{\prime}\right)\right| \bar{q}(0) \gamma^{\mu} \gamma_{5} q(0)|N(P)\rangle & =\bar{U}\left(P^{\prime}\right)\left\{\gamma^{\mu} \gamma_{5} G_{A}(t)+\frac{\gamma_{5} \Delta^{\mu}}{2 m_{N}} G_{P}(t)\right\} U(P)
\end{aligned}
$$

- Simulations at physical point available by multiple groups
- Precision data era
- Towards control of systematic uncertainties
$\left\langle N\left(p^{\prime}, s^{\prime}\right)\right| \mathcal{O}_{V}^{\mu \nu}|N(p, s)\rangle=\bar{u}_{N}\left(p^{\prime}, s^{\prime}\right) \frac{1}{2}\left[A_{20}\left(q^{2}\right) \gamma^{\{\mu} P^{\nu\}}+B_{20}\left(q^{2}\right) \frac{i \sigma^{\{\mu \alpha} q_{\alpha} P^{\nu\}}}{2 m_{N}}+C_{20}\left(q^{2}\right) \frac{1}{m_{N}} q^{\{\mu} q^{\nu\}}\right] u_{N}(p, s)$, $\left\langle N\left(p^{\prime}, s^{\prime}\right)\right| \mathcal{O}_{A}^{\mu \nu}|N(p, s)\rangle=\bar{u}_{N}\left(p^{\prime}, s^{\prime}\right) \frac{i}{2}\left[\tilde{A}_{20}\left(q^{2}\right) \gamma^{\{\mu} P^{\nu\}} \gamma^{5}+\tilde{B}_{20}\left(q^{2}\right) \frac{q^{\{\mu} P^{\nu\}}}{2 m_{N}} \gamma^{5}\right] u_{N}(p, s)$,

- Lesser studied compared to FFs at physical point
- Decay of signal-to-noise ratio
[M. Constantinou et al. (2020 PDFLattice Report), Prog.Part.Nucl.Phys. 121 (2021) 103908, arXiv:2006.08636]

GPDs

Through non-local matrix elements of fast-moving hadrons

GPDs on the lattice

* GPDs: off-forward matrix elements of non-local light-cone operators
* Off-forward correlators with nonlocal (equal-time) operators [Ji, PRL 110 (2013) 262002]

$$
\tilde{q}_{\mu}^{\operatorname{GPD}}\left(x, t, \xi, P_{3}, \mu\right)=\int \frac{d z}{4 \pi} e^{-i x P_{3} z}\left\langle N\left(P_{f}\right)\right| \bar{\Psi}(z) \gamma^{\mu} \mathscr{W}(z, 0) \Psi(0)\left|N\left(P_{i}\right)\right\rangle_{\mu} \quad \begin{aligned}
\Delta & =P_{f}-P_{i} \\
t & =\Delta^{2}=-Q^{2} \\
\xi & =Q_{3} /\left(2 P_{3}\right)
\end{aligned}
$$

GPDs on the lattice

* GPDs: off-forward matrix elements of non-local light-cone operators
* Off-forward correlators with nonlocal (equal-time) operators ${ }_{[\text {[A. Radyushkin, PRD 96, } 034025 \text { (2017]] }}^{\text {[Ji, PLL } 10 \text { (2013) } 26002]}$

$$
\tilde{q}_{\mu}^{\operatorname{GPD}}\left(x, t, \xi, P_{3}, \mu\right)=\int \frac{d z}{4 \pi} e^{-i x P_{3} z} \frac{\left\langle N\left(P_{f}\right)\right| \bar{\Psi}(z) \gamma^{\mu} \mathscr{W}(z, 0) \Psi(0)\left|N\left(P_{i}\right)\right\rangle_{\mu}}{\text { Computationally intensive }} \quad \begin{aligned}
\Delta & =P_{f}-P_{i} \\
& =\Delta^{2}=-Q^{2} \\
\xi & =Q_{3} /\left(2 P_{3}\right)
\end{aligned}
$$

GPDs on the lattice

* GPDs: off-forward matrix elements of non-local light-cone operators
* Off-forward correlators with nonlocal (equal-time) operators [Ji, PRL 110 (2013) 262002]

$$
\tilde{q}_{\mu}^{\operatorname{GPD}}\left(x, t, \xi, P_{3}, \mu\right)=\int \frac{d z}{4 \pi} e^{-i x P_{3} z} \frac{\left\langle N\left(P_{f}\right)\right| \bar{\Psi}(z) \gamma^{\mu} \mathscr{W}(z, 0) \Psi(0)\left|N\left(P_{i}\right)\right\rangle_{\mu}}{\text { Computationally intensive }} \quad \begin{aligned}
\Delta & =P_{f}-P_{i} \\
t & =\Delta^{2}=-Q^{2} \\
\xi & =Q_{3} /\left(2 P_{3}\right)
\end{aligned}
$$

GPDs on the lattice

* GPDs: off-forward matrix elements of non-local light-cone operators
* Off-forward correlators with nonlocal (equal-time) operators
[Ji, PRL 110 (2013) 262002]
[A. Radyushkin, PRD 96, 034025 (2017)]

$$
\tilde{q}_{\mu}^{\operatorname{GPD}}\left(x, t, \xi, P_{3}, \mu\right)=\int \frac{d z}{4 \pi} e^{-i x P_{3} z} \frac{\left\langle N\left(P_{f}\right)\right| \bar{\Psi}(z) \gamma^{\mu} \mathscr{W}(z, 0) \Psi(0)\left|N\left(P_{i}\right)\right\rangle_{\mu}}{\text { Computationally intensive }} \quad \begin{aligned}
\Delta & =P_{f}-P_{i} \\
t & =\Delta^{2}=-Q^{2} \\
\xi & =Q_{3} /\left(2 P_{3}\right)
\end{aligned}
$$

Calculation challenges

- Standard definition of GPDs in Breit (symmetric) frame separate calculations at each t
\downarrow Statistical noise increases with P_{3}, t
Projection:
billions of core-hours at $P_{3}=3 \mathrm{GeV}$

GPDs on the lattice

* GPDs: off-forward matrix elements of non-local light-cone operators
* Off-forward correlators with nonlocal (equal-time) operators
[Ji, PRL 110 (2013) 262002]
[A. Radyushkin, PRD 96, 034025 (2017)]

$$
\tilde{q}_{\mu}^{\operatorname{GPD}}\left(x, t, \xi, P_{3}, \mu\right)=\int \frac{d z}{4 \pi} e^{-i x P_{3} z} \frac{\left\langle N\left(P_{f}\right)\right| \bar{\Psi}(z) \gamma^{\mu} \mathscr{W}(z, 0) \Psi(0)\left|N\left(P_{i}\right)\right\rangle_{\mu}}{\text { Computationally intensive }} \quad \begin{aligned}
\Delta & =P_{f}-P_{i} \\
t & =\Delta^{2}=-Q^{2} \\
\xi & =Q_{3} /\left(2 P_{3}\right)
\end{aligned}
$$

Calculation challenges

\downarrow Statistical noise increases with P_{3}, t
Projection:
billions of core-hours at $P_{3}=3 \mathrm{GeV}$

- Standard definition of GPDs in Breit (symmetric) frame separate calculations at each t

GPDs on the lattice

* GPDs: off-forward matrix elements of non-local light-cone operators
* Off-forward correlators with nonlocal (equal-time) operators
[Ji, PRL 110 (2013) 262002]
[A. Radyushkin, PRD 96, 034025 (2017)]

$$
\tilde{q}_{\mu}^{\mathrm{GPD}}\left(x, t, \xi, P_{3}, \mu\right)=\int \frac{d z}{4 \pi} e^{-i x P_{3} z} \frac{\left\langle N\left(P_{f}\right)\right| \bar{\Psi}(z) \gamma^{\mu} \mathscr{W}(z, 0) \Psi(0)\left|N\left(P_{i}\right)\right\rangle_{\mu}}{\text { Computationally intensive }} \quad \begin{aligned}
\Delta & =P_{f}-P_{i} \\
t & =\Delta^{2}=-Q^{2} \\
& \xi
\end{aligned}
$$

Calculation challenges

\downarrow Standard definition of GPDs in Breit (symmetric) frame separate calculations at each t

- Statistical noise increases with P_{3}, t Projection: billions of core-hours at $P_{3}=3 \mathrm{GeV}$

First ever calculation

Progress in twist-2 GPDs

[ETMC, PRL 125, 262001 (2020)]

Progress in twist-2 GPDs

* Parametrization of matrix elements in Lorentz invariant amplitudes

$$
F_{\lambda, \lambda^{\prime}}^{\mu}=\bar{u}\left(p^{\prime}, \lambda^{\prime}\right)\left[\frac{P^{\mu}}{M} A_{1}+z^{\mu} M A_{2}+\frac{\Delta^{\mu}}{M} A_{3}+i \sigma^{\mu z} M A_{4}+\frac{i \sigma^{\mu \Delta}}{M} A_{5}+\frac{P^{\mu} i^{z \Delta}}{M} A_{6}+\frac{z^{\mu} \sigma^{z \Delta}}{M} A_{7}+\frac{\Delta^{\mu} i \sigma^{z \Delta}}{M} A_{8}\right] u(p, \lambda
$$

[ETMC, PRL 125, 262001 (2020)]

Progress in twist-2 GPDs

[ETMC, PRL 125, 262001 (2020)]
New approach [Bhattacharya et al., Phys.Rev.D 106 (2022) 11, 114512; Bhattacharya et al., arxiv:2310.13114]

* Parametrization of matrix elements in Lorentz invariant amplitudes
$F_{\lambda, \lambda^{\prime}}^{\mu}=\bar{u}\left(p^{\prime}, \lambda^{\prime}\right)\left[\frac{P^{\mu}}{M} A_{1}+z^{\mu} M A_{2}+\frac{\Delta^{\mu}}{M} A_{3}+i \sigma^{\mu z} M A_{4}+\frac{i \sigma^{\mu \Delta}}{M} A_{5}+\frac{P^{\mu} i \sigma^{z \Delta}}{M} A_{6}+\frac{z^{\mu} \sigma^{z \Delta}}{M} A_{7}+\frac{\Delta^{\mu} i \sigma^{z \Delta}}{M} A_{8}\right] u(p, \lambda$
[Bhattacharya et al., arXiv:2310.13114]

Investigations of

Twist-3 PDFs/GPDs

Twist-3 exploration

Twist-3 exploration

[S.Bhattacharya et al, PRD 102 (2020) 11, 111501]
Twist-3 counterpart as sizable as twist-2

Burkhardt-Cottingham sum rule important check

$$
\int_{-1}^{1} d x g_{1}(x)-\int_{-1}^{1} d x g_{T}(x)=0.01(20)
$$

Twist-3 exploration

[S.Bhattacharya et al, PRD 102 (2020) 11, 111501]
WW approximation

Twist-3 counterpart as sizable as twist-2
Burkhardt-Cottingham sum rule important check

$$
\int_{-1}^{1} d x g_{1}(x)-\int_{-1}^{1} d x g_{T}(x)=0.01(20)
$$

Twist-3 exploration

[S.Bhattacharya et al, PRD 102 (2020) 11, 111501]

Twist-3 counterpart as sizable as twist-2

Burkhardt-Cottingham sum rule important check

$$
\int_{-1}^{1} d x g_{1}(x)-\int_{-1}^{1} d x g_{T}(x)=0.01(20)
$$

\star Flavor decomposition for $h_{L}(x)$
[S.Bhattacharya et al, Phys.Rev.D 104 (2021) 11, 114510]

Parameters of calculations

* $\mathrm{Nf}=2+1+1$ twisted mass fermions with a clover term;
[Extended Twisted Mass Collaboration, Phys. Rev. D 104, 074515 (2021), arXiv:2104.13408]

Name	β	N_{f}	$L^{3} \times T$	$a[\mathrm{fm}]$	M_{π}	$m_{\pi} L$
cA211.32	1.726	u, d, s, c	$32^{3} \times 64$	0.093	260 MeV	4

\star Calculation:

- isovector combination
- zero skewness
- $\mathrm{T}_{\text {sink }}=1 \mathrm{fm}$

Parameters of calculations

* $\mathrm{Nf}=2+1+1$ twisted mass fermions with a clover term;
[Extended Twisted Mass Collaboration, Phys. Rev. D 104, 074515 (2021), arXiv:2104.13408]
Ollaboration

Name	β	N_{f}	$L^{3} \times T$	$a[\mathrm{fm}]$	M_{π}	$m_{\pi} L$
cA211.32	1.726	u, d, s, c	$32^{3} \times 64$	0.093	260 MeV	4

* Calculation:

- isovector combination
- zero skewness
- Tsink $=1 \mathrm{fm}$

$P_{3}[\mathrm{GeV}]$	$\vec{q}\left[\frac{2 \pi}{L}\right]$	$-t\left[\mathrm{GeV}^{2}\right]$	N_{ME}	$N_{\text {confs }}$	$N_{\text {src }}$	$N_{\text {total }}$
± 0.83	$(0,0,0)$	0	2	194	8	3104
± 1.25	$(0,0,0)$	0	2	731	16	23392
± 1.67	$(0,0,0)$	0	2	1644	64	210432
± 0.83	$(\pm 2,0,0)$	0.69	8	67	8	4288
± 1.25	$(\pm 2,0,0)$	0.69	8	249	8	15936
± 1.67	$(\pm 2,0,0)$	0.69	8	294	32	75264
± 1.25	$(\pm 2, \pm 2,0)$	1.38	16	224	8	28672
± 1.25	$(\pm 4,0,0)$	2.76	8	329	32	84224

Parameters of calculations

* $\mathrm{Nf}=2+1+1$ twisted mass fermions with a clover term;
[Extended Twisted Mass Collaboration, Phys. Rev. D 104, 074515 (2021), arXiv:2104.13408]

Name	β	N_{f}	$L^{3} \times T$	$a[\mathrm{fm}]$	M_{π}	$m_{\pi} L$
cA211.32	1.726	u, d, s, c	$32^{3} \times 64$	0.093	260 MeV	4

* Calculation:

- isovector combination
- zero skewness
- $\mathrm{T}_{\text {sink }}=1 \mathrm{fm}$

$P_{3}[\mathrm{GeV}]$	$\vec{q}\left[\frac{2 \pi}{L}\right]$	$-t\left[\mathrm{GeV}^{2}\right]$	N_{ME}	$N_{\text {confs }}$	$N_{\text {src }}$	$N_{\text {total }}$
± 0.83	$(0,0,0)$	0	2	194	8	3104
± 1.25	$(0,0,0)$	0	2	731	16	23392
± 1.67	$(0,0,0)$	0	2	1644	64	210432
± 0.83	$(\pm 2,0,0)$	0.69	8	67	8	4288
± 1.25	$(\pm 2,0,0)$	0.69	8	249	8	15936
± 1.67	$(\pm 2,0,0)$	0.69	8	294	32	75264
± 1.25	$(\pm 2, \pm 2,0)$	1.38	16	224	8	28672
± 1.25	$(\pm 4,0,0)$	2.76	8	329	32	84224

Symmetric frame computationally expensive

Suppressing gauge noise and reliably extracting the ground state comes at a significant computational cost

Theoretical setup

* Correlation functions in coordinate space

$$
F^{[\Gamma]}\left(x, \Delta ; P^{3}\right)=\left.\frac{1}{2} \int \frac{d z^{3}}{2 \pi} e^{i k \cdot z}\left\langle p_{f}, \lambda^{\prime}\right| \bar{\psi}\left(-\frac{z}{2}\right) \Gamma \mathcal{W}\left(-\frac{z}{2}, \frac{z}{2}\right) \psi\left(\frac{z}{2}\right)\left|p_{i}, \lambda\right\rangle\right|_{z^{0}=0, \vec{z}_{\perp}=\overrightarrow{0}_{\perp}}
$$

* Parametrization of coordinate-space correlation functions
[D. Kiptily and M. Polyakov, Eur. Phys. J. C37 (2004) 105]
[F. Aslan et a., Phys. Rev. D 98, 014038 (2018)]

$$
\begin{aligned}
F^{\left[\gamma^{\mu} \gamma_{5}\right]}\left(x, \Delta ; P^{3}\right)=\frac{1}{2 P^{3}} \bar{u}\left(p_{f}, \lambda^{\prime}\right) & {\left[P^{\mu} \frac{\gamma^{3} \gamma_{5}}{P^{0}} F_{\widetilde{H}}\left(x, \xi, t ; P^{3}\right)+P^{\mu} \frac{\Delta^{3} \gamma_{5}}{2 m P^{0}} F_{\widetilde{E}}\left(x, \xi, t ; P^{3}\right)\right.} \\
& +\Delta_{\perp}^{\mu} \frac{\gamma_{5}}{2 m} F_{\widetilde{E}+\widetilde{G}_{1}}\left(x, \xi, t ; P^{3}\right)+\gamma_{\perp}^{\mu} \gamma_{5} F_{\widetilde{H}+\widetilde{G}_{2}}\left(x, \xi, t ; P^{3}\right) \\
& \left.+\Delta_{\perp}^{\mu} \frac{\gamma^{3} \gamma_{5}}{P^{3}} F_{\widetilde{G}_{3}}\left(x, \xi, t ; P^{3}\right)+i \varepsilon_{\perp}^{\mu \nu} \Delta_{\nu} \frac{\gamma^{3}}{P^{3}} F_{\widetilde{G}_{4}}\left(x, \xi, t ; P^{3}\right)\right] u\left(p_{i}, \lambda\right)
\end{aligned}
$$

* Kinematic twist-three contributions to pseudo- and quasi-GPDs to restore translation invariance [V. Braun et al., JHEP 10 (2023) 134]

Theoretical setup

* Correlation functions in coordinate space

$$
F^{[\Gamma]}\left(x, \Delta ; P^{3}\right)=\left.\frac{1}{2} \int \frac{d z^{3}}{2 \pi} e^{i k \cdot z}\left\langle p_{f}, \lambda^{\prime}\right| \bar{\psi}\left(-\frac{z}{2}\right) \Gamma \mathcal{W}\left(-\frac{z}{2}, \frac{z}{2}\right) \psi\left(\frac{z}{2}\right)\left|p_{i}, \lambda\right\rangle\right|_{z^{0}=0, \vec{z}_{\perp}=\overrightarrow{0}_{\perp}}
$$

* Parametrization of coordinate-space correlation functions
[D. Kiptily and M. Polyakov, Eur. Phys. J. C37 (2004) 105]
[F. Aslan et a., Phys. Rev. D 98, 014038 (2018)]

$$
\begin{aligned}
F^{\left[\gamma^{\mu} \gamma_{5}\right]}\left(x, \Delta ; P^{3}\right)=\frac{1}{2 P^{3}} \bar{u}\left(p_{f}, \lambda^{\prime}\right) & {\left[P^{\mu} \frac{\gamma^{3} \gamma_{5}}{P^{0}} F_{\widetilde{H}}\left(x, \xi, t ; P^{3}\right)+P^{\mu} \frac{\Delta^{3} \gamma_{5}}{2 m P^{0}} F_{\widetilde{E}}\left(x, \xi, t ; P^{3}\right)\right.} \\
& +\Delta_{\perp}^{\mu} \frac{\gamma_{5}}{2 m} F_{\widetilde{E}+\widetilde{G}_{1}}\left(x, \xi, t ; P^{3}\right)+\gamma_{\perp}^{\mu} \gamma_{5} F_{\widetilde{H}+\widetilde{G}_{2}}\left(x, \xi, t ; P^{3}\right) \\
& \left.+\Delta_{\perp}^{\mu} \frac{\gamma^{3} \gamma_{5}}{P^{3}} F_{\widetilde{G}_{3}}\left(x, \xi, t ; P^{3}\right)+i \varepsilon_{\perp}^{\mu \nu} \Delta_{\nu} \frac{\gamma^{3}}{P^{3}} F_{\widetilde{G}_{4}}\left(x, \xi, t ; P^{3}\right)\right] u\left(p_{i}, \lambda\right)
\end{aligned}
$$

* Kinematic twist-three contributions to pseudo- and quasi-GPDs to restore translation invariance [V. Braun et al., JHEP 10 (2023) 134]

Theoretical setup

* Correlation functions in coordinate space

$$
F^{[\Gamma]}\left(x, \Delta ; P^{3}\right)=\left.\frac{1}{2} \int \frac{d z^{3}}{2 \pi} e^{i k \cdot z}\left\langle p_{f}, \lambda^{\prime}\right| \bar{\psi}\left(-\frac{z}{2}\right) \Gamma \mathcal{W}\left(-\frac{z}{2}, \frac{z}{2}\right) \psi\left(\frac{z}{2}\right)\left|p_{i}, \lambda\right\rangle\right|_{z^{0}=0, \vec{z}_{\perp}=\overrightarrow{0}_{\perp}}
$$

* Parametrization of coordinate-space correlation functions
[D. Kiptily and M. Polyakov, Eur. Phys. J. C37 (2004) 105]
[F. Aslan et a., Phys. Rev. D 98, 014038 (2018)]

$$
\begin{aligned}
F^{\left[\gamma^{\mu} \gamma_{5}\right]}\left(x, \Delta ; P^{3}\right)=\frac{1}{2 P^{3}} \bar{u}\left(p_{f}, \lambda^{\prime}\right) & {\left[P^{\mu} \frac{\gamma^{3} \gamma_{5}}{P^{0}} F_{\widetilde{H}}\left(x, \xi, t ; P^{3}\right)+P^{\mu} \frac{\Delta^{3} \gamma_{5}}{2 m P^{0}} F_{\widetilde{E}}\left(x, \xi, t ; P^{3}\right)\right.} \\
& +\Delta_{\perp}^{\mu} \frac{\gamma_{5}}{2 m} F_{\widetilde{E}+\widetilde{G}_{1}}\left(x, \xi, t ; P^{3}\right)+\gamma_{\perp}^{\mu} \gamma_{5} F_{\widetilde{H}+\widetilde{G}_{2}}\left(x, \xi, t ; P^{3}\right) \\
& \left.+\Delta_{\perp}^{\mu} \frac{\gamma^{3} \gamma_{5}}{P^{3}} F_{\widetilde{G}_{3}}\left(x, \xi, t ; P^{3}\right)+i \varepsilon_{\perp}^{\mu \nu} \Delta_{\nu} \frac{\gamma^{3}}{P^{3}} F_{\widetilde{G}_{4}}\left(x, \xi, t ; P^{3}\right)\right] u\left(p_{i}, \lambda\right)
\end{aligned}
$$

* Kinematic twist-three contributions to pseudo- and quasi-GPDs to restore translation invariance [V. Braun et al., JHEP 10 (2023) 134]
\star Twist-3 contributions to helicity GPDs: $\Gamma=\gamma^{j} \gamma_{5}, j=1,2$

Theoretical setup

* Correlation functions in coordinate space

$$
F^{[\Gamma]}\left(x, \Delta ; P^{3}\right)=\left.\frac{1}{2} \int \frac{d z^{3}}{2 \pi} e^{i k \cdot z}\left\langle p_{f}, \lambda^{\prime}\right| \bar{\psi}\left(-\frac{z}{2}\right) \Gamma \mathcal{W}\left(-\frac{z}{2}, \frac{z}{2}\right) \psi\left(\frac{z}{2}\right)\left|p_{i}, \lambda\right\rangle\right|_{z^{0}=0, \vec{z}_{\perp}=\overrightarrow{0}_{\perp}}
$$

* Parametrization of coordinate-space correlation functions
[D. Kiptily and M. Polyakov, Eur. Phys. J. C37 (2004) 105]
[F. Aslan et a., Phys. Rev. D 98, 014038 (2018)]

[S. Bhattacharya et al., PRD 102 (2020) 11] (Editors Highlight)

$$
\begin{aligned}
F^{\left[\gamma^{\mu} \gamma_{5}\right]}\left(x, \Delta ; P^{3}\right)=\frac{1}{2 P^{3}} \bar{u}\left(p_{f}, \lambda^{\prime}\right) & {\left[P^{\mu} \frac{\gamma^{3} \gamma_{5}}{P^{0}} F_{\widetilde{H}}\left(x, \xi, t ; P^{3}\right)+P^{\mu} \frac{\Delta^{3} \gamma_{5}}{2 m P^{0}} F_{\widetilde{E}}\left(x, \xi, t ; P^{3}\right)\right.} \\
& +\Delta_{\perp}^{\mu} \frac{\gamma_{5}}{2 m} F_{\widetilde{E}+\widetilde{G}_{1}}\left(x, \xi, t ; P^{3}\right)+\gamma_{\perp}^{\mu} \gamma_{5} F_{\widetilde{H}+\widetilde{G}_{2}}\left(x, \xi, t ; P^{3}\right) \\
& \left.+\Delta_{\perp}^{\mu} \frac{\gamma^{3} \gamma_{5}}{P^{3}} F_{\widetilde{G}_{3}}\left(x, \xi, t ; P^{3}\right)+i \varepsilon_{\perp}^{\mu \nu} \Delta_{\nu} \frac{\gamma^{3}}{P^{3}} F_{\widetilde{G}_{4}}\left(x, \xi, t ; P^{3}\right)\right] u\left(p_{i}, \lambda\right)
\end{aligned}
$$

* Kinematic twist-three contributions to pseudo- and quasi-GPDs to restore translation invariance [V. Braun et al., JHEP 10 (2023) 134]
\star Twist-3 contributions to helicity GPDs: $\Gamma=\gamma^{j} \gamma_{5}, j=1,2$

Decomposition

* Requirement: four independent matrix elements

$P_{3}[\mathrm{GeV}]$	$\vec{q}\left[\frac{2 \pi}{L}\right]$	$-t\left[\mathrm{GeV}^{2}\right]$
± 0.83	$(0,0,0)$	0
± 1.25	$(0,0,0)$	0
± 1.67	$(0,0,0)$	0
± 0.83	$(\pm 2,0,0)$	0.69
± 1.25	$(\pm 2,0,0)$	0.69
± 1.67	$(\pm 2,0,0)$	0.69
± 1.25	$(\pm 2, \pm 2,0)$	1.38
± 1.25	$(\pm 4,0,0)$	2.76

* Average kinematically equivalent matrix elements
$\Pi^{1}\left(\Gamma_{0}\right)=C\left(-F_{\widetilde{H}+\widetilde{G}_{2}} \frac{P_{3} \Delta_{y}}{4 m^{2}}-F_{\widetilde{G}_{4}} \frac{\operatorname{sign}\left[P_{3}\right] \Delta_{y}(E+m)}{2 m^{2}}\right)$,
$\Pi^{1}\left(\Gamma_{1}\right)=i C\left(F_{\widetilde{H}+\widetilde{G}_{2}} \frac{\left(4 m(E+m)+\Delta_{y}^{2}\right)}{8 m^{2}}-F_{\widetilde{E}+\widetilde{G}_{1}} \frac{\Delta_{x}^{2}(E+m)}{8 m^{3}}+F_{\widetilde{G}_{4}} \frac{\operatorname{sign}\left[P_{3}\right] \Delta_{y}^{2}(E+m)}{4 m^{2} P_{3}}\right)$,
$\Pi^{1}\left(\Gamma_{2}\right)=i C\left(-F_{\widetilde{H}+\widetilde{G}_{2}} \frac{\Delta_{x} \Delta_{y}}{8 m^{2}}-F_{\widetilde{E}+\widetilde{G}_{1}} \frac{\Delta_{x} \Delta_{y}(E+m)}{8 m^{3}}-F_{\widetilde{G}_{4}} \frac{\operatorname{sign}\left[P_{3}\right] \Delta_{x} \Delta_{y}(E+m)}{4 m^{2} P_{3}}\right)$,
$\Pi^{1}\left(\Gamma_{3}\right)=C\left(-F_{\widetilde{G}_{3}} \frac{E \Delta_{x}(E+m)}{2 m^{2} P_{3}}\right)$,
$\Pi^{2}\left(\Gamma_{0}\right)=C\left(F_{\widetilde{H}+\widetilde{G}_{2}} \frac{P_{3} \Delta_{x}}{4 m^{2}}+F_{\widetilde{G}_{4}} \frac{\operatorname{sign}\left[P_{3}\right] \Delta_{x}(E+m)}{2 m^{2}}\right)$,
$\Pi^{2}\left(\Gamma_{1}\right)=i C\left(-F_{\widetilde{H}+\widetilde{G}_{2}} \frac{\Delta_{x} \Delta_{y}}{8 m^{2}}-F_{\widetilde{E}+\widetilde{G}_{1}} \frac{\Delta_{x} \Delta_{y}(E+m)}{8 m^{3}}-F_{\widetilde{G}_{4}} \frac{\operatorname{sign}\left[P_{3}\right] \Delta_{x} \Delta_{y}(E+m)}{4 m^{2} P_{3}}\right)$,
$\Pi^{2}\left(\Gamma_{2}\right)=i C\left(F_{\widetilde{H}+\widetilde{G}_{2}} \frac{\left(4 m(E+m)+\Delta_{x}^{2}\right)}{8 m^{2}}-F_{\widetilde{E}+\widetilde{G}_{1}} \frac{\Delta_{y}^{2}(E+m)}{8 m^{3}}+F_{\widetilde{G}_{4}} \frac{\operatorname{sign}\left[P_{3}\right] \Delta_{x}^{2}(E+m)}{4 m^{2} P_{3}}\right)$,
$\Pi^{2}\left(\Gamma_{3}\right)=C\left(-F_{\widetilde{G}_{3}} \frac{E \Delta_{y}(E+m)}{2 m^{2} P_{3}}\right)$,

Consistency Checks

* Sum Rules (generalization of Burkhardt-Cottingham)
[X. D. Ji, Phys. Rev. Lett. 78, 610 (1997), hep-ph/9603249]

$$
\begin{gathered}
\int_{-1}^{1} d x \widetilde{H}(x, \xi, t)=G_{A}(t), \quad \int_{-1}^{1} d x \widetilde{E}(x, \xi, t)=G_{P}(t) \\
\int_{-1}^{1} d x \widetilde{G}_{i}(x, \xi, t)=0, \quad i=1,2,3,4
\end{gathered}
$$

\star Sum Rules (generalization of Efremov-Leader-Teryaev)
[A. Efremov, O. Teryaev , E. Leader, PRD 55 (1997) 4307, hep-ph/9607217]

$$
\int_{-1}^{1} d x x \widetilde{G}_{3}(x, 0, t)=\frac{\xi}{4} G_{E} \quad \int_{-1}^{1} d x x \widetilde{G}_{4}(x, 0, t)=\frac{1}{4} G_{E}(t)
$$

[^0]
Lattice Results - Matrix Elements

t Bare matrix elements $\quad \Pi^{1}\left(\Gamma_{1}\right)=i C\left(F_{\widetilde{H}+\widetilde{G}_{2}} \frac{\left(4 m(E+m)+\Delta_{y}^{2}\right)}{8 m^{2}}-F_{\widetilde{E}+\widetilde{G}_{1}} \frac{\Delta_{x}^{2}(E+m)}{8 m^{3}}+F_{\widetilde{G}_{4}} \frac{\operatorname{sign}\left[P_{3}\right] \Delta_{y}^{2}(E+m)}{4 m^{2} P_{3}}\right)$

$P_{3}[\mathrm{GeV}]$	$\vec{q}\left[\frac{2 \pi}{L}\right]$	$-t\left[\mathrm{GeV}^{2}\right]$
± 0.83	$(0,0,0)$	0
± 1.25	$(0,0,0)$	0
± 1.67	$(0,0,0)$	0
± 0.83	$(\pm 2,0,0)$	0.69
± 1.25	$(\pm 2,0,0)$	0.69
± 1.67	$(\pm 2,0,0)$	0.69
± 1.25	$(\pm 2, \pm 2,0)$	1.38
± 1.25	$(\pm 4,0,0)$	2.76

Lattice Results - Matrix Elements

t Bare matrix elements $\quad \Pi^{1}\left(\Gamma_{1}\right)=i C\left(F_{\widetilde{H}+\widetilde{G}_{2}} \frac{\left(4 m(E+m)+\Delta_{y}^{2}\right)}{8 m^{2}}-F_{\widetilde{E}+\widetilde{G}_{1}} \frac{\Delta_{x}^{2}(E+m)}{8 m^{3}}+F_{\widetilde{G}_{4}} \frac{\operatorname{sign}\left[P_{3}\right] \Delta_{y}^{2}(E+m)}{4 m^{2} P_{3}}\right)$

$P_{3}[\mathrm{GeV}]$	$\vec{q}\left[\frac{2 \pi}{L}\right]$	$-t\left[\mathrm{GeV}^{2}\right]$
± 0.83	$(0,0,0)$	0
± 1.25	$(0,0,0)$	0
± 1.67	$(0,0,0)$	0
± 0.83	$(\pm 2,0,0)$	0.69
± 1.25	$(\pm 2,0,0)$	0.69
± 1.67	$(\pm 2,0,0)$	0.69
± 1.25	$(\pm 2, \pm 2,0)$	1.38
± 1.25	$(\pm 4,0,0)$	2.76

Φ	$\{1,+3,(0,+2,0)\}$
Φ	$\{1,+3,(0,-2,0)\}$
Φ	$\{2,+3,(+2,0,0)\}$
Φ	$\{2,+3,(-2,0,0)\}$
Φ	$\{1,-3,(0,+2,0)\}$
Φ	$\{1,-3,(0,-2,0)\}$
Φ	$\{2,-3,(+2,0,0)\}$
Φ	$\{2,-3,(-2,0,0)\}$

Lattice Results - quasi-GPDs

$F_{\widetilde{H}+\widetilde{G}_{2}}$ $F_{\widetilde{E}+\widetilde{G}_{1}}$

Lattice Results - quasi-GPDs

Indeed, numerically found to be zero within uncertainties at $\xi=0$

$$
\int d x x \widetilde{G}_{3}=\frac{\xi}{4} G_{E}(t)
$$

Reconstruction of x-dependence \& matching

* quasi-GPDs transformed to momentum space using Backus Gilbert
[G. Backus and F. Gilbert, Geophysical Journal International 16, 169 (1968)]
* Matching formalism to 1 loop accuracy level

$$
F_{X}^{\mathrm{M} \overline{\mathrm{MS}}}\left(x, t, P_{3}, \mu\right)=\int_{-1}^{1} \frac{d y}{|y|} C_{\gamma_{j} \gamma_{5}}^{\mathrm{M} \overline{\mathrm{MS}}, \overline{\mathrm{MS}}}\left(\frac{x}{y}, \frac{\mu}{y P_{3}}\right) G_{X}^{\overline{\mathrm{MS}}}(y, t, \mu)+\mathcal{O}\left(\frac{m^{2}}{P_{3}^{2}}, \frac{t}{P_{3}^{2}}, \frac{\Lambda_{\mathrm{QCD}}^{2}}{x^{2} P_{3}^{2}}\right)
$$

PHYSICAL REVIEW D 102, 034005 (2020)
\star Operator dependent kernel

One-loop matching for the twist-3 parton distribution $g_{T}(x)$

* Matching does not consider mixing with q-g-q correlators
[V. Braun et al., JHEP 05 (2021) 086]

Lattice Results - light-cone GPDs

Lattice Results - light-cone GPDs

Lattice Results - light-cone GPDs

Negative areas in \widetilde{G}_{2} theoretically anticipated:

$$
\int_{-1}^{1} d x \widetilde{G}_{i}(x, \xi, t)=0, \quad i=1,2,3,4
$$

Lattice Results - light-cone GPDs

\star Direct access to \widetilde{E}-GPD not possible for zero skewness $\quad P^{\mu} \frac{\gamma^{3} \gamma_{5}}{P^{0}} F_{\widetilde{H}}\left(x, \xi, t ; P^{3}\right)+P^{\mu} \frac{\Delta^{3} \gamma_{5}}{2 m P^{0}} F_{\widetilde{E}}\left(x, \xi, t ; P^{3}\right)$

* Glimpse into \widetilde{E}-GPD through twist-3 :

Lattice Results - light-cone GPDs

\star Direct access to \widetilde{E}-GPD not possible for zero skewness $\quad P^{\mu} \frac{\gamma^{3} \gamma_{5}}{P^{0}} F_{\widetilde{H}}\left(x, \xi, t ; P^{3}\right)+P^{\mu} \frac{\Delta^{3} \gamma_{5}}{2 m P^{0}} F_{\widetilde{E}}\left(x, \xi, t ; P^{3}\right)$

* Glimpse into \widetilde{E}-GPD through twist-3 :

\star Sizable contributions as expected

$$
\begin{array}{r}
\int_{-1}^{1} d x \widetilde{E}(x, \xi, t)=G_{P}(t) \\
\int_{-1}^{1} d x \widetilde{G}_{i}(x, \xi, t)=0, \quad i=1,2,3,4
\end{array}
$$

Lattice Results - light-cone GPDs

* Direct access to \widetilde{E}-GPD not possible for zero skewness
$P^{\mu} \frac{\gamma^{3} \gamma_{5}}{P^{0}} F_{\widetilde{H}}\left(x, \xi, t ; P^{3}\right)+P^{\mu} \frac{\Delta^{3} \gamma_{5}}{2 m P^{0}} F_{\widetilde{E}}\left(x, \xi, t ; P^{3}\right)$

$$
\star \widetilde{G}_{3}(\xi=0)=0, \widetilde{G}_{4}: \text { small }
$$

$\star \widetilde{G}_{4}$ very small; no theoretical argument to be zero

$$
\int_{-1}^{1} d x x \widetilde{G}_{4}(x, \xi, t)=\frac{1}{4} G_{E}
$$

Consistency checks

* Norms

$$
\int_{-1}^{1} d x \widetilde{H}(x, \xi, t)=G_{A}(t), \quad \int_{-1}^{1} d x \widetilde{E}(x, \xi, t)=G_{P}(t) \quad \int_{-1}^{1} d x \widetilde{G}_{i}(x, \xi, t)=0, \quad i=1,2,3,4
$$

GPD	$P_{3}=0.83[\mathrm{GeV}]$ $-t=0.69\left[\mathrm{GeV}^{2}\right]$	$P_{3}=1.25[\mathrm{GeV}]$ $-t=0.69\left[\mathrm{GeV}^{2}\right]$	$P_{3}=1.67[\mathrm{GeV}]$ $-t=0.69\left[\mathrm{GeV}^{2}\right]$	$P_{3}=1.25[\mathrm{GeV}]$ $-t=1.38\left[\mathrm{GeV}^{2}\right]$	$P_{3}=1.25[\mathrm{GeV}]$ $-t=2.76\left[\mathrm{GeV}^{2}\right]$
\widetilde{H}	$0.741(21)$	$0.712(27)$	$0.802(48)$	$0.499(21)$	$0.281(18)$
$\widetilde{H}+\widetilde{G}_{2}$	$0.719(25)$	$0.750(33)$	$0.788(70)$	$0.511(36)$	$0.336(34)$

* Consistency checks show encouraging results
* Refining calculations is needed to address systematic effects and extract reliable numbers

Alternative setup

* Alternative kinematic setup can be utilized
[D. Kiptily and M. Polyakov, Eur. Phys. J. C37 (2004) 105]
[Bhattacharya et al., arXiv:2310.13114]

$$
\begin{aligned}
& F^{\left[\gamma^{\mu} \gamma_{5}\right]}\left(x, \Delta ; P^{3}\right)=\frac{1}{2 P^{3}} \bar{u}\left(p_{f}, \lambda^{\prime}\right) {\left[P^{\mu} \frac{\gamma^{3} \gamma_{5}}{P^{0}} F_{\widetilde{H}}\left(x, \xi, t ; P^{3}\right)+P^{\mu} \frac{\Delta^{3} \gamma_{5}}{2 m P^{0}} F_{\widetilde{E}}\left(x, \xi, t ; P^{3}\right)\right.} \\
&+\Delta_{\perp}^{\mu} \frac{\gamma_{5}}{2 m} F_{\widetilde{E}+\widetilde{G}_{1}}\left(x, \xi, t ; P^{3}\right)+\gamma_{\perp}^{\mu} \gamma_{5} F_{\widetilde{H}+\widetilde{G}_{2}}\left(x, \xi, t ; P^{3}\right) \\
&+\Delta_{\perp}^{\mu} \frac{\gamma^{3} \gamma_{5}}{P^{3}} F_{\widetilde{G}}^{3} \\
&\left.\left(x, \xi, t ; P^{3}\right)+i \varepsilon_{\perp}^{\mu \nu} \Delta_{\nu} \frac{\gamma^{3}}{P^{3}} F_{\widetilde{G}_{4}}\left(x, \xi, t ; P^{3}\right)\right] u\left(p_{i}, \lambda\right)
\end{aligned}
$$

$$
\begin{aligned}
\widetilde{F}^{\mu}(z, P, \Delta) \equiv & \left\langle p_{f} ; \lambda^{\prime}\right| \bar{\psi}\left(-\frac{z}{2}\right) \gamma^{\mu} \gamma_{5} \mathcal{W}\left(-\frac{z}{2}, \frac{z}{2}\right) \psi\left(\frac{z}{2}\right)\left|p_{i} ; \lambda\right\rangle \\
= & \bar{u}\left(p_{f}, \lambda^{\prime}\right) \\
& {\left[\frac{i \epsilon^{\mu P z \Delta}}{m} \widetilde{A}_{1}+\gamma^{\mu} \gamma_{5} \widetilde{A}_{2}+\gamma_{5}\left(\frac{P^{\mu}}{m} \widetilde{A}_{3}+m z^{\mu} \widetilde{A}_{4}+\frac{\Delta^{\mu}}{m} \widetilde{A}_{5}\right)\right.} \\
& \left.+m \not \approx \gamma_{5}\left(\frac{P^{\mu}}{m} \widetilde{A}_{6}+m z^{\mu} \widetilde{A}_{7}+\frac{\Delta^{\mu}}{m} \widetilde{A}_{8}\right)\right] u\left(p_{i}, \lambda\right),
\end{aligned}
$$

Alternative setup

* Alternative kinematic setup can be utilized
[D. Kiptily and M. Polyakov, Eur. Phys. J. C37 (2004) 105]

[Bhattacharya et al., arXiv:2310.13114]

$$
\begin{aligned}
& F^{\left[\gamma^{\mu} \gamma_{5}\right]}\left(x, \Delta ; P^{3}\right)=\frac{1}{2 P^{3}} \bar{u}\left(p_{f}, \lambda^{\prime}\right) {\left[P^{\mu} \frac{\gamma^{3} \gamma_{5}}{P^{0}} F_{\widetilde{H}}\left(x, \xi, t ; P^{3}\right)+P^{\mu} \frac{\Delta^{3} \gamma_{5}}{2 m P^{0}} F_{\widetilde{E}}\left(x, \xi, t ; P^{3}\right)\right.} \\
&+\Delta_{\perp}^{\mu} \frac{\gamma_{5}}{2 m} F_{\widetilde{E}+\widetilde{G}_{1}}\left(x, \xi, t ; P^{3}\right)+\gamma_{\perp}^{\mu} \gamma_{5} F_{\widetilde{H}+\widetilde{G}_{2}}\left(x, \xi, t ; P^{3}\right) \\
&+\Delta_{\perp}^{\mu} \frac{\gamma^{3} \gamma_{5}}{P^{3}} F_{\widetilde{G}}^{3} \\
&\left.\left(x, \xi, t ; P^{3}\right)+i \varepsilon_{\perp}^{\mu \nu} \Delta_{\nu} \frac{\gamma^{3}}{P^{3}} F_{\widetilde{G}_{4}}\left(x, \xi, t ; P^{3}\right)\right] u\left(p_{i}, \lambda\right)
\end{aligned}
$$

$$
\widetilde{F}^{\mu}(z, P, \Delta) \equiv\left\langle p_{f} ; \lambda^{\prime}\right| \bar{\psi}\left(-\frac{z}{2}\right) \gamma^{\mu} \gamma_{5} \mathcal{W}\left(-\frac{z}{2}, \frac{z}{2}\right) \psi\left(\frac{z}{2}\right)\left|p_{i} ; \lambda\right\rangle
$$

$$
\begin{aligned}
=\bar{u}\left(p_{f}, \lambda^{\prime}\right) & {\left[\frac{i \epsilon^{\mu P z \Delta}}{m} \widetilde{A}_{1}+\gamma^{\mu} \gamma_{5} \widetilde{A}_{2}+\gamma_{5}\left(\frac{P^{\mu}}{m} \widetilde{A}_{3}+m z^{\mu} \widetilde{A}_{4}+\frac{\Delta^{\mu}}{m} \widetilde{A}_{5}\right)\right.} \\
& \left.+m \not \approx \gamma_{5}\left(\frac{P^{\mu}}{m} \widetilde{A}_{6}+m z^{\mu} \widetilde{A}_{7}+\frac{\Delta^{\mu}}{m} \widetilde{A}_{8}\right)\right] u\left(p_{i}, \lambda\right)
\end{aligned}
$$

$$
F_{\widetilde{E}+\widetilde{G}_{1}}^{s}=\frac{-2 E^{2}}{P_{3}} z \tilde{A}_{1}+2 \tilde{A}_{5}
$$

$$
F_{\widetilde{H}+\widetilde{G}_{2}}^{s}=\frac{-E^{2}\left(\Delta_{x}^{2}+\Delta_{y}^{2}\right)}{2 m^{2} P_{3}} z \tilde{A}_{1}+\tilde{A}_{2}
$$

$$
F_{G_{3}}^{s}=z P_{3} \tilde{A}_{8}
$$

$$
F_{\widetilde{G}_{4}}^{s}=\frac{-E P_{3}}{m^{2}}\left(\frac{-E^{2}}{P_{3}}+P_{3}\right) z \tilde{A}_{1}
$$

Alternative setup

* Alternative kinematic setup can be utilized
[D. Kiptily and M. Polyakov, Eur. Phys. J. C37 (2004) 105]
[Bhattacharya et al., arXiv:2310.13114]

$$
\begin{aligned}
F^{\left[\gamma^{\mu} \gamma_{5}\right]}\left(x, \Delta ; P^{3}\right)=\frac{1}{2 P^{3}} \bar{u}\left(p_{f}, \lambda^{\prime}\right) & {\left[P^{\mu} \frac{\gamma^{3} \gamma_{5}}{P^{0}} F_{\widetilde{H}}\left(x, \xi, t ; P^{3}\right)+P^{\mu} \frac{\Delta^{3} \gamma_{5}}{2 m P^{0}} F_{\widetilde{E}}\left(x, \xi, t ; P^{3}\right)\right.} \\
& +\Delta_{\perp}^{\mu} \frac{\gamma_{5}}{2 m} F_{\widetilde{E}+\widetilde{G}_{1}}\left(x, \xi, t ; P^{3}\right)+\gamma_{\perp}^{\mu} \gamma_{5} F_{\widetilde{H}+\widetilde{G}_{2}}\left(x, \xi, t ; P^{3}\right) \\
& \left.+\Delta_{\perp}^{\mu} \frac{\gamma^{3} \gamma_{5}}{P^{3}} F_{\widetilde{G}_{3}}\left(x, \xi, t ; P^{3}\right)+i \varepsilon_{\perp}^{\mu \nu} \Delta_{\nu} \frac{\gamma^{3}}{P^{3}} F_{\widetilde{G}_{4}}\left(x, \xi, t ; P^{3}\right)\right] u\left(p_{i}, \lambda\right)
\end{aligned}
$$

$$
\widetilde{F}^{\mu}(z, P, \Delta) \equiv\left\langle p_{f} ; \lambda^{\prime}\right| \bar{\psi}\left(-\frac{z}{2}\right) \gamma^{\mu} \gamma_{5} \mathcal{W}\left(-\frac{z}{2}, \frac{z}{2}\right) \psi\left(\frac{z}{2}\right)\left|p_{i} ; \lambda\right\rangle
$$

$$
\begin{aligned}
&=\bar{u}\left(p_{f}, \lambda^{\prime}\right) {\left[\frac{i \epsilon^{\mu P z \Delta}}{m} \widetilde{A}_{1}+\gamma^{\mu} \gamma_{5} \widetilde{A}_{2}+\gamma_{5}\left(\frac{P^{\mu}}{m} \widetilde{A}_{3}+m z^{\mu} \widetilde{A}_{4}+\frac{\Delta^{\mu}}{m} \widetilde{A}_{5}\right)\right.} \\
&\left.+m \not \approx \gamma_{5}\left(\frac{P^{\mu}}{m} \widetilde{A}_{6}+m z^{\mu} \widetilde{A}_{7}+\frac{\Delta^{\mu}}{m} \widetilde{A}_{8}\right)\right] u\left(p_{i}, \lambda\right)
\end{aligned}
$$

$$
\begin{aligned}
& F_{\widetilde{E}+\widetilde{G}_{1}}^{s}=\frac{-2 E^{2}}{P_{3}} z \tilde{A}_{1}+2 \tilde{A}_{5} \\
& F_{\widetilde{H}+\widetilde{G}_{2}}^{s}=\frac{-E^{2}\left(\Delta_{x}^{2}+\Delta_{y}^{2}\right)}{2 m^{2} P_{3}} z \tilde{A}_{1}+\tilde{A}_{2}
\end{aligned}
$$

* Kinematic coefficients defined in symmetric frame

* Amplitudes extracted from any frame.

Asymmetric frame calculations give \tilde{A}_{i} at t^{a}, but F_{i} defined in t^{s}
$F_{\widetilde{G}_{3}}^{s}=z P_{3} \tilde{A}_{8}$
$F_{\widetilde{G}_{4}}^{s}=\frac{-E P_{3}}{m^{2}}\left(\frac{-E^{2}}{P_{3}}+P_{3}\right) z \tilde{A}_{1}$

Alternative setup

* Alternative kinematic setup can be utilized
[D. Kiptily and M. Polyakov, Eur. Phys. J. C37 (2004) 105]
[Bhattacharya et al., arXiv:2310.13114]

$$
\widetilde{F}^{\mu}(z, P, \Delta) \equiv\left\langle p_{f} ; \lambda^{\prime}\right| \bar{\psi}\left(-\frac{z}{2}\right) \gamma^{\mu} \gamma_{5} \mathcal{W}\left(-\frac{z}{2}, \frac{z}{2}\right) \psi\left(\frac{z}{2}\right)\left|p_{i} ; \lambda\right\rangle
$$

$$
\begin{aligned}
F^{\left[\gamma^{\mu} \gamma_{5}\right]}\left(x, \Delta ; P^{3}\right)=\frac{1}{2 P^{3}} \bar{u}\left(p_{f}, \lambda^{\prime}\right) & {\left[P^{\mu} \frac{\gamma^{3} \gamma_{5}}{P^{0}} F_{\widetilde{H}}\left(x, \xi, t ; P^{3}\right)+P^{\mu} \frac{\Delta^{3} \gamma_{5}}{2 m P^{0}} F_{\widetilde{E}}\left(x, \xi, t ; P^{3}\right)\right.} \\
& +\Delta_{\perp}^{\mu} \frac{\gamma_{5}}{2 m} F_{\widetilde{E}+\widetilde{G}_{1}}\left(x, \xi, t ; P^{3}\right)+\gamma_{\perp}^{\mu} \gamma_{5} F_{\widetilde{H}+\widetilde{G}_{2}}\left(x, \xi, t ; P^{3}\right) \\
& \left.+\Delta_{\perp}^{\mu} \frac{\gamma^{3} \gamma_{5}}{P^{3}} F_{\widetilde{G}_{3}}\left(x, \xi, t ; P^{3}\right)+i \varepsilon_{\perp}^{\mu \nu} \Delta_{\nu} \frac{\gamma^{3}}{P^{3}} F_{\widetilde{G}_{4}}\left(x, \xi, t ; P^{3}\right)\right] u\left(p_{i}, \lambda\right)
\end{aligned}
$$

$$
\begin{gathered}
=\bar{u}\left(p_{f}, \lambda^{\prime}\right)\left[\frac{i \epsilon^{\mu P z \Delta}}{m} \widetilde{A}_{1}+\gamma^{\mu} \gamma_{5} \widetilde{A}_{2}+\gamma_{5}\left(\frac{P^{\mu}}{m} \widetilde{A}_{3}+m z^{\mu} \widetilde{A}_{4}+\frac{\Delta^{\mu}}{m} \widetilde{A}_{5}\right)\right. \\
\left.+m \not \approx \gamma_{5}\left(\frac{P^{\mu}}{m} \widetilde{A}_{6}+m z^{\mu} \widetilde{A}_{7}+\frac{\Delta^{\mu}}{m} \widetilde{A}_{8}\right)\right] u\left(p_{i}, \lambda\right)
\end{gathered}
$$

$$
\begin{aligned}
& F_{\widetilde{E}+\widetilde{G}_{1}}^{s}=\frac{-2 E^{2}}{P_{3}} z \tilde{A}_{1}+2 \tilde{A}_{5} \\
& F_{\widetilde{H}+\widetilde{G}_{2}}^{s}=\frac{-E^{2}\left(\Delta_{x}^{2}+\Delta_{y}^{2}\right)}{2 m^{2} P_{3}} z \tilde{A}_{1}+\tilde{A}_{2} \\
& F_{\widetilde{G_{3}}}^{s}=z_{3} \tilde{A}_{8} \\
& F_{\widetilde{G}_{4}}^{s}=\frac{-E P_{3}}{m^{2}}\left(\frac{-E^{2}}{P_{3}}+P_{3}\right) z \tilde{A}_{1}
\end{aligned}
$$

* Kinematic coefficients defined in symmetric frame

太 Amplitudes extracted from any frame.

Asymmetric frame calculations give \tilde{A}_{i} at t^{a}, but F_{i} defined in t^{s}

Lorentz transformation
of kinematic factors

$$
\begin{aligned}
& F_{\widetilde{E}+\widetilde{G}_{1}}^{a}=\frac{-E_{f}\left(E_{f}+E_{i}\right)}{P_{3}} z \tilde{A}_{1}+2 \tilde{A}_{5} \\
& F_{\widetilde{H}+\widetilde{G}_{2}}^{a}=\frac{-E_{f}^{2}\left(\Delta_{x}^{2}+\Delta_{y}^{2}\right)}{2 m^{2} P_{3}} z \tilde{A}_{1}+\tilde{A}_{2}
\end{aligned}
$$

$$
F_{\widetilde{G}_{3}}^{a}=z P_{3} \tilde{A}_{8}
$$

$$
F_{\widetilde{G}_{4}}^{a}=-\sqrt{\frac{E_{f}\left(E_{f}+E_{i}\right)}{2}} \frac{P_{3}}{m^{2}}\left(\frac{-E_{f}\left(E_{f}+E_{i}\right)}{2 P_{3}}+P_{3}\right) z \tilde{A}_{1}
$$

Amplitudes (proof-of-concept)

$$
\begin{array}{lll}
\vec{p}_{f}^{s}=\vec{P}+\frac{\vec{Q}}{2}, & \vec{p}_{i}^{s}=\vec{P}-\frac{\vec{Q}}{2} & t^{s}=-\vec{Q}^{2} \\
\vec{p}_{f}^{a}=\vec{P}, & \vec{p}_{i}^{a}=\vec{P}-\vec{Q} & t^{a}=-\vec{Q}^{2}+\left(E_{f}-E_{i}\right)^{2}
\end{array}
$$

FIG. 5. Comparison of bare values of \widetilde{A}_{2} and \widetilde{A}_{5} in the symmetric (filled symbols) and asymmetric (open symbols) frame. The real (imaginary) part of each quantity is shown in the left (right) column. The data correspond to $\left|P_{3}\right|=1.25 \mathrm{GeV}$ and $-t=0.69 \mathrm{GeV}^{2}\left(-t=0.65 \mathrm{GeV}^{2}\right)$ for the symmetric (asymmetric) frame.

Alternative setup

* Separate calculation for each $-t$ value in symmetric frame
* Asymmetric frame: 2 classes of $\vec{Q}:\left(Q_{x}, 0,0\right),\left(Q_{x}, Q_{y}, 0\right)$

Alternative setup

* Separate calculation for each $-t$ value in symmetric frame
* Asymmetric frame: 2 classes of $\vec{Q}:\left(Q_{x}, 0,0\right),\left(Q_{x}, Q_{y}, 0\right)$

frame	$P_{3}[\mathrm{GeV}]$	$\Delta\left[\frac{2 \pi}{L}\right]$	$-t\left[\mathrm{GeV}^{2}\right]$	ξ	N_{ME}	$N_{\text {confs }}$	$N_{\text {src }}$	N_{tot}
N/A	± 1.25	$(0,0,0)$	0	0	2	731	16	23392
symm	± 0.83	$(\pm 2,0,0),(0, \pm 2,0)$	0.69	0	8	67	8	4288
symm	± 1.25	$(\pm 2,0,0),(0, \pm 2,0)$	0.69	0	8	249	8	15936
symm	± 1.67	$(\pm 2,0,0),(0, \pm 2,0)$	0.69	0	8	294	32	75264
symm	± 1.25	$(\pm 2, \pm 2,0)$	1.39	0	16	224	8	28672
symm	± 1.25	$(\pm 4,0,0),(0, \pm 4,0)$	2.76	0	8	329	32	84224
asymm	± 1.25	$(\pm 1,0,0),(0, \pm 1,0)$	0.17	0	8	429	8	27456
asymm	± 1.25	$(\pm 1, \pm 1,0)$	0.33	0	16	194	8	12416
asymm	± 1.25	$(\pm 2,0,0),(0, \pm 2,0)$	0.64	0	8	429	8	27456
asymm	± 1.25	$(\pm 1, \pm 2,0),(\pm 2, \pm 1,0)$	0.80	0	16	194	8	12416
asymm	± 1.25	$(\pm 2, \pm 2,0)$	1.16	0	16	194	8	24832
asymm	± 1.25	$(\pm 3,0,0),(0, \pm 3,0)$	1.37	0	8	429	8	27456
asymm	± 1.25	$(\pm 1, \pm 3,0),(\pm 3, \pm 1,0)$	1.50	0	16	194	8	12416
asymm	± 1.25	$(\pm 4,0,0),(0, \pm 4,0)$	2.26	0	8	429	8	27456

* Momentum transfer range is very optimistic

(some values have enhanced systematic uncertainties)

Alternative setup

* Separate calculation for each $-t$ value in symmetric frame
* Asymmetric frame: 2 classes of $\vec{Q}:\left(Q_{x}, 0,0\right),\left(Q_{x}, Q_{y}, 0\right)$

frame	$P_{3}[\mathrm{GeV}]$	$\boldsymbol{\Delta}\left[\frac{2 \pi}{L}\right]$	$-t\left[\mathrm{GeV}^{2}\right]$	ξ	$N_{\text {ME }}$	$N_{\text {confs }}$	$N_{\text {src }}$	$N_{\text {tot }}$
N/A	± 1.25	$(0,0,0)$	0	0	2	731	16	23392
symm	± 1.25	$(\pm 2,0,0),(0, \pm 2,0)$	0.69	0	8	249	8	15936
		$(\pm 2, \pm 2,0)$	1.39	0	16	224	8	28672
symm	± 1.25	$(\pm 4,0,0),(0, \pm 4,0)$	2.76	0	8	329	32	84224
symm	± 1.25	$(\pm 1,0,0),(0, \pm 1,0)$	0.17	0	8	429	8	27456
asymm	± 1.25	$(\pm 1, \pm 1,0)$	0.33	0	16	194	8	12416
asymm	± 1.25	$(\pm 2,0,0),(0, \pm 2,0)$	0.64	0	8	429	8	27456
asymm	± 1.25	$(\pm 2,0$						
asymm	± 1.25	$(\pm 1, \pm 2,0),(\pm 2, \pm 1,0)$	0.80	0	16	194	8	12416
asymm	± 1.25	$(\pm 2, \pm 2,0)$	1.16	0	16	194	8	24832
asymm	± 1.25	$(\pm 3,0,0),(0, \pm 3,0)$	1.37	0	8	429	8	27456
asymm	± 1.25	$(\pm 1, \pm 3,0),(\pm 3, \pm 1,0)$	1.50	0	16	194	8	12416
asymm	± 1.25	$(\pm 4,0,0),(0, \pm 4,0)$	2.26	0	8	429	8	27456

* Momentum transfer range is very optimistic
(some values have enhanced systematic uncertainties)

Alternative setup

- Separate calculation for each $-t$ value in symmetric frame
* Asymmetric frame: 2 classes of $\vec{Q}:\left(Q_{x}, 0,0\right),\left(Q_{x}, Q_{y}, 0\right)$
asymmetric frame

frame	$P_{3}[\mathrm{GeV}]$	$\boldsymbol{\Delta}\left[\frac{2 \pi}{L}\right]$	$-t\left[\mathrm{GeV}^{2}\right]$	ξ	$N_{\text {ME }}$	$N_{\text {confs }}$	$N_{\text {src }}$	$N_{\text {tot }}$
N/A	± 1.25	$(0,0,0)$	0	0	2	731	16	23392
symm	± 1.25	$(\pm 2,0,0),(0, \pm 2,0)$	0.69	0	8	249	8	15936
			$(\pm 2, \pm 2,0)$	1.39	0	16	224	8

* Momentum transfer range is very optimistic
(some values have enhanced systematic uncertainti

Impressive quality of signal quality

$$
F \widetilde{G}_{4}
$$

* Small, but not negligible
* Satisfies the sum rule: $\int_{-1}^{+1} d x x \widetilde{G}_{3}=\frac{1}{4} G_{E}$

$F_{\widetilde{G}_{4}}^{a}=-\sqrt{\frac{E_{f}\left(E_{f}+E_{i}\right)}{2}} \frac{P_{3}}{m^{2}}\left(\frac{-E_{f}\left(E_{f}+E_{i}\right)}{2 P_{3}}+P_{3}\right) z \tilde{A}_{1}$

$$
F \widetilde{G}_{4}
$$

* Small, but not negligible
* Satisfies the sum rule: $\int_{-1}^{+1} d x x \widetilde{G}_{3}=\frac{1}{4} G_{E}$

$$
F_{\widetilde{G}_{4}}^{a}=-\sqrt{\frac{E_{f}\left(E_{f}+E_{i}\right)}{2}} \frac{P_{3}}{m^{2}}\left(\frac{-E_{f}\left(E_{f}+E_{i}\right)}{2 P_{3}}+P_{3}\right) z \tilde{A}_{1}
$$

Extension to twist-3 tensor GPDs

Extension to twist-3 tensor GPDs

Extension to twist-3 tensor GPDs

* Parametrization [Meissner et al., JHEP 08 (2009) 056]

$$
F^{\left[\sigma^{+-} \gamma_{5}\right]}=\bar{u}\left(p^{\prime}\right)\left(\gamma^{+} \gamma_{5} \widetilde{H}_{2}^{\prime}+\frac{P^{+} \gamma_{5}}{M} \widetilde{E}_{2}^{\prime}\right) u(p)
$$

How to lattice QCD data fit into the overall effort for hadron tomography

How to lattice QCD data fit into the overall effort for hadron tomography

* Lattice data may be incorporated in global analysis of experimental data and may influence parametrization of t and ξ dependence

How to lattice QCD data fit into the overall effort for hadron tomography

* Lattice data may be incorporated in global analysis of experimental data and may influence parametrization of t and ξ dependence

Constraints \& predictive power of lattice QCD

[JAM/HadStruc, PRD105 (2022) 114051]

[Atac et al., Nature Comm. 12, 1759 (2021)]

[JAM, PRD 106 (2022) 3, 034014]

[JAM \& ETMC, PRD 103 (2021) 016003]

How to lattice QCD data fit into the overall effort for hadron tomography

* Lattice data may be incorporated in global analysis of experimental data and may influence parametrization of t and ξ dependence

Constraints \& predictive power of lattice QCD

[JAM/HadStruc, PRD105 (2022) 114051]

[Atac et al., Nature Comm. 12, 1759 (2021)]

[JAM, PRD 106 (2022) 3, 034014]

[JAM \& ETMC, PRD 103 (2021) 016003]

Three bridge faculty positions will be created in nuclear theory.
Stony Brook \& Temple: Faculty positions in Fall 2024

The QGT Collaboration has a main goal of spearheading understanding and discovery in the quark and gluon tomography of hadrons, as well as the origin of their mass and spin.

1. Theoretical studies of high-momentum transfer processes using perturbative QCD methods and study of GPDs properties
2. Lattice QCD calculations of GPDs and related structures
3. Global analysis of GPDs based on experimental data using modern data analysis techniques for inference and uncertainty quantification

Three bridge faculty positions will be created in nuclear theory.
Stony Brook \& Temple: Faculty positions in Fall 2024

Focus Areas - Composition \& Expertise

QGT-related publications

1. "Gluon helicity in the nucleon from lattice QCD and machine learning", Khan, Liu, Sabbir Sufian, Physical Review D, Accepted, 2023.
2. "Moments of proton GPDs from the OPE of nonlocal quark bilinears up to NNLO", Bhattacharya Cichy, Constantinou, Gao, Metz, Miller, Mukherjee, Petreczky, Steffens, Zhao, Physical Review D, DOI: 10.1103/PhysRevD.108.014507.
3. "Generalized parton distributions through universal moment parameterization: non-zero skewness case", Guo, Ji, Santiago, Shiells, Yang, Journal of High Energy Physics, DOI: 10.1007/JHEP05(2023)150.
4. "Hadronic structure on the light-front VI. Generalized parton distributions of unpolarized hadrons", Shuryak, Zahed, Physical Review D, DOI: 10.1103/ PhysRevD.107.094005.
5. "Chiral-even axial twist-3 GPDs of the proton from lattice QCD", Bhattacharya, Cichy, Constantinou, Dodson, Metz, Scapellato, Fernanda Steffens, Physical Review D, DOI: 10.1103/PhysRevD.108.054501.
6. "Shedding light on shadow generalized parton distributions", Moffat, Freese, Cloët, Donohoe, Gamberg, Melnitchouk, Metz, Prokudin, Sato, Physical Review D, DOI: 10.1103/PhysRevD.108.036027.
7. "Colloquium: Gravitational Form Factors of the Proton", Burkert, Elouadrhiri, Girod, Lorcé, Schweitzer, Shanahan, Physical Review D, Under Review.
8. "Synchronization effects on rest frame energy and momentum densities in the proton", Freese, Miller, eprint: 2307.11165.
9. "Proton's gluon GPDs at large skewness and gravitational form factors from near threshold heavy quarkonium photo-production", Guo, Ji, Yuan, e-Print: 2308.13006.
10. "Parton Distributions from Boosted Fields in the Coulomb Gauge", Gao, Liu, Zhao, e-Print: 2306.14960.
11. "Exactly solvable models of nonlinear extensions of the Schrödinger equation", Dodge, Schweitzer, e-Print: 2304.01183.
12. "Role of strange quarks in the D-term and cosmological constant term of the proton", Won, Kim, Kim, e-Print: 2307.00740.
13. "Lattice QCD Calculation of Electroweak Box Contributions to Superallowed Nuclear and Neutron Beta Decays", Ma, Feng, Gorchtein, Jin, Liu, Seng, Wang,

Synergy

* The efforts from the three focus areas are interdependent and connected at multiple levels.

Synergy

\star The efforts from the three focus areas are interdependent and connected at multiple levels.

Synergy

* The efforts from the three focus areas are interdependent and connected at multiple levels.

* Utilizing individual efforts from different focus areas and creating essential new synergies is a unique aspect of the topical collaboration
- impose constraints in global analysis guided by theory
- impose constraints by incorporating lattice data in global analysis
- address challenges by combining lattice \& experimental data, as guided by theory

Summary

* We address computationally expensive calculations GPDs with signal comparable to PDFs
\star Several improvements needed (e.g., mixing with quark-gluon-quark correlators)
* New proposal for Lorentz invariant decomposition has great advantages:
- significant reduction of computational cost
- access to a broad range of t and ξ
* Future calculations have the potential to transform the field of GPDs Lattice QCD data on GPDs will play an important role in the pre-EIC era and can complement experimental efforts of JLab@12GeV
* Synergy with phenomenology is an exciting prospect

Summary

\star We address computationally expensive calculations GPDs with signal comparable to PDFs

* Several improvements needed (e.g., mixing with quark-gluon-quark correlators)
* New proposal for Lorentz invariant decomposition has great advantages:
- significant reduction of computational cost
- access to a broad range of t and ξ
* Future calculations have the potential to transform the field of GPDs Lattice QCD data on GPDs will play an important role in the pre-EIC era and can complement experimental efforts of JLab@12GeV
* Synergy with phenomenology is an exciting prospect

USQCD
Thank you

[^0]: G_{E} : electric FF

