

APCTP 2nd Workshop on the Physics of Electron Ion Collider November 29, 202

The ePIC Barrel Imaging Calorimeter (BIC)

Sylvester Joosten Argonne National Laboratory

Why electromagnetic calorimetry at EIC is hard

From the EIC Yellow Report: stringent barrel ECal requirements

EIC is an **electron scattering** machine and identifying scattered electrons mainly depends on the electromagnetic calorimetry.

The electromagnetic calorimeter is the main detector for **electron-pion separation**. The inclusive physics program requires up to 10⁴ pion suppression at low momenta in the barrel.

The exclusive program requires **decent energy resolution** (< 7%/ \sqrt{E} \oplus 1-3%) **for photon energy reconstruction, and also the fine granularity for good** π^0 - γ separation up to 10 GeV.

The bECal should be capable of measuring **low energy photons** down to 100 MeV, while having the range to measure energies well above 10 GeV

The system is space-constrained to very **limited space** inside the solenoid.

CONCEPT: A HYBRID IMAGING CALORIMETER

Combination of a high-performance sampling calorimeter with inexpensive silicon sensors for shower profiling

Start from mature layered Pb/ScFi technology with side-readout (same as the GlueX calorimeter) for state-of-the-art sampling calorimeter performance Insert layers of monolithic AstroPix sensors (inexpensive ultra-low-power silicon sensor developed for NASA) in the first half of the calorimeter to capture a 3-D image of the developing shower

General Overview BARREL IMAGING CALORIMETER (BIC)

AstroPix: silicon sensor with 500x500µm² pixel size ScFi Lavers with two-sided SiPM readout

- 4(+2) layers of imaging Si sensors interleaved with 5 Pb/ScFi layers
- Followed by a large section of Pb/ScFi section
- Total radiation thickness > 17.1 X_0
- Sampling fraction ~ 10%

Energy resolution - Primarily from Pb/ScFi layers (+ Imaging pixels energy information) Position resolution - Primarily from Imaging Layers (+ 2-side Pb/ScFi readout)

Detector Structure BARREL IMAGING CALORIMETER (BIC)

Tray - Structure holding the AstroPix staves for a single layer

Module - Several AstroPix chips daisy-chained together on Flex PCB

onne National Laboratory is a ENERGY U.S. Department of Energy laboratory managed by UChicago Argonne, U.C.

5

CALORIMETER COVERAGE AT EPIC

- Non-projective "continuous" design
- Particles passing at steeps angle pass through *much* more material than at central rapidities (up to 45 X0 at negative η)
- BIC is responsible for $-1.7 < \eta < 1.3$
- Continuous transition between backward-barrel-forward calorimeters

PB/SCFI TECHNOLOGY

Our Pb/ScFi layers follow the GlueX Design

- Mature Technology: GlueX, KLOE electromagnetic calorimeters
 - Detailed studies on calorimetry performance, including the light collection uniformity in fibers, light collection efficiencies, etc.
 - Module construction (lead handling, swaging, Pb/ScFi layers assembly, module machining) fully developed for GlueX
 Z. Papandreou, <u>https://halldweb.jlab.org/DocDB/0031/003164/</u>
 - Assembly and installation of self-supporting barrel based on GlueX experience
- Tested extensively for electromagnetic response in energies E_v < 2.5 GeV
- Energy resolution: $\sigma = 5.2\% / \sqrt{E \oplus 3.6\%^{1}}$
 - 15.5 X₀, GlueX could not constrain the constant term due to low energies
 - New results from Hall D beam tests show that constant term < 2%

Baby BCAL 60 cm long 15.5 X0

tested with e+ E ~ 3.6-6 GeV

ASTROPIX TECHNOLOGY

Not shown:

Early CD4 (Oct 2032)

ASTROPIX LAYER SIZE

The BIC will be a large silicon detector:

- 4 (+2) layers in the ePIC barrel will cover -1.7 < |eta| < 1.3
- The Astropix sensor area will be about **100 m² (+40 m²)**
- ~ 250,000 (+125,000) chips

Other comparable Si detector arrays in advanced stage

- ATLAS Inner Tracker silicon strips¹ (ITk pixel) 160 m² (50 million channels)
- CMS high granularity calorimeter ² ~ 600 m² (6.5 million channels)
- AMEGO-X NASA mission:
 - Will use a 40 m² AstroPix-based tracker, to be sent into space
 - We plan to use chips off-the-shelf: **no design modifications**.

Advantages of AstroPix with respect to pixels used in e.g. ATLAS

- AstroPix has very low power consumption (used in space)
 - 100 times smaller power consumption per cm² than ATLASPix pixels
 - AstroPix is a monolithic sensor less complicated structure
 - No bump bonding less risk of damaging sensors

¹ arXiv:2105.10367, ATLAS ITk Pixel Detector Overview

² arXiv:1802.05987, The CMS High-Granularity Calorimeter for Operation at the High-Luminosity LHC2

CMS high-granularity calorimeter

ASSEMBLY TOOLING

ENERGY RESOLUTION - PHOTONS

Fit parameters

25

20

15

10

5

Resolution o/E [%]

η	a/√(E) [%]	b [%]
-1	5.1(0.01)	0.47(0.03)
-0.5	4.77(0.01)	0.38(0.02)
0	4.67(0.01)	0.40(0.02)
0.5	4.75(0.01)	0.39(0.02)
1	5.1(0.01)	0.41(0.02)

- Based of Pb/ScFi part of the calorimeter
- Resolution extracted from a Crystal Ball fit σ

GlueX Pb/ScFi ECal: $σ = 5.2\% / \sqrt{E \oplus 3.6\%}$ NIM, A 896 (2018) 24-42

- 15.5 X₀, extracted for integrated range over the angular distributions for π^0 and η production at GlueX (E_x = 0.5 2.5 GeV)
- Measured energies not able to fully constrain the constant term

Simulations of **GlueX prototype** in ePIC environment agree with data at $E_r < 0.5$ NIM, 596 (2008) 327–337

ENERGY RESOLUTION - ELECTRONS

Fit parameters

η	a/√(E) [%]	b [%]
-1	5.22(0.02)	0(0.08)
-0.5	4.88(0.01)	0(0.04)
0	4.81(0.01)	0(0.08)
0.5	4.88(0.01)	0(0.04)
1	5.19(0.01)	0(0.06)

Resolution extracted from a crystal ball fit $\boldsymbol{\sigma}$

GlueX Pb/ScFi ECal: $σ = 5.2\% / \sqrt{E \oplus 3.6\%}$ NIM, A 896 (2018) 24-42

- 15.5 X_0 , extracted for integrated range over the angular distributions for π^0 and η production at GlueX (E_x = 0.5 2.5 GeV)
- Measured energies not able to fully constrain the constant term

Simulations of **GlueX prototype** in ePIC environment agree with data at $E_r < 0.5$ NIM, 596 (2008) 327–337

BIC: PERFORMANCE EXAMPLE e/π Separation

Realistic ePIC simulation

- Goal: Separation of electrons from background in Deep Inelastic Scattering (DIS) processes
- Method: E/p cut (Pb/ScFi) + Neural Network using 3D position and energy info from imaging layers
- e- π separation exceeds **10**³ in pion suppression at **95% efficiency** above 1 GeV in realistic conditions!

BIC: PERFORMANCE EXAMPLE

Impact on Inclusive Physics

10 x 100 GeV

NEUTRAL PION IDENTIFICATION

- **Goal:** Discriminate between π^0 decays and single γ from DVCS, neutral pion identification
- Precise position resolution allow for excellent separation of γ/π^0 based on the 3D shower profile
- Reconstruction of 2 GeV π^0 invariant mass as a testing ground for cluster energy splitting

Separation of two gammas from neutral pion well above required 10 GeV

EXPLORATORY: γ/π^0 SEPARATION

ер

Convolutional neural network utilizing energy and spatial information from AstroPix layers

• Started from **10 GeV/c at \eta = 0** - the upper limit for γ/π^0 from YR

No proper **topological clustering algorithm** in the ePIC reconstruction yet

With a quick study we easily achieved

10 GeV/c particles - **91.4%** rejection of π^0 at **90%** efficiency of γ (better than PbWO₄ crystal with 20mm block size)

Full study is ongoing:

- Implementing optimized topological clustering for AstroPix layers
- Significant improvements expected

BIC DETECTOR SUBSYSTEM COLLABORATION

BIC HIGH-LEVEL SCHEDULE

OPEN R&D QUESTIONS

ер

To be completed with the R&D program before CD-3

How detector performance obtained from detailed simulations compare with the measurements in the integrated SciFi/Pb and AstroPix prototype system?

- Physics benchmark of energy response to pions
- Physics benchmark of e/π separation
- Technical benchmark of streaming readout of both technologies

How performance of modern family of SiPMs improves the SciFi/Pb part response wrt the GlueX BCAL response?

- Benchmark light response and calibrate simulations
- Impact on future design studies related to usage of optical cookies, shape of lightguides, etc.
 - Photon Detection Efficiency for GlueX SiPMs (Hamamatsu S12045(X)): ~33%
 - Modern family of SiPMs (e.g. s14160/14161): ~50% (see backup slides 18-20)

GENERAL R&D SETUP AT FNAL

- Add BIC prototype calorimeter behind existing Argonne ATLAS Pixel telescope with AstroPix setup at MTest
- Rotating stage to simulate particles incident at angles up to 45° (η~1)
- Ability to lower BIC setup out of the beam, no need to uninstall for other experiments to run
 - Proximity to Argonne enables occasional opportunistic running

Current ANL AstroPix Planned BIC Setup Telescope Setup

SUMMARY

 \checkmark

Addressing the unique challenges for the barrel region in ePIC

Hybrid concept: 4 (+2) layers of Astropix interleaved with the AstroPix: silicon sensor with first 5 Pb/ScFi layers, followed by a large volume with the rest of 500x500µm² pixel the Pb/ScFi layers size developed for the Amego-X NASA Deep calorimeter ($\eta = 0 \sim 17.1 X_0$) while compact at $\sim 40 \text{ cm}$ mission Excellent energy resolution (5.2% / $\sqrt{E} \oplus 1.0\%$) Unrivaled low-energy electron-pion separation by combining the energy measurement with shower imaging Unrivaled position resolution due to the silicon layers Deep enough to serve as inner HCal Very good low-energy performance Wealth of information enables new measurements, ideally ScFi Lavers with two-sided suited for particle-flow SiPM readout (~10.3% Serves as tracking layer behind the DIRC sampling fraction)

Checks all the boxes!