

Far-Forward physics and detector R&D

- Yongsun Kim (Sejong Univ)
- 2nd APCTP Workshop on the Physics of EIC
- Daegu, Nov 30 2023

ePIC far forward system

Zero degree calorimeter

- 35 m away from the vertex
- ~60x60x200 cm space available
- Measure γ , π^0 , and n

Detector requirement

 The performance plot was made in the old version detector design (prior than March 2023), and already meet the YR requirement

ZDC-e design

W+Si pad Layers for tracking (ALICE-FOCAL)

ALICE-FoCAL beam test@CERN

Neutron irradiation at RIKEN RANS

From T. Guji

ZDC-h design (proposed)

- 2nd design
 - No Pb-Si imaging calorimeter
 - Pb-(Scintillator + Fused silica) by Korea group (Sejong U. & Korea U.)
 - Capillary design
 - 1 on 1 SiPM: each SiPM connected to single fiber
 - Or grouping SiPM: each SiPM to 9 fibers

• Mix with Quartz fibers can be resilient against radiation damage

Physics sensitive to ZDC

Transverse Spin Asymmetry

- A_N is left-right cross section asymmetry of particle production in p[↑] + p cc
- Spin dependence of fo
- A_N is crucial input for
 - Transverse Momen -
 - Polarization in fragmentation function
- RHICf collaboration measured two A_N
 - π⁰ (PRL 124 252501 (2020))
 - Neutron (Preliminary result)

 $\pi^0 A_N$

Diffractive

Non-diffractive (partonic)

- A_N of π^0 may come from both diff. and non-diff process
- Similarity of magnitude of A_N in the wide p_T range suggests a common underlying production mechanism for diffractive and nondiffractive process

Neutron production at forward region

- One Pion Exchange (OPE) model explains x_T differential cross section well in which p -> n process is dominant
- Yet, A_N was not reproduced quantitatively
- Adding a₁ exchange made up this gap and now can reproduce the data at least qualitatively in the PHENIX measurement range

Neutron production at forward region

- One Pion Exchange (OPE) model explains x_T differential cross section well in which p -> n process is dominant
- Yet, A_N was not reproduced quantitatively
- Adding a₁ exchange made up this gap and now can reproduce the data at least qualitatively in the PHENIX measurement range

Neutron A_N

- p_T < 0.25 GeV
 - No dependence on x_F
 - Consistent with PHENIX result
- p_T > 0.25 GeV
 - Monotonic increase of A_N magnitude
 - Data indicates finite x_F dependence
- Final result will be reported soon

Diffraction process at EIC

- EIC can shed light on meson structure function more clearly
 - Tagging scattered electron
 - Tagging X -> exclusive measurement
 - Measurement of forward photon, π^0 , and neutron is highly appreciated

Outlook for forward ZDC R&D

- Participation in far-forward calorimeter
 - Rich physics in the structure of p/A and diffraction interaction
 - Tagger for the many processes, e.g. DVCS, exlusive VM production, etc
 - Direct observables, e.g. spin asymmetry of neutron production
 - Related to other fields, e.g. astroparticle physics
- Detector R&D
 - Participation in the ZDC-h design and performance study
 - The final designs for ZDC will be converged by the ePIC collaboration soon
 - We are considering various aspects for contribution, including the tower construction and the readout chip development

backup