Transverse single spin asymmetry measurement at the RHICf experiment

Minho Kim (RIKEN) on behalf of the RHICf collaboration

December 1, 2023 2nd APCTP Workshop on the Physics of EIC: ePIC Physics and Detectors

Transverse single spin asymmetry (A_N)

- In polarized p+p collisions, the A_N is defined by a left-right cross section asymmetry of a specific particle or event.
- Due to the rotational invariance, the left-right asymmetry can also be defined by the spin up-down asymmetry.
- A_Ns of the very forward (6 < n) particles enable us to study the spin-involved diffractive particle production mechanism.

Non-diffractive Vs. Diffractive process

Non-diffractive Vs. Diffractive process

4/27

RHICf collaboration

RHICf detector

RIKEN (Y. Goto, I. Nakagawa, R. Seidl, M. H. Kim), Nagoya Univ. (Y. Itow, H. Menjo, K. Sato, K. Ohashi), Univ. of Tokyo (T. Sako), JAEA (K. Tanida), Waseda Univ. (S. Torii), Shibaura Inst. of Tech. (K. Kasahara), Tokushima Univ. (N. Sakurai)

Korea Univ. (B. Hong), Sejong Univ. (Y. Kim, S. Oh, S. H. Lee)

INFN (O. Adriani, E. Berti, L. Bonechi, R. D'Alessandro, A. Tricomi)

 A_N measurement to study the spin-involved diffractive particle production mechanism.

Cross section measurement to study the origin of the ultra-high energy cosmic ray.

Relativistic Heavy Ion Collider (RHIC)

RHIC forward (RHICf) experiment

STAR detector

- In June 2017, the RHICf experiment was operated at STAR in polarized p+p collisions at $\sqrt{s} = 510$ GeV.
- We installed the RHICf detector in front of the ZDC.

A_N of forward π^0

PRD 90, 012006 (2014). ₹^{0.2} $p+p \rightarrow \pi^0 + X$ **Initial state** PHENIX π⁰ 3.1<η<3.8 √s=62.4 GeV 0.15 ▲ E704 π⁰ √s=19.4 GeV ★ STAR π⁰ <η>=3.3, √s=200 GeV ☆ STAR π⁰ <η>=3.7, √s=200 GeV 0.1 n GeV/c **Final state** 0.05 0 0.2 0.3 0.4 0 0.1 0.5 0.6 0.7 0.8 X_F

- Before the RHICf experiment, A_N for π^0 production has been mainly measured in the forward (2 < n < 4) kinematic region.
- The non-zero A_N has been interpreted based on quarks and gluons' degrees of freedom theoretically.

A_N of forward isolated π^0

- Larger A_N was observed by more isolated π^0 than less isolated one.
- Diffractive process may have a finite contribution to the A_N for π^0 production as well as the non-diffractive one.

π^0 measurement at RHICf

• No experiment has measured the π^0 in detail in the range of $p_T < 1$ GeV/c.

• In order to study a possible diffractive contribution to the $\pi^0 A_N$, the RHICf experiment firstly measured the A_N for very forward π^0 production.

A_N of very forward neutron

- Non-zero A_N for very forward neutron production was first observed by an experiment called IP12. PLB 650, 325 (2007).
- Afterwards, the PHENIX measured the neutron A_N as a function of p_T with three different collision energies.
- The measurement results showed a possible p_T dependence of the neutron A_N .

Theoretical model

$${}_{\mathrm{N}} = \frac{d\sigma^{\uparrow} - d\sigma^{\downarrow}}{d\sigma^{\uparrow} + d\sigma^{\downarrow}}$$

$$= \frac{\sum_{X} |\langle cX|T| \uparrow \rangle|^{2} - \sum_{X} |\langle cX|T| \downarrow \rangle|^{2}}{\sum_{X} |\langle cX|T| \uparrow \rangle|^{2} + \sum_{X} |\langle cX|T| \downarrow \rangle|^{2}}$$

$$= \frac{-2\mathrm{Im}\sum_{X} \langle cX|T| - \rangle \langle +|T^{\dagger}|cX\rangle}{\sum_{X} |\langle cX|T| + \rangle|^{2} + \sum_{X} |\langle cX|T| - \rangle|^{2}}$$

 π exchange: spin flip a₁ exchange: spin non-flip

- Neutron A_N was explained by an interference between spin flip and spin non-flip amplitudes with non-zero phase shift.
- The π and a_1 exchange model showed that the neutron A_N increased in magnitude with increasing p_T with little \sqrt{s} dependence.

Unfolded neutron A_N at PHENIX

PRD 105, 032004 (2022).

- Recently, p_T dependence of the PHENIX neutron A_N at $\sqrt{s} = 200$ GeV was obtained by unfolding the data.
- The unfolded data showed the same tendency with the model calculations.

Neutron measurement at RHICf

- RHICf the experiment has extended the previous measurements up to 1 GeV/c to study the kinematic dependence of the neutron A_N in more detail.
- RHICf detector has one order of better position resolution (1 cm \rightarrow 1 mm).
- We can also study the \sqrt{s} dependence of the neutron A_N by comparing the RHICf data with that of the PHENIX.

RHIC forward (RHICf) experiment

STAR detector

RHICf detector & neutron measurement

Shower trigger

- Each tower is composed of 17 layers of tungsten absorbers, 16 layers of GSO plate, and 4 layers of GSO bar hodoscope.
- Shower trigger is operated when the energy dE > 45 MeV OR deposits of any three successive GSO plate layers are larger than 45 MeV.

E > 45 MeV OR

π^0 measurement

High EM trigger

Analysis flow

A_N of very forward π^0

• At very low $p_T < 0.07$ GeV/c, the A_N s are consistent with zero.

• However, as p_T increases, the A_N s also increase as a function of x_F even though it is expected that the very forward π^0 comes from the diffractive process.

Comparison with the previous measurements

• One very interesting point is that the A_N of very forward π^0 seems to be comparable with that of forward π^0 .

• They may share a common underlying production mechanism or have their own ones.

RHICf-STAR combined analysis

STAR detector

Central detectors

RHICf-STAR combined analysis

Central detectors

RHICf-STAR combined analysis

- We're extending the RHICf standalone analysis to a combined analysis with STAR detectors to study the origin of the RHICf π^0 results.
- If we use the STAR detectors, we could identify the diffractive and non-diffractive events.

A_N of very forward neutron

- In the low x_F range, the neutron A_N reaches a plateau at low p_T .
- In the high x_F range, the A_N doesn't seem to reach the plateau yet, but we can confirm that the A_N explicitly increases in magnitude with p_T .
- The current theoretical calculation only reproduces the A_N in the high x_F range.

A_N of very forward neutron

- In the low p_T range, the A_N reaches a plateau at low x_F with little x_F dependence.
- In the high p_T range, the A_N reaches a higher plateau at higher x_F with a clear x_F dependence.
- More comprehensive theoretical consideration is necessary to explain the present results.

Comparison with the PHENIX measurements

- The RHICf results are consistent with of those of PHENIX.
- In the range of $x_F > 0.4$ and $p_T < 0.2$ GeV/c, this consistency suggests that there is no \sqrt{s} dependence in the neutron A_N .

A_N s of very forward π^0 and neutron

- In the very forward region, the neutron A_N is expected to come from the πa_1 interference and the $\pi^0 A_N$ is expected come from NN^{*} and $\Delta \Delta^*$ interferences.
- Although the A_N s of π^0 and neutron are expected to come from different production mechanisms, they show a couple of common behaviors.
- We may be able to study a correlation between the π^0 and neutron A_N s via that of Λ .

Λ reconstruction

Summary

- The RHICf experiment has measured A_N s for very forward π^0 and neutron productions in polarized p+p collisions at $\sqrt{s} = 510$ GeV.
- Non-zero A_N s were observed even in the p_T range lower than 1 GeV/c for very forward π^0 production.
- To understand the origin of the A_N for very forward π^0 production, we've started the RHICf-STAR combined analysis.
- In the x_F range higher than 0.6, the neutron A_N increased in magnitude with p_T as the model predicted.
- A clear x_F dependence was observed in the neutron A_N that has not been predicted by the π and a_1 exchange model.
- There was $no\sqrt{s}$ dependence in the neutron A_N .
- We're also reconstructing the Λ to study a possible correlation between the π^0 and neutron $A_Ns.$

Backup

Neutron photon separation

- We used a variable called L_{2D} for neutron photon separation, which described how early a particle shower was developed in the detector.
- We optimized a L_{2D} threshold taking into account the particle purity and efficiency.

Position reconstruction

20/27

Energy reconstruction

π^0 reconstruction

• Data is well matched with simulation showing a clear π^0 peak at 135 MeV/c².

• Invariant mass was fitted by a superposition of polynomial and Gaussian functions, and π^0 candidates were selected within 3 σ tolerance.

Neutron photon separation

• An event was considered as a neutron if $L_{90\%}$ > $aL_{20\%}$ + b X₀.

- Among "a" and "b" values that made the neutron purity higher than 99%, they were optimized so that (purity) x (efficiency) had a maximum value.
- The optimized "a" and "b" are 0.15 and 21, respectively, thereby the L_{2D} was defined as L_{90%} 0.15L_{20%}.

Photon background subtraction

To estimate and subtract the photon contamination, a template fit was performed to the L_{2D} distribution.

- To study effect of the discrepancy between the MC and data, the template fit was performed again using the template of the higher x_F bin.
- A_N difference after unfolding between the two methods was negligible, which was less than 0.0007. → No systematic uncertainty was assigned.

Charged background subtraction

To estimate and subtract the charged contamination, another template fit was performed to the front counter ADC distribution.

- According to QGSJET II-04, less than 5% of the charged hadron event has photon.
 Photon and charged contaminations were subtracted separately.
- There is almost no difference in the resulting A_N ($\langle 0.0004 \rangle$) even if only one contamination was subtracted. \rightarrow No systematic uncertainty was assigned.

Photon background

- We performed a template of the L_{2D} distribution using those of the neutron and photon events obtained from QGSJET II-04 MC sample.
- Photon contamination above the threshold was estimated and subtracted.

RHIC forward (RHICf) experiment

STAR detector

- In June 2017, the RHICf experiment was operated at STAR in polarized p+p collisions at $\sqrt{s} = 510$ GeV.
- We installed the RHICf detector in front of the ZDC.

Reproduction of the front counter response

• To fit the front counter ADC distribution, EM events were enhanced.

• The ADC distribution was fitted by assigning free parameters to mean and sigma of MIP distribution, and number of events of each n x MIP distributions.

Charged background

- We applied a threshold to the front counter ADC distribution to suppress the charged hadron events.
- We performed a template of the front counter ADC distribution using those of the neutron and charged hadron events obtained from QGSJET II-04 MC sample.
- Charged hadron contamination below the threshold was estimated and subtracted.

Unfolding

