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Transverse single spin asymmetry (Ay) N
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In polarized p+p collisions, the A is defined by a left-right cross section asymmetry of
a specific particle or event.

Due to the rotational invariance, the left-right asymmetry can also be defined by the
spin up-down asymmetry.

enable us to study the spin-involved
particle production mechanism.

2/27



Non-diffractive Vs.
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Non-diffractive Vs. Diffractive process

Diffractive process
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RHICf collaboration

RHICT detector
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W
° measurement to study the spin-involved diffractive particle production
mechanism.
PY measurement to study the origin of the ultra-high energy cosmic ray.
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Relativistic Heavy lon Collider (RHIC) A
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RHIC forward (RHICf) experiment N

STAR detector
':E: neutron
= 1° photon
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® In June 2017, the RHICf experiment
was operated at STAR in polarized
p+p collisions at Vs =510 GeV.

® \We installed the RHICf detector in
front of the ZDC.
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A\ of forward n° N

PRD 90, 012006 (2014).
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Before the RHICT experiment, Ay for 1° production has been mainly measured in the
forward (2 <n < 4) kinematic region.

The non-zero Ay has been interpreted based on quarks and gluons’ degrees of
freedom theoretically.
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A\ of forward isolated n°
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e Diffractive process may have a finite contribution to the Ay for n° production as well
as the non-diffractive one.
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1% measurement at RHICf N
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e No experiment has measured the 1° in detail in the range of p; < 1 GeV/c.

e In order to study a possible diffractive contribution to the 1° Ay, the RHIC experiment
firstly measured the A for very forward n° production.
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A\ of very forward neutron N

J. Phys. Conf. Ser. 295 (2011) 012097.
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Non-zero A, for very forward neutron production was first observed by an
experiment called IP12. PLB 650, 325 (2007).

Afterwards, the PHENIX measured the neutron Ay as a function of p; with three
different collision energies.

The measurement results showed a possible p; dependence of the neutron Ay.
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Theoretical model

PRD 84, 114012 (2011).
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Neutron A, was explained by an interference between spin flip and spin non-flip
amplitudes with non-zero phase shift.

The 1 and a; exchange model showed that the
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Unfolded neutron Ay at PHENIX

PRD 105, 032004 (2022).
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Recently, p; dependence of the PHENIX neutron Ay at /s = 200 GeV was obtained by
unfolding the data.

The unfolded data showed the same tendency with the model calculations.
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Neutron measurement at RHICf N
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® RHICf the experiment has extended the previous measurements up to 1 GeV/c to
study the kinematic dependence of the neutron Ay in more detail.

® RHICf detector has (1cm =1 mm).

® \We can also study the of the neutron Ay by comparing the RHICf data
with that of the PHENIX.
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RHIC forward (RHICf) experiment N




RHICf detector & neutron measurement N
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Shower trigger

Each tower is composed of 17 layers of
tungsten absorbers, 16 layers of GSO plate, c o o
and 4 layers of GSO bar hodoscope.

Shower trigger is operated when the energy drf » 45 MeV OR
deposits of any three successive GSO plate
layers are larger than 45 MeV. e o 0
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n° measurement

n%-enhanced trigger
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High EM trigger

dE > 500 MeV OR
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Analysis flow
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A\ of very forward n° h

PRL 124, 252501 (2020).
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e Atverylow p;<0.07 GeV/c, the Ays are consistent with zero.

e However, as p; increases, the Ays also increase as a function of x; even though it is
expected that the very forward n° comes from the diffractive process.
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Comparison with the previous measurements‘
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PRL 124, 252501 (2020).
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@ One very interesting point is that the

® Ihey may share a common underlying production mechanism or have their own ones.
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RHICf-STAR combined analysis

STAR detector

Central detectors
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RHICf-STAR combined analysis
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RHIC-STAR combined analysis N

Central detectors An example of the diffractive event
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e \We're extending the RHICf standalone analysis to a combined analysis with STAR
detectors to study the origin of the RHICf 10 results.

e If we use the STAR detectors, we could
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A\ of very forward neutron N

arXiv:2310.09807 (2023).
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In the low x; range, the neutron Ay reaches a plateau at low py.

In the high x; range, the Ay doesn’'t seem to reach the plateau yet, but we can
confirm that the A, explicitly increases in magnitude with py.

The current theoretical calculation only reproduces the Ay in the high xg range.
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A\ of very forward neutron A
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In the low py range, the Ay reaches a plateau at low x; with little x; dependence.

In the high p; range, the Ay reaches a higher plateau at higher x; with

More comprehensive theoretical consideration is necessary to explain the present
results.
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Comparison with the PHENIX measurements‘

arXivi2310.09807 (2023).
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® The RHICT results are consistent with of those of PHENIX.

® In the range of x; > 0.4 and p; < 0.2 GeV/c, this consistency suggests that there is
in the neutron Ay.
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A\s of very forward n° and neutron A
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® In the very forward region, the is expected to come from the
and the is expected come from

e Although the As of 1% and neutron are expected to come from different production
mechanisms, they show a couple of common behaviors.

@ \We may be able to study a correlation between the 1° and neutron Ays via that of A.
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A\ reconstruction

RHICf detector
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Ay of A may provide us a correlation
between the 1° and neutron A.s.

The A can be reconstructed using the
RHICf detector and ZDC together.
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Summary A

The RHICT experiment has measured Ays for very forward n° and neutron productions
in polarized p+p collisions at/s =510 GeV.

Non-zero A\s were observed even in the p; range lower than 1 GeV/c for very forward
1% production.

To understand the origin of the Ay for very forward n° production, we've started the
RHICf-STAR combined analysis.

In the x; range higher than 0.6, the neutron Ay increased in magnitude with p; as the
model predicted.

A clear x; dependence was observed in the neutron Ay that has not been predicted by
the 1 and a, exchange model.

There was no+/s dependence in the neutron A.

We’re also reconstructing the A to study a possible correlation between the 1° and
neutron AysS.
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Neutron photon separation N
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We used a variable called L,p for neutron photon separation, which described how
early a particle shower was developed in the detector.

We optimized a L, threshold taking into account the particle purity and efficiency.
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Position reconstruction
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Energy reconstruction
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10 reconstruction A
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Data is well matched with simulation showing a clear 1° peak at 135 MeV/c?.

Invariant mass was fitted by a superposition of polynomial and Gaussian functions,
and 10 candidates were selected within 30 tolerance.
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Neutron photon separation
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B An event was considered as a neutron if Lgge, > alyge, + b X,

“ ”»

B Among and “b” values that made the neutron purity higher than 99%, they
were opt|m|zed so that (purity) x (efficiency) had a maximum value,

B The optimized “a@” and “b” are 0.15 and 21, respectively, thereby the L, was
defined as Lygo, - 0.1 5L509.
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Photon background subtraction

Ntrig = Nneu + Npho + Ncha
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B To estimate and subtract the photon contamination, a template fit was performed
to the L,y distribution.

B To study effect of the discrepancy between the MC and data, the template fit was
performed again using the template of the higher x; bin.

m A, difference after unfolding between the two methods was negligible, which was
less than 0.0007. = No systematic uncertainty was assigned.
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Counts

Charged background subtraction

Ntrig = Nneu + Npho + Ncha
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If every charged hadron event includes at
least one photon on the detector,

only the photon contamination needs to
be subtracted because N¢,,; < Nypo.

To estimate and subtract the charged contamination, another template fit was

performed to the front counter ADC distribution.

According to QGSJET 1I-04, less than 5% of the charged hadron event has photon.

- Photon and charged contaminations were subtracted separately.

There is almost no difference in the resulting A, (< 0.0004) even if only one

contamination was subtracted. 2 No systematic uncertainty was assigned.
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Photon background A
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® \We performed a template of the L,y distribution using those of the neutron and
photon events obtained from QGSJET 1I-04 MC sample.

® Photon contamination above the threshold was estimated and subtracted.
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RHIC forward (RHICf) experiment N

STAR detector
':E: neutron
= 1° photon

___________
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{ RHICT detector |
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® In June 2017, the RHICf experiment
was operated at STAR in polarized
p+p collisions at Vs =510 GeV.

® \We installed the RHICf detector in
front of the ZDC.
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Reproduction of the front counter response‘
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® To fit the front counter ADC distribution, EM events were enhanced.

® The ADC distribution was fitted by assigning free parameters to mean and sigma
of MIP distribution, and number of events of each n x MIP distributions.
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Charged background

_:_____ T ________

+___q_. ]

._.
K

-+

N

O
()
(o]
bl
©

K
(3]

- +
c
o
b
=
3
()
z

c
o
« =
5
© [
(] pd

_ Charged

7
/s
/s
/s
/s
/s
/s
/s
/s
/)
7
/s
/s
/s
/)
/s
/s
/s
/s
/s
/s
/s
/s
/s
7
/s
/s
/s

AN NN NN NN

AN N
\\\\\\\\\\\\\\\\\\\\\\\‘Q\\\\\\\\\\\\\\\\\\\\\\\
N
N
N

AN
A ey
A ...

777
— V777 e
._. V777 AN

; V777 777

L 7707777 777
V00777 7774

7777 777

77777777777 777
- 7777777777777 v
77777777 77777

7 7777

T

N\
N\
AN
NN\
N\
N\
NN\
AN
N\
NN\
NN\
N\
N\
N\
NN\
N\
N\
N\
N\
N\
N\
AN
NN\
N\
NN\
N

LA SIS IS SIS SIS IS SIS S S S S SA
VIS SIS S S S S S S FA
A A

SIS S SIS SIS S S S

SIS SIS SIS SIS SIS S S S S S
LSS IS A
SIS LSS S S A
SIS SIS IS S S S
SIS
A A A AA IS
SIS 7A
SIS LSS LSS S S S

SIS SIS LS SIS SS LSS S S S SIS S
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

SN

7
S
S
S
S
S

SjuNo)

________ T _:_____ T _:_____ T

—— Data

\\\\\\\\\\\\\\\\\\\\\\\\\\\N} Y

SjuNoY

ADC

ADC

® \We applied a threshold to the front counter ADC distribution to suppress the

charged hadron events.

® \We performed a template of the front counter ADC distribution using those of the

neutron and charged hadron events obtained from QGSJET 1I-04 MC sample.

® Charged hadron contamination below the threshold was estimated and subtracted.
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