Nucleon Spin Highlights of PHENIX and STAR

Chong Kim

Pusan National University

EIC workshop 2023

Hotel the Grand, Daegu, South Korea

Dec. 2, 2023

A **<u>PERSONAL</u>** study of RHIC spin results

<u>Outline</u>

1. Introduction

- RHIC, PHENIX, and STAR

2. Nucleon helicity (Longitudinally polarized p + p)

- a. Sea quark polarization ($\Delta \overline{q}$)
- b. Gluon polarization (ΔG)

3. Transversely polarized p + p

- Probes from PHENIX
- Probes from STAR

Introduction What p + p can provide?

- **DIS** primarily probes via:
 - Electromagnetic interactions
 - a. Couple to charge
 - b. Insensitive to color
 - Weak interactions
 - a. Couple to weak charge
 - b. Insensitive to color

- **p + p** primarily probes via:
 - Strong interactions
 - a. Couple to color charge
 - b. Direct LO sensitivity to gluons
 - c. Insensitive to flavor

Introduction RHIC

- RHIC @ Brookhaven Lab., NY
 - Polarized p + p (max. 120 bunches per ring) @ $\sqrt{s} = 62.5$ to 510 (GeV)
 - Average beam polarization $\langle P \rangle \approx 60$ (%)
 - Polarization direction (L or T) chosen by each experiment's decision

Introduction RHIC Spin Runs (2009 - 2017)

Year	√s (GeV)	Туре	⟨ <i>P</i> ⟩ (%)	Int. <i>L</i> (pb ⁻¹)	int. <i>L</i> (pb ⁻¹)
09	200	L	<mark>56 /</mark> 57	16	25
	500	L	33 / 36	14	11
11	500	L	<mark>48 /</mark> 48	28	12
12	510	L	50 / 54	50	86
13	510	L	<mark>51 /</mark> 55	242	306
15	200	L	<mark>53 /</mark> 57	х	53
11	500	Т	<mark>48 /</mark> 48	х	22
12	200	Т	<mark>62 /</mark> 57	18	25
15	200	т	<mark>53 /</mark> 57	110	52
17	510	т	55 / 56	х	356

• Summary of RHIC Spin Runs

- CAVEAT: int. *L* can be different by the observable

(the values presented here was obtained by MB trigger or trigger without prescale)

PHENIX STAR

Introduction PHENIX (2016)

Central Arms

- |η| < 0.35, Δφ = $\frac{\pi}{2}$ × 2, 0.78 T
- VTX (Si pixel and strip, from 2011)
- Tracking: DC, PC
- pID: RICH, ToF
- EMCal: PbGl, PbSc

Muon Arms

- 1.2 < |η| < 2.2 (2.4), Δφ = 2π, 0.72 T
- FVTX (Si strip, from 2012)
- Tracking: MuTr (CS chambers)
- pID: MuID, RPC

• MPC/MPC-Ex

- 3.1 < |η| < 3.8, Δφ = 2π
- MPC: PbWO₄ EMCal
- MPC-Ex: W absorber + Si minipads

Introduction STAR (2017)

• TPC

- |η| < 1.3, Δφ = 2π, 0.5 T</p>
- Charged track reconstruction
- Primary vertex measurement
- Charge / Particle ID

- Barrel EMC
 - |η| < 1.0, Δφ = 2π
 - PbSctowers + SMD + preshower
 - Energy measurement, Trigger

- Also,
 - Barrel ToF ($|\eta| < 1.0$, $\Delta \varphi = 2\pi$)
 - VPD (Vertex Position Detector)
 ...

<u>2. Nucleon helicity</u> (Longitudinally polarized p + p)

2. Nucleon helicity Motivation

- $S_p = \frac{1}{2} = \frac{1}{2} \Delta \Sigma + \Delta G + L_z$
 - ΔΣ?
 - $(\Delta q + \Delta \bar{q})$: well constrained down to x ~ 10⁻³, thanks to DIS results
 - Δ \overline{q} : poorly constrained with large uncertainty,
 mainly originated from fragmentation functions
 → RHIC: fragmentation free W decay leptons

• ∆G?

Poorly constrained: limited access in DIS
 → RHIC: gluon sensitive polarized p + p collisions, various probes (π⁰, η, jet, ...)

<u>2. Nucleon helicity</u> – <u> $a. \Delta \overline{q}$ </u> RHIC W program

$$A_{L} = \frac{\Delta \sigma}{\sigma} = \frac{\sigma_{+} - \sigma_{-}}{\sigma_{+} + \sigma_{-}}$$

$$\mathsf{A}_{\mathsf{L}}^{W+} = \frac{-\Delta u(x_1)\bar{d}(x_2) + \Delta \bar{d}(x_1)u(x_2)}{u(x_1)\bar{d}(x_2) + \bar{d}(x_1)u(x_2)}$$

$$\mathsf{A}_{\mathsf{L}}^{\mathsf{W}^{-}} = \frac{-\Delta d(x_1)\overline{u}(x_2) + \Delta \overline{u}(x_1)d(x_2)}{d(x_1)\overline{u}(x_2) + \overline{u}(x_1)d(x_2)}$$

technically,

$$A_{L}^{W} = \frac{1}{P} \frac{N_{+} - RN_{-}}{N_{+} + RN_{-}}$$

- *P* : avg. polarization of each beam
- N+ (N-): yields in same (opposite) helicity
- $R = \frac{L+}{L-}$: relative luminosity

• $\Delta \overline{\mathbf{q}}$ measurements at RHIC

- W[±] → e[±] : PHENIX midrapidity (|η| < 0.35), STAR (|η| < 1.3)
- − W^{\pm} → μ^{\pm} : PHENIX forward rapidity (1.2 < |η| < 2.2 / 2.4)

<u>2. Nucleon helicity</u> – <u>a. $\Delta \overline{q}$ </u> PHENIX, W A_L (2011-2013)

- $W \rightarrow e A_L$, $|\eta| < 0.35$
 - Int. $L = 240 \text{ pb}^{-1}(2011 2013)$
 - Signal extraction by e^{\pm} isolation + Jacobian peak
 - x (partonic momentum fraction) ~ 0.16 (M_W/Vs)
- $W \rightarrow \mu A_L$, 1.2 < $|\eta|$ < 2.2 / 2.4
 - Int. $L = 53 (2012) + 285 (2013) \text{ pb}^{-1}$
 - Signal extraction based on W likelihood
 - x ~ 0.1 (backward) / ~ 0.3 (forward)

<u>2. Nucleon helicity</u> – <u>a. $\Delta \overline{q}$ </u> STAR, W A_L (2011-2013)

- $W \rightarrow e A_L$, $|\eta| < 1.3$
 - Int. $L = 86 (2011-2012) + 250 (2013) \text{ pb}^{-1}$
 - Signal extraction by e[±] isolation +
 missing energy detection + Jacobian peak
 - 0.05 < x < 0.25

- Sizable positive $\Delta \overline{u}$ / negative $\Delta \overline{d}$ observed
- Clear flavor asymmetry ($\Delta \overline{u} \Delta \overline{d}$)

<u>2. Nucleon helicity</u> – <u>b. ΔG </u> Probe ΔG at RHIC

ΔG measurements at RHIC

$$A_{LL} = \frac{\Delta\sigma}{\sigma} = \frac{\sigma_{++} - \sigma_{+-}}{\sigma_{++} + \sigma_{+-}}$$

$$=\frac{\Sigma_{abf} \ (\Delta f_a \otimes \Delta f_b) \otimes \Delta \widehat{\sigma}^{\ a+b \ \rightarrow h+X} \otimes D_f^h}{\Sigma_{abf} \ (f_a \otimes f_b) \otimes \widehat{\sigma}^{\ a+b \ \rightarrow h+X} \otimes D_f^h}$$

- f (Δf) : unpol (pol) PDF
- $\hat{\sigma}$ ($\Delta \hat{\sigma}$) : unpol (pol) partonic cross section
- D_f^h : fragmentation function

technically,

$$A_{LL} = \frac{1}{P_B P_Y} \frac{N_{++} - RN_{+-}}{N_{++} + RN_{+-}}$$

- *P* : avg. polarization of each beam
- *N*++ (*N*+-) : yields in same (opposite) helicity
- $R = \frac{L++}{L+-}$: relative luminosity
- Various probes: jet, direct γ , π^0 , π^{\pm} , η , heavy flavor decay electrons, etc
- Wide pseudorapidity (η) coverage

2. Nucleon helicity – b. ΔG PHENIX, $\pi^0 / \pi^{\pm} A_{LL}$

- Inclusive $\pi^0 A_{LL}$, $|\eta| < 0.35$
 - Int. L = 20 (2012) + 108 (2013) pb⁻¹
 - Confirm non-zero ΔG via hadron production
 - x down to ~ 0.01

- $\pi^{\pm} A_{LL}$, $|\eta| < 0.35$
 - Int. $L = 108 \, \text{pb}^{-1}$ (2013)
 - $\quad \mbox{Complementary probe to} \\ previous \ \pi^0 \ / \ \pi^{\pm} \ results$

<u>2. Nucleon helicity</u> – <u>b. ΔG </u> STAR, inclusive jet A_{LL}

- Inclusive jet A_{LL} , $|\eta| < 0.9$
- 2009: $\sqrt{s} = 200 \text{ GeV}$, int. $L = 21 \text{ pb}^{-1}$, x > 0.05
- 2012: Vs = 510 GeV, int. L = 82 pb⁻¹, x ~ 0.015
- − 2013: \forall s = 510 GeV, int. *L* = ~250 pb⁻¹, 0.015 ≤ x ≤ 0.25
- − 2015: $\sqrt{s} = 200$ GeV, int. $L = pb^{-1}$, 0.05 ≤ x ≤ 0.5

<u>2. Nucleon helicity</u> – <u>b. ΔG </u> STAR, dijet A_{LL}

- Midrapidity dijet A_{LL} , by η topologies, $|\eta| < 0.8$
 - Dijet invariant mass M = $\sqrt{x_1x_2}$
 - Dijet $\eta_1 + \eta_2 = \log (x_1/x_2)$

- Top: $-0.8 < \eta_3 < 0$; $0.8 < \eta_4 < 1.8$
- Middle: $0 < \eta_3 < 0.8; 0.8 < \eta_4 < 1.8$
- Bottom: $0.8 < \eta_{3, 4} < 1.8$

<u>2. Nucleon helicity</u> – <u>b. ΔG </u> STAR, dijet A_{LL}

- Dijet A_{LL} by η topologies, $-0.8 < \eta < 1.8$
 - Narrows down sampled x_g distribution and θ^* (scattering angle in partonic CoM frame)

2. Nucleon helicity Impact of RHIC data on ΔG constraint

- Impact of RHIC data on ΔG (2009-2013)
 - Left: MC sampling variant of DSSV14 (STAR 2009 dijet)
 - Right: reweighted NNPDFpol1.1 (STAR 2009 dijet, and PHENIX 2009 + 2013 π^{0})

<u>3. Transvesely polarized p + p</u>

3. Transverse p + p Motivation

Transverse single spin asymmetry (A_N)

- Large, increasing A_N : expected to be very small in conventional pQCD calculation

 \rightarrow TMD (transverse momentum dependent) / Collinear Twist 3

<u>3. Transverse p + p</u> Motivation (continue)

Leading Twist TMDs Nucleon Spin Quark Spin -**Quark Polarization Un-Polarized Longitudinally Polarized Transversely Polarized** (U) (L) **(T)** 1 $h_{1}^{\perp} =$ $f_1 =$ U **Nucleon Polarization Boer-Mulders g**₁₁ = **h**_{1L}[⊥] = Helicity h,= ٠ $\boldsymbol{g}_{1T}^{\perp}$ **Fransversit** Sivers $h_{1T}^{\perp} =$

• TMD

- Requires two scales: Q^2 (hard) and p_T (soft)
- SIDIS, Drell-Yan, W/Z, hadrons in jets...
- Access full transverse momentum k_T

- Collinear Twist-3
 - Requires single hard scale: p_T
 - Proper for inclusive $A_N(\pi^0, \gamma, jet)$
 - Access average transverse momentum <k_T>

<u>3. Transverse p + p</u> PHENIX, π^0 , η , and charged hadrons A_N

- π^0 and ηA_N at $|\eta| < 0.35$
 - − √s = 200 GeV (2015)
 - Sensitive to Twist-3 trigluon correlations
 - Consistent with zero

- π^{\pm} and $K^{\pm} A_N$ at 1.2 < $|\eta|$ < 2.2
 - − √s = 200 GeV (2015)
 - Increasing $h^+ A_N$ for $x_F > 0$
 - Comparable to BRAHMS results (PRL101, 042001 (2008))

<u>3. Transverse p + p</u> STAR, W A_N

23 / 24

4. Summary

• RHIC polarized p + p

- Provides invaluable complementary info to DIS for more consistent and complete picture
- Nucleon helicity (Longitudinal p + p results)
 - $\Delta \overline{q}$: RHIC W program concluded, clear physics impact
 - ΔG: observed and confirmed non-zero gluon polarization, via various probes

• Transverse p + p results

Many striking results including 1st transversity measurement in p + p

Backup STAR detector

• This slide was shamelessly stolen from **Carl Gagliardi**'s SPIN2018 talk!

Backup PHENIX W, Central arms

- W[±] → e[±] at |η| < 0.35
 - Distinct Jacobian peak
 - Triggered by energy
 - Momentum measurement by energy
 - Charge determination by tracking in B-field

- $W^{\pm} \rightarrow \mu^{\pm}$ at 1.2 < $|\eta|$ < 2.2 / 2.4
 - Suppressed/No Jacobian peak
 - Triggered by momentum
 - Momentum measurement by tracking in B-field
 - Charge determination by tracking in B-field

Backup STAR W analysis

• This slide was shamelessly stolen from Jinlong Zhang's RHIC/AGS User Meeting 2019 talk!

W selection

Backup STAR W impact

Backup RHIC W (all)

PRD99, 051102 (2019)

Backup W cross sections (PHENIX / STAR)

$\sigma(pp \rightarrow W^{\pm}) \times BR(W \rightarrow I^{\pm})$ total cross section W W⁺ RHICBOS PYTHIA CHE +++ STAR $W \rightarrow e$ PRD85 (2012) 092010 PHENIX $W \rightarrow e$ - H PRL 106 (2011) 062001 **PHENIX W** $\rightarrow \mu$ 2013 : Ldt = 285 pb⁻¹ 200 50 100 150 250 300 $\sigma(pp \rightarrow W^{\pm}) \times BR(W \rightarrow I^{\pm})$ [pb]

PRD98, 032007 (2018)

Backup STAR W/Z cross section ratio

• This slide was shamelessly stolen from Jinlong Zhang's RHIC/AGS User Meeting 2019 talk!

W/Z Cross Section Ratio

See Matt Posik's Poster

- Complementary measurement to SeaQuest
 and E-866, for ~0.06 < x < ~0.4, constraining
 unpolarized sea quark distributions.
- W kinematics determined from data and simulation; Cornerstone for W *A_N* measurement

- $\Delta \sigma (pp \rightarrow \pi^0 X) \approx \Delta q (x_1) \otimes \Delta g (x_2) \otimes \Delta \hat{\sigma}^{gq \rightarrow gq} (\hat{s}) \otimes D_q^{\pi^0}(z)$
 - $\Delta q(x_1)$: quark PDF (parton distribution functions), via DIS
 - $\Delta g(x_2)$: gluon PDF, ?
 - $-\Delta \hat{\sigma}^{gq \rightarrow gq}(\hat{s})$: partonic hard scattering cross section, via pQCD calculation
 - $D_q^{\pi^0}(z)$: fragmentation functions, via e⁺e⁻ collision

Backup Color interactions in QCD

• This slide was shamelessly stolen from **Carl Gagliardi**'s SPIN2018 talk!

Color interactions in QCD

Controlled non-universality of the Sivers function

Backup PHENIX Forward open heavy flavor

- Open heavy decay μ A_N at 1.2 < |η| < 2.2
 - $\sqrt{s} = 200 \text{ GeV}$, int. $L = 9.2 \text{ pb}^{-1} (2012)$
 - Sensitive to Twist-3 trigluon correlations
 - Consistent with zero within uncertainties

PRD95, 112001 (2017)

Backup PHENIX Forward J/ψ

• $J/\psi A_N \text{ at } 1.2 < |\eta| < 2.2$

- − √s = 200 GeV (2015)
- int. L = 40 (pp), 6.0 (pAl), and 6.6 (pAu) pb⁻¹
- Consistent with zero, No clear A dependence

Backup Q² vs. x kinematic coverage

arXiv: 1602.03922

Backup STAR RUN17 DY

• This slide was shamelessly stolen from **Renee Fatemi**'s RHIC/AGS user meeting 2019 talk!

DRELL-YAN A_N FROM 400 PB⁻¹ IN 2017

FMS post-shower detector added for 2017 run. Combining with pre-shower allows factor of 10⁶ suppression in ratio of QCD background to signal!

Phys.Rev.D 89, 074013 (2014)

DY e+e- in 2.5 < η < 4.0 4.0 GeV < M_{e+e-} < 9.0 GeV

Note: The orange square is the statistical uncertainty achievable with 400 pb⁻¹.

Backup Transversity

• This slide was shamelessly stolen from Carl Gagliardi's SPIN2018 talk!

Transversity

- Quark polarization along spin of a transversely polarized proton
 - Third collinear, leading twist distribution
 - Chiral odd
- Much less data than for helicity
- Before STAR, only observed in SIDIS combined with <u>ete</u>-
- Several recent global analyses
 including:
 - Collins effect SIDIS input:
 - PRD 93, 014009 (2016)
 - PRD 92, 114023 (2015)
 - IFF SIDIS + STAR pp input:
 - PRL 120, 192001 (2018)
 - All show large uncertainties

Backup Leading-twist TMD PDFs

		Quark polarization						
		Unpolarized (U)	Longitudinally Polarized (L)	Transversely Polarized (T)				
Nucleon Polarization	U	$f_1 = \bigcirc$	*	$h_1^\perp = (\uparrow - (\downarrow))$				
	L	*	$g_1 = -$	$h_{1L}^{\perp} = {} - \swarrow}$				
	т	$f_{1T}^{\perp} = \overset{\bullet}{(\bullet)} - (\bullet)$	$g_{1T} = \stackrel{\bullet}{\underbrace{\bullet}} - \stackrel{\bullet}{\underbrace{\bullet}}$	$h_1 = \overset{\bullet}{\textcircled{1}}$ - $\overset{\bullet}{\textcircled{1}}$				
		\rightarrow		$h_{1T}^{\perp} = \bigodot^{\bullet} - \diamondsuit^{\bullet}$				

Backup Transversity – IFF vs. Collins FF

• This slide was shamelessly stolen from **Renee Fatemi**'s RHIC/AGS user meeting 2019 talk!

TRANSVERSITY

Interference Fragmentation Functions

Correlation between spin of transversely polarized quark and momentum crossproduct of dihadron pair.

Collins Fragmentation Functions

Correlation between spin of transversely polarized quark and transverse momentum kick given to fragmentation hadron.