2nd APCTP workshop on the Physics of the EIC EPIC Physics and Detectors

Accessing GPDs using the dilepton final state Results and perspectives with CLAS12

Pierre Chatagnon (Jefferson Lab) for the CLAS collaboration

November 30th - December 2nd 2023 Daegu, South Korea & online

- The Generalized Parton Distributions and motivations for their measurements The CLASI2 experiment at Jefferson Lab Timelike Compton Scattering measurement with CLASI2 IV Near threshold J/ ψ photoproduction cross-section measurement with CLAS12 V
 - Long term perspectives with CLASI2: Luminosity upgrade and muon detection

2/20

The Generalized Parton Distributions

What can we learn from GPDs?

 Tomography of the nucleon. The Fourier transform of the GPDs can be interpreted as a probability density:

$$H^q(x,b_{\perp}) = \int \frac{d^2 \Delta_{\perp}}{(2\pi)^2} e^{-ib_{\perp}\Delta_{\perp}} H^q(x,0,-\Delta_{\perp}^2)$$

- Understanding the spin composition of the nucleon (aka the "spin puzzle") using the Ji's sum rule: $\frac{1}{2} = J_Q + J_G \longrightarrow J_Q = \sum_q \frac{1}{2} \int_{-1}^1 dx \ x(H^q(x,\xi,0) + E^q(x,\xi,0)) = \sum_q \frac{1}{2} (A^q(t) + B^q(t))$
- Accessing Gravitational Form Factors, which appear in the nucleon EMT matrix elements:

$$\int_{-1}^{1} dx \ x H^{q}(x,\xi,t) = \frac{A^{q}(t)}{A^{q}(t)} + \xi^{2} D^{q}(t) \qquad \int_{-1}^{1} dx \ x E^{q}(x,\xi,t) = \frac{B^{q}(t)}{B^{q}(t)} - \xi^{2} D^{q}(t)$$

Compton Form Factors (CFFs)

$$\mathcal{H} = \int_{-1}^{1} dx H(x,\xi,t) \left(\frac{1}{\xi - x - i\epsilon} - \frac{1}{\xi + x - i\epsilon}\right)$$

The CLASI2 experiment at Jefferson Lab

- Jefferson Lab is located in Newport News, Virginia, USA
- The Continuous Electron Beam Accelerator Facility provides a quasi-continuous beam of polarized electron, up to 12 GeV.
- Build around two anti-parallel linear accelerators, with recirculation arcs on both ends. The maximum energy is reached after 6 pass through linear accelerators.
- 4 experimental halls: A,B,C and D
 - A & C: Small acceptance but large luminosity
 - **B**: CLASI2, a large acceptance experiment
 - **D**: GlueX, a tagged photon beam experiment

The CLASI2 detector

Beam

Timelike Compton Scattering

DVCS: $ep \rightarrow e'p'\gamma$ TCS: $\gamma p \rightarrow e^+ e^- p'$

- BH cross section only depends on Electromagnetic Form Factors.
- At JLab energies, the BH cross section is expected to be larger than the TCS one \rightarrow We aimed at measuring the **interference cross-section** between BH and TCS.

Motivations to measure TCS

Test of the universality of the GPDs

- Both DVCS and TCS amplitudes are parametrized by GPDs.
- The imaginary part of the CFF ${\cal H}$ is well known from DVCS results...

...and also accessible from TCS polarization asymmetry.

• TCS does not involve Distribution Amplitudes unlike Deeply Virtual Meson Production (DVMP) \rightarrow Direct comparison between TCS and DVCS (at leading twist).

Unique access to the real part of the CFF $\,{\cal H}$

- Angular dependence of the unpolarized interference cross-section gives access to the real part of ${\cal H}$
- This quantity is not well constrained by existing data.
- However it is of great interest as related to the GFFs D, itself related to the mechanical properties of the nucleon:

$$\operatorname{Re}\mathcal{H}(\xi,t) = \mathcal{P}\int_{-1}^{1} dx \left(\frac{1}{\xi-x} - \frac{1}{\xi+x}\right) \operatorname{Im}\mathcal{H}(\xi,t) + \frac{\Delta(t)}{\Delta(t)} \Delta(t) \propto D^{Q}(t) \propto \int d^{3}\mathbf{r} \ \frac{p(r)}{t} \frac{j_{0}(r\sqrt{-t})}{t}$$

8/20

(Quasi-)Photoproduction events selection

1) CLAS12 PID + Positron NN PID

$$ep \rightarrow (e')\gamma p \rightarrow (X)e^+e^-p'$$

$$p_X = p_{beam} + p_p - p_{e^+} - p_{e^+} - p_{p'} \rightarrow 2) |M_X^2| < 0.4 GeV^2 \rightarrow 3) \frac{p_{t_X}}{p_X} < 0.05$$

$$\rightarrow Q^2 < 0.1 \text{ GeV}^2$$

$$\int_{0.46}^{0.46} \frac{1}{q_{0.46}} \int_{0.46}^{0.46} \frac{1}{q_{$$

Dilepton invariant mass spectrum

Dataset

- Data taken in Fall 2018
- 10.6 GeV beam on Liquid H₂ target
- Accumulated charge: 37mC or 48 fb⁻¹
- Vector mesons peaks are visible in data: ω (770), ρ (782), ϕ (1020) and J/ ψ (3096).
- Data/simulation are matching at the 15% level, up to an overall normalization factor.
- No clear contribution of higher mass vector meson production ($\rho(1450), \rho(1700)$).

Phase space for the TCS analysis

 $\begin{array}{l} 0.15 \ {\rm GeV^2} < -t < 0.8 \ {\rm GeV^2} \\ 1.5 \ {\rm GeV} < M_{e^+e^-} < 3 \ {\rm GeV} \\ 4 \ {\rm GeV} < E_{\gamma} < 10.6 \ {\rm GeV} \end{array}$

Jefferson Lab

Photon polarization asymmetry results

Observable definition

$$A_{\odot U} = \frac{d\sigma^+ - d\sigma^-}{d\sigma^+ + d\sigma^-} \propto \frac{\frac{L_0}{L} \sin \phi \frac{(1 + \cos^2 \theta)}{\sin(\theta)} \operatorname{Im} \mathcal{H}}{d\sigma_{BH}}$$

- A sizeable asymmetry is measured, above the expected vanishing asymmetry predicted for BH.
- Results have been compared to 2 model predictions:
 - I. VGG model
 - 2. GK model
- The size of the asymmetry is well reproduced by both models, giving a hint for the universality of GPDs.

Experimentally:

$$A_{\odot U}(-t, E\gamma, M; \phi) = \frac{1}{P_b} \frac{N^+ - N^-}{N^+ + N^-}$$

Figure in First Measurement of Timelike Compton Scattering, P. Chatagnon et al. (CLAS Collaboration), Phys. Rev. Lett. 127, 262501 (2021)

Forward-Backward asymmetry results

Observable definition

$$A_{FB}(\theta_{0},\phi_{0}) = \frac{d\sigma(\theta_{0},\phi_{0}) - d\sigma(180^{\circ} - \theta_{0},180^{\circ} + \phi_{0})}{d\sigma(\theta_{0},\phi_{0}) + d\sigma(180^{\circ} - \theta_{0},180^{\circ} + \phi_{0})}$$
$$\propto \frac{\frac{L_{0}}{L}\cos\phi_{0}\frac{(1+\cos^{2}\theta_{0})}{\sin(\theta_{0})}\operatorname{Re}\tilde{M}^{--}}{d\sigma_{BH}(\theta_{0},\phi_{0}) + d\sigma_{BH}(180^{\circ} - \theta_{0},180^{\circ} + \phi_{0})}$$

• Integration over the forward angular bin :

 $\theta \in [50^\circ, 80^\circ]$ and $\phi \in [-40^\circ, 40^\circ]$

- The measured asymmetry is non-zero: **evidence of signal** beyond pure BH contribution
- Measured asymmetry is better reproduced by the VGG model including the D-term
 - I. Confirmation of the importance of the D-term in the parametrization of the GPD
 - 2. One can use TCS data to constrain it

Short term perspectives with CLASI2

+ Deuterium dataset available for TCS on neutron and TCS on bound proton

14/20

Other TCS measurements at Jefferson Lab

Transversely polarized TCS in Hall C

e⁻ P'

Material provided by M. Boer (V. Tech)

+ Ongoing measurement by GlueX on unpolarized proton

1. High intensity photon source 1.5 x 10¹² y/sec (CPS)

2. Target chamber: NH3, 3cm Polarized via DNP

3. Tracking: GEM+hodoscopes, 4 symmetric quadrants

4. Calorimeters: 4 symmetric guadrants, equivalent of 2 NPS

~ 6° to 27° aperture Lumi request: 5.85 x 10⁵ pb⁻¹

- Access to the GPD E •
- Complementary way to neutron and • transversely polarized DVCS

15/20

Near threshold J/ ψ photoproduction

Probe the gluon content of the proton

(under 2-gluon exchange assumption and no open-charm contributions)

- The t-dependence of the cross-section allow to access gluon Gravitational Form Factors (GFFs), mass radius of the nucleon
- Model-dependent limit on the branching ratio of the Pc pentaquark.

Figure in, Measurement of the $|/\psi|$ photoproduction cross section over the full near-threshold kinematic region, S. Adhikari et al. (GlueX Collaboration) Phys. Rev. C 108, 025201 (2023)

> Figure in Duran, B., Meziani, ZE., Joosten, S. et al. Determining the gluonic gravitational form factors of the proton. Nature 615, 813-816 (2023)

Projections for CLASI2 proton target dataset

$$ep \to (e')\gamma p \to (e')J/\psi \ p' \to (X)e^+e^-p'$$

Long term perspectives •••

- Preliminary statistical error bars based on full dataset available on proton target (128 fb⁻¹).
- Smaller range of photon energy than GlueX.
- Statistics are slightly less than GlueX... ... but very different systematics.
- The t-dependent cross-section is also extracted.

Other measurements

- Deuterium data were taken by CLASI2 in 2019/2020.
- Measurements of J/ ψ production on (bound) neutron and (bound) proton.
- Muon decay channel also measured. Analysis lead by R.Tyson (JLab)

Accessing GPDs using the dilepton final state – Pierre Chatagnon – 1st December 2023

First perspective with CLASI2: Luminosity upgrade

- Exclusive reaction have typically a low cross-section.
- Each additional detected track/particle comes with a detection efficiency "penalty".
- These measurement require large luminosity, which is mostly limited by DC occupancies in CLAS12.

A potential solution: the CLAS12 luminosity upgrade

• µRwell-based detector in front of DC region 1...

- ... combined with increased efficiency of AI tracking, already in place for the current data-processing
- Goal: doubling the current luminosity !

Long term perspective: Double DVCS measurement

$$ep \to e'\gamma^* p' \to e'\mu^+\mu^- p'$$

Capturing the complete kinematic dependence of GPDs

µ-CLASI2 at Jefferson Lab

Two main challenges for DDVCS measurement:

- I. Low x-section: requires high-luminosity
- 2. Muon detection needed

A potential solution: µ-CLASI2

- Luminosity increase by a factor 100.
- Shielding to reduce DC occupancy and pion background.
- Additional calorimeter for electron ID.
- New tracking system around the target.

Kinematic reach for DDVCS with μ-CLASI2

Material from JLab LOI-12-16-004 (Stepanyan, Paremuzyan, Baltzell, De Vita,Ungaro et al.) Figures courtesy of Rafayel Paremuzyan (JLab)

+ Measurement with the SoLID detector in Hall A

V

- The dilepton final state allows to access fundamental properties of the nucleon (GPDs, GFFs).
- **Rich experimental program** at Jefferson Lab, already producing some **important results**.
- The **first extraction of TCS observables** on unpolarized proton target was done using the CLAS12 detector. More TCS results from CLAS12, GlueX, Hall A/C to come.
- **Large effort to extract J/\psi photoproduction cross-section** on various targets both for electron and muon final state (GlueX, Hall C, and CLAS12).
 - **New experiments** are proposed to extend this program to DDVCS, J/ ψ electro-production, μ -TCS

BACK-UP

Positron PID

One important challenge: a clean positron identification

Pion background at large momenta

At high momenta (typically above the HTCC threshold at 4.5 GeV), both pions and leptons will emit Cherenkov light.

.

Al identification of the positrons

Strategy and discriminating variables

- Leptons produce electromagnetic showers and tend to deposit energy in the first layers of the calorimeters.
- Pions are Minimum Ionizing Particles in the GeV region, they deposit small amounts of energy all along their path.
- Two main characteristics to use:

$$SF_{\rm EC\ Layer} = \frac{E_{dep}({\rm EC\ Layer})}{P}$$

2.

$$M_2 = \frac{1}{3} \sum_{U,V,W} \frac{\sum_{\text{strip}} (x - D)^2 \cdot \ln(E)}{\sum_{\text{strip}} \ln(E)}$$

Performances of AI identification of the positrons

Strategy and discriminating variables

- Leptons produce electromagnetic showers and tend to deposit energy in the first layers of the calorimeters.
- Pions are Minimum Ionizing Particles in the GeV region, they deposit small amounts of energy all along their path.
- Two main characteristics to use:

I.
$$SF_{\text{EC Layer}} = \frac{E_{dep}(\text{EC Layer})}{P}$$

2. $M_2 = \frac{1}{3} \sum_{U,V,W} \frac{\sum_{\text{strip}} (x-D)^2 \cdot \ln(E)}{\sum_{\text{strip}} \ln(E)}$

TCS analysis

TCS interference cross-section formulae and CFFs

Unpolarized cross-section

Formulae and notations of Berger, Diehl, Pire, Eur.Phys.J.C23:675-689,2002

$$\frac{d^4 \sigma_{INT}}{dQ'^2 dt d\Omega} \propto \frac{L_0}{L} \left[\cos(\phi) \frac{1 + \cos^2(\theta)}{\sin(\theta)} \operatorname{Re} \tilde{M}^{--} + \ldots \right]$$
$$\to \tilde{M}^{--} = \frac{2\sqrt{t_0 - t}}{M} \frac{1 - \xi}{1 + \xi} \left[F_1 \mathcal{H} - \xi (F_1 + F_2) \tilde{\mathcal{H}} - \frac{t}{4M^2} F_2 \mathcal{E} \right]$$

Compton Form Factors (CFFs)

$$\mathcal{H} = \int_{-1}^{1} dx H(x,\xi,t) \left(\frac{1}{\xi - x - i\epsilon} - \frac{1}{\xi + x - i\epsilon}\right)$$

Polarized cross-section

$$\frac{d^4\sigma_{INT}}{dQ'^2dtd\Omega} = \frac{d^4\sigma_{INT}\mid_{\text{unpol.}}}{dQ'^2dtd\Omega} - \nu \cdot A \frac{L_0}{L} \left[\sin(\phi)\frac{1+\cos^2(\theta)}{\sin(\theta)}\text{Im}\tilde{M}^{--} + \dots\right]$$

Jefferson Lab

(Quasi-)Photoproduction events selection

1) CLAS12 PID + Positron NN PID

$$ep \to (e')\gamma p \to (X)e^+e^-p'$$

Proton identification

Lepton identification

Cherenkov counters

+ Calorimeter energy deposition

Sampling Fraction = $\frac{E_{dep}}{P}$

J/ψ analysis

Accessing GPDs using the dilepton final state with CLAS12

J/ψ (quasi-)photoproduction events selection

Can we do the same as for TCS ? In principle yes...

1) CLAS12 PID + Positron NN PID

$$ep \to (e')\gamma p \to (e')J/\psi \ p' \to (X)e^+e^-p'$$

$$p_X = p_{beam} + p_p - p_{e^+} - p_{e^+} - p_{p'} \longrightarrow 2) |M_X^2| < 0.4 GeV^2 \longrightarrow 3) |\frac{Pt_X}{P_X}| < 0.05$$

In practice, it is not so simple

CLAS12 Preliminary

Background removal procedure

Sample contents

Opposite charge leptonsSame charge leptonsBackground final states $(\pi^+ \to e^+)$ Physics final state
 $e^-e^+p'(e')$ $ep \to p'e^-e^-(X \simeq e)$ $e'p'e^+(e^- + X) + e'p'\pi^+(\pi^- + X)$ $e^-e^+p'(e')$ $ep \to p'e^-e^-(X \simeq e)$ $N(e^+e^-p') = n_S(e^+e^-) + n_{BG}(e'e^+/\pi^+)$ $e'p'\pi^-(\pi^+ + X) + e'p'e^-(e^+ + X)$

$$R^{in} = \frac{N^{in}(e'e^-p')}{N^{in}(e^+e^-p')} = \frac{a^2 \cdot \sigma_{BG}}{a \cdot b \cdot \sigma_{BG+S}} = \frac{a \cdot \sigma_{BG}}{b \cdot \sigma_{BG+S}}$$
$$R^{out} = \frac{N^{out}(e'e^-p')}{N^{out}(e^+e^-p')} = \frac{b^2 \cdot \sigma_{BG}}{a \cdot b \cdot \sigma_{BG+S}} = \frac{b \cdot \sigma_{BG}}{a \cdot \sigma_{BG+S}}$$

$$w = \frac{S}{(S+B)_{In}} = 1 - \frac{N_{e^-e^-p}}{N_{e^-e^+p}} \frac{b}{I_n} = 1 - \sqrt{\frac{N_{e^-e^-p}}{N_{e^-e^+p}}} \frac{N_{e^-e^-p}}{N_{e^-e^+p}} \frac{N_{e^-e^-p}}{N_{e^-e^-p}} \frac{N_{e^-e^$$

Jefferson Lab

Accessing GPDs using the dilepton final state with CLAS12

- Number of photons (from accumulated charge and photon flux from QED)

Back-up

 Number of targets (from the density of dihydrogen and length of the target)

.....

Motivations to measure J/ ψ photoproduction near threshold: the open-charm "issue"

Open-charm "issue"

- The previous considerations rely on the application of Vector Meson Dominance.
- Thus the contribution from open-charm meson channels must be ruled-out/understood.

Figure in D. Winney, C. Fernandez-Ramirez, A. Pilloni, A. N. Hiller Blin et al. (JPAC), Dynamics in near-thres
 J/ψ photoproduction arXiv:2305.01449

Background subtracted data using same-charge lepton events

Opposite charge leptons
Background final states
$$(\pi^+ \rightarrow e^+)$$
 Physics final state
 $e'p'e^+(e^- + X) + e'p'\pi^+(\pi^- + X)$ $e^-e^+p'(e')$
 $N(e^+e^-p') = n_S(e^+e^-) + n_{BG}(e'e^+/\pi^+)$

• Same charge leptons

$$ep \to p'e^-e^-(X \simeq e)$$

 $e'p'\pi^-(\pi^+ + X) + e'p'e^-(e^+ + X)$

 Background correction weight, combining inbending and outbending data:

$$w = \frac{n_S}{(n_S + n_{BG})} = 1 - \sqrt{\frac{N_{e^-e^-p}}{N_{e^+e^-p}}} \Big|_{In} \frac{N_{e^-e^-p}}{N_{e^+e^-p}} \Big|_{Out}$$

٠

٠

Cross-section extraction

Preliminary results for CLASI2 proton/neutron data

- Deuterium data were taken by CLAS12 in 2019/2020.
- Opportunity to measure J/ψ production on (bound) neutron and (bound) proton.
- Alongside this analysis, a framework to explore the muon decay channel was developed.
- This effort is lead by R.Tyson from JLab.

- Preliminary results for the comparison of decay channels and target nucleon.
- This measurement could have implication on understanding open-charm channels contribution.

Taken from R. Tyson PhD analysis, Univ. of Glasgow

Total Cross Section [AU]

......

Deuterium target and muon final state

- Deuterium data were taken by CLAS12 in 2019/2020.
- Opportunity to measure J/ψ production on (bound) neutron and (bound) proton.
- Alongside this analysis, a framework to explore the muon decay channel was developed.
- This effort is lead by R.Tyson from University of Glasgow.

Taken from R. Tyson PhD analysis, Univ. of Glasgow

....

Tagged J/ ψ quasi-photoproduction with CLASI2

 $ep \to e'J/\psi \ p' \to e'l^+l^-(X)$

- Analysis conducted by M. Tenorio Pita, ODU.
- In this case, one electron in the Forward
 Tagger (Low lab angle <5°) and a lepton pair in
 CLASI2.
- Excellent cross-check of the quasiphotoproduction approach.
- Early results show low statistics, the new data "cooking" including better tracking efficiency will be beneficial for this analysis.
- Other event topologies will be explored.

Other potential J/ ψ analysis using CLAS12 data

- Available data for longitudinally polarized proton target

