Pom-CQM of J/Ψ Photoproduction on nucleon

Sakinah, and Prof. T. -S. Harry Lee

Kyungpook National University and Argonne National Laboratory ssakinahf@knu.ac.kr

2nd APCTP Workshop on the Physics of Electron Ion Collider: ePIC Physics and Detectors December 01, 2023

Presentation Overview

Introduction

Pom-CQM Model Pomeron Exchange Constituent Quark model Final State Interaction

Sesult and Discussion Total cross section Differential Cross Section $\eta_c(1S)$ and $\Psi(2S)$ total cross-section predictions On-going work

4 Summary and conclusion

Introductions

- The J/Ψ photo-production reactions on the nucleon can provide information on
 - The roles of gluons in J/Ψ -Nucleon interaction
 - The structure of the nucleon.
- The calculation J/Ψ -N from QCD is not available, we need to extract J/Ψ -N interaction from photoproduction data.
- The J/Ψ -N interaction are needed to exam J/Ψ to investigate the production of Pentaquarks reported by LHC, the production of nuclei with hidden charms, and the J/Ψ production in relativistic heavy-ion collisions.
- The extraction of J/Ψ -N interaction can be used to test the results from PQCD models or LQCD calculations

< ロ > < 同 > < 回 > < 回 >

Introductions

 J/Ψ Photoproduction progress

- The traditional method, the J/Ψ -nucleon (N) can be extracted from the photo-production data by using the vector meson dominance (VMD) assumption.
- In previous study, we reviewed six models which applied to investigate JLab data. [Eur. Phys. J. A (2022) 58:252]

Figure: Total cross section of Pomeron Exchange Model and Constituent Quark Model of J/Ψ Photoproduction

• □ ▶ • • □ ▶ • □ ▶ •

Introductions

- We found that the Pomeron-Exchange gives a good agreement of all high energy hadronic process but can not describe the JLab data at $W \le 7$ GeV
- We improved the Pomeron-Exchange model by including charm quark-N potential to be interpreted as multi-gluon exchange.
- to evaluate $c\bar{c}$ -loop mechanism in this Figure, We need J/Ψ wave-function from CQM model

Figure: Model with the *cc*-loop mechanisms calculated from quark-nucleon potential

Sakinah (KNU

Pomeron Exchange

The Pomeron-exchange amplitude define to describe the photo-production of vector mesons by assuming that the incoming photon is converted into a vector meson *V* by using the Vector Meson Dominance (VMD) defined by

$$L_{\rm VMD} = \frac{em_V^2}{f_V} \phi_V^\mu(x) A_\mu(x), \tag{1}$$

where $\phi_V(x)$ and $A_\mu(x)$ are the field operators for the vector meson V and the photon, respectively. The coupling constant f_V is traditionally determined by using Eq. (1) to calculate the $V \rightarrow \gamma \rightarrow e^+e^-$ decay width:

$$\Gamma_{V \to e^+ e^-} = \frac{1}{3} \alpha_{em}^2 m_V \frac{4\pi}{f_V^2}.$$
 (2)

< ロト < 同ト < ヨト < ヨト

Pomeron Exchange

The Pomeron-exchange amplitude $\mathcal{M}_{\mathbb{P}}^{\mu\nu}(k,p_f,q,p_i)$ can be written as

$$\mathcal{M}_{\mathbb{P}}^{\mu\nu}(k, p_f, q, p_i) = G_{\mathbb{P}}(s, t) \mathcal{T}_{\mathbb{P}}^{\mu\nu}(k, p_f, q, p_i)$$
(3)

with

$$\mathcal{T}_{\mathbb{P}}^{\mu\nu}(q,p,q',p') = i2\frac{e\,m_{V}^{2}}{f_{V}}[2\beta_{q_{V}}F_{V}(t)][3\beta_{u/d}F_{1}(t)] \\ \times \{ qg^{\mu\nu} - q^{\mu}\gamma^{\nu} \} \,, \tag{4}$$

where M_V is the mass for the vector meson. a form factor for the Pomeron-vector meson vertex is also introduced with

$$F_V(t) = \frac{1}{m_V^2 - t} \left(\frac{2\mu_0^2}{2\mu_0^2 + m_V^2 - t} \right),$$
(5)

where $t = (q - k)^2 = (p_f - p_i)^2$.

Pomeron Exchange

Electromagnetic form factor of the nucleon as

$$F_1(t) = \frac{4m_N^2 - 2.8t}{(4m_N^2 - t)(1 - t/0.71)^2}.$$
(6)

The crucial ingredient of Regge phenomenology is the propagator $G_{\mathbb{P}}$ of the Pomeron, it is of the following form:

$$G_{\mathbb{P}} = \left(\frac{s}{s_0}\right)^{\alpha_{\mathcal{P}}(t)-1} \exp\left\{-\frac{i\pi}{2}\left[\alpha_{\mathcal{P}}(t)-1\right]\right\},\tag{7}$$

where $s = (q + p_i)^2 = W^2$, $\alpha_P(t) = \alpha_0 + \alpha'_P t$, and $s_0 = 1/\alpha'_P$. for $\alpha_P(t) \sim 1$ in the small |t| region

CQM Model

The Hamiltonian of a Constituent Quark Model(CQM) in the center of mass frame is written as

$$H=2m_c+rac{ec{p}}{m_c}+V(ec{r},ec{s}_c,ec{s}_{ar{c}})$$

The interaction potential is

$$V(\vec{r}, \vec{s}_c, \vec{s}_{\bar{c}}) = \alpha_0 r + v_{c\bar{c}}(\vec{r}, \vec{s}_c, \vec{s}_{\bar{c}})$$
(9)

where the term $\alpha_0 r$ is representing the quark confinement mechanism which is well established by LQCD model, $v_{c\bar{c}}$ is a quark-quark interaction.

Sa	kina	h (12N	1 D
Ja	VIIIC		IN N	υ,

(8)

CQM Model

The $\gamma + p \rightarrow J/\psi + p$ can be calculated by dynamical formulation as

$$\langle \mathbf{p}' m_V m_{s'} | B_{VN,\gamma N} | \mathbf{q} \lambda m_s \rangle = \sum_{m_c, m_{\bar{c}}} \frac{1}{(2\pi)^3} \frac{e_c}{\sqrt{2|\mathbf{q}|}} \int d\mathbf{k} \langle J_V m_V | \frac{1}{2} \frac{1}{2} m_c, m_{\bar{c}} \rangle$$

$$\times \phi(\mathbf{k} - \frac{1}{2} \mathbf{p}') \delta_{m_s, m_{s'}} v_{cN}(\mathbf{p}' - \mathbf{q})$$

$$\times \frac{1}{W - E_N(\mathbf{q}) - E_c(\mathbf{q} - \mathbf{k}) - E_c(\mathbf{k}) + i\epsilon}$$

$$\times \bar{u}_{m_q}(\mathbf{k}) [\epsilon_\lambda \cdot \gamma] v_{m_{\bar{q}}}(\mathbf{q} - \mathbf{k}).$$
(10)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

CQM Model

Figure: Momentum variables of the J/Ψ photoproduction process

assuming that the quark-nucleon potential is Yukawa form $v_{cN}^{(1)}(r) = \alpha \frac{e^{-\mu r}}{r}$ with $\mu = 0.3$ adopted from LQCD model.

$$v_{cN}(\mathbf{t}) = \frac{2\alpha}{(2\pi)^2} \frac{1}{\mathbf{t}^2 + \mu^2}$$
 (11)

where $\mathbf{t} = \mathbf{p}' - \mathbf{q}$

Final State Interaction

The total CQM amplitude including final state interaction is

$$\mathcal{T}_{VN,\gamma N}^{\mathrm{CQM}}(W) = B_{VN,\gamma N} + \mathcal{T}_{VN,\gamma N}^{\mathrm{(fsi)}}(W), \tag{12}$$

Figure: J/Ψ photoproduction process including FSI

Where the FSI amplitude could be written as

$$T_{VN,\gamma N}^{(\text{fsi})}(W) = T_{VN,VN}(W) \frac{1}{W - H_0 + i\epsilon} B_{VN,\gamma N}.$$
(13)

Final State Interaction

the matrix element of $V_{VN,VN}$ can be written as

$$\langle \mathbf{k}_{V} m_{V}, \mathbf{p} m_{s} | V_{VN,VN} | \mathbf{k}_{V}' m_{V}', \mathbf{p}' m_{s}' \rangle = \delta_{m_{V},m_{V}'} \delta_{m_{s},m_{s}'}$$

$$\times \delta(\mathbf{k}_{V} + \mathbf{p} - \mathbf{k}_{V}' - \mathbf{p}') \langle \mathbf{p} | V_{VN} | \mathbf{p}' \rangle,$$
 (14)

where

$$\langle \mathbf{p} | V_{VN} | \mathbf{p}' \rangle = 2 \int d\mathbf{k} \, \phi^* \left(\mathbf{k} - \frac{\mathbf{p}}{2} \right) v_{cN} (\mathbf{p}' - \mathbf{p}) \phi(\mathbf{k} - \frac{\mathbf{p}'}{2}).$$
 (15)

Here the factor 2 is from summing the contributions from two quarks in J/Ψ .

Result and Discussion

Figure: Total Cross section of J/Ψ photoproduction using $v_{cN}^{(1)}(r)$ at $\alpha = 0.06$ compare with JLab experimental data

Differential Cross Section

Figure: Differential Cross section of comperision of gaussian wf with $\alpha=$ 0.03 and CQM wavefunction with $\alpha=$ 0.06

▶ ∢ ∃ ▶

Differential Cross Section

Figure: Differential Cross section of comparision of gaussian wf with $\alpha=$ 0.03 and CQM wave-function with $\alpha=$ 0.06

$\eta_{c}(1S)$ and $\Psi(2S)$ prediction

by using the same the c-N potential with J/Ψ production, we predict the cross section of $\eta_c(1S)$ and $\Psi(2S)$

Figure: Total cross section of $\eta_c(1S)$ and $\Psi(2S)$ including CQM wave-function of each particles at $\alpha = 0.06$

On-going work

The short-range part from LQCD is less well determined, we plan to fit data with a new yukawa form $v_{CN}^{(2)}(r) = \alpha \left[\frac{e^{-\mu r}}{r} - \frac{e^{-\mu r}}{r}\right]$

Figure: plot of $v_{cN}^{(2)}(r)$ with $\mu_1 = N \times \mu$

Sakinah (KNU)

Summary and conclusion

- Including CQM wave-function in J/Ψ Photo-production process, has a good improvement compare with gaussian wave-function
- The short-range part from LQCD is less well determined, we need to extend $v_{cN}^{(1)}(r)$ to $v_{cN}^{(2)}(r)$
- FSI has a large contribution at near threshold

References

T.-S. H. Lee, S. Sakinah, Yongseok Oh Eur. Phys. J. A (2022) 58:252

J. Segovia, at all

Int. J. Mod. Phys. E22 (2013) 1330026

- A. Donnachie, P.V. Landshoff INucl. Phys. B 311 (1989) 509

A. Ali at all GlueX Collaboration Phys. Lett. 123 (2019) 072001

T.-S. H. Lee Preprint at arXiv:20

Preprint at arXiv:2004.13934

Thank You

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで