Non-diagonal DVCS off pion with $\pi \rightarrow \pi \pi$ transition GPDs

Sangyeong Son¹

in collaboration with Kirill Semenov-Tyan-Shanskiy¹ and Hyeon-Dong Son²

¹ Kyungpook National University, Daegu, Korea
² Inha University, Incheon, Korea

2nd APCTP Workshop on the physics of Electron Ion Collider

2023.12.01

Non-diagonal DVCS and DVMP

Study of $\gamma^* N \rightarrow \gamma(M) \pi N$ with transition GPD

- I. Excitation of hadrons with non-local QCD probe (resonance region).
- II. Natural test ground of the chiral dynamics (near the threshold region).
- III. Non-diagonal matrix elements of the QCD energy-momentum tensor can be probed.

K. Goeke, M. Polyakov, and M. Vanderhaeghen, Prog. Part. Nucl. Phys. 47, 401 (2001)

Recent developments in the non-diagonal hard exclusive reactions

• DVCS of $\gamma^* N \to \gamma N' \pi$ with $N \to \Delta, P_{11}, D_{13}, S_{11}$ transition GPDs

K. Semenov-Tyan-Shanskiy and M. Vanderhaeghen, Phys. Rev. D 108, 034021 (2023)

• DVMP of $\gamma^* p \to \pi^- \Delta^{++}$ with $p \to \Delta^{++}$ transition GPDs

P. Kroll and K. Passek-Kumericki, Phys. Rev. D 107, 054009 (2023)

• Measurement of $\gamma^* p \to \pi^- \Delta^{++} \to \pi^- p \pi^+$ BSA by the CLAS collaboration

S. Diehl et. al. (CLAS collaboration), Phys. Rev. Lett 131, 021901 (2023)

Non-diagonal DVCS and DVMP

Transition GPD description with *resonance state* in non-diagonal reactions

- Angular structure of $N \rightarrow \pi N$ GPDs is investigated by the πNR interaction.
- Dependence on the *invariant mass* is induced by the Breit-Wigner resonance formula.

✓ Transition GPDs such as $N \to \pi N$ GPDs depend on more arguments; the invariant mass and the solid angles of produced hadronic states

Non-diagonal DVCS and DVMP

✓ In this work, we study the non-diagonal DVCS of $\gamma^*\pi \rightarrow \gamma\pi\pi$ to avoid complications due to hadron spin.

- Study the $\pi \to \rho$ contribution to the $\pi \to \pi\pi$ GPDs. Express the $e\pi \to e\gamma\pi\pi$ cross section and work out its angular distribution near $W_{\pi\pi} \simeq m_{\rho}$.
- Apply the soft-pion theorem to determine the normalization condition for the $\pi \to \pi \pi$ GPDs near $W_{\pi\pi} \simeq 2m_{\pi}$.

An exercise to develop the framework of the partial wave analysis of transition GPDs for further generalization for $N \rightarrow \pi N$ GPDs

$\pi \rightarrow \pi \pi$ transition GPDs

- The GPDs are defined through hadronic matrix elements of the longitudinal projections of the light cone operator of the leading twist-2.
- The variables α and t' are related to the decay angles $\cos \phi_{\pi}^*$ and $\cos \theta_{\pi}^*$ of the $\pi\pi$ system.

 $\begin{aligned} & \left[\begin{array}{c} \frac{1}{2} \int \frac{d\lambda}{2\pi} e^{ix\lambda n \cdot \bar{P}} \left\langle \pi^{b}(k_{1})\pi^{c}(k_{2}) | \bar{\psi}\left(-\frac{\lambda n}{2}\right) \psi\left(\frac{\lambda n}{2}\right) | \pi^{a}(k) \right\rangle \\ & = \frac{1}{2\bar{P} \cdot n} i\epsilon(n,\bar{P},\Delta,k_{1}) \frac{1}{f_{\pi}^{3}} i\epsilon^{abc} H^{(S)}(x,\xi,\alpha,t',\Delta^{2},W_{\pi\pi}^{2}), \\ & \frac{1}{2} \int \frac{d\lambda}{2\pi} e^{ix\lambda n \cdot \bar{P}} \left\langle \pi^{b}(k_{1})\pi^{c}(k_{2}) | \bar{\psi}\left(-\frac{\lambda n}{2}\right) \psi\gamma_{5}\psi\left(\frac{\lambda n}{2}\right) | \pi^{a}(k) \right\rangle \\ & = \frac{1}{2\bar{P} \cdot n} (\bar{P} \cdot n) \frac{1}{f_{\pi}} i\epsilon^{abc} \tilde{H}^{(S)}(x,\xi,\alpha,t',\Delta^{2},W_{\pi\pi}^{2}), \\ \end{aligned} \right.$

Unpolarized and polarized isoscalar $\pi \rightarrow \pi \pi$ GPDs

$\pi \rightarrow \pi \pi$ transition GPDs

- The GPDs are defined through hadronic matrix elements of the longitudinal projections of the light cone operator of the leading twist-2.
- The variables α and t' are related to the decay angles $\cos \phi_{\pi}^*$ and $\cos \theta_{\pi}^*$ of the $\pi\pi$ system.

Unpolarized and polarized isovector $\pi \rightarrow \pi \pi$ GPDs

Soft-pion theorem

- Near the two-pion threshold, $W_{\pi\pi} = 2m_{\pi}$, the emitted pion is soft.
- The soft-pion theorem provides the normalization conditions of $\pi \to \pi \pi$ transition GPDs at threshold in terms of the pion GPD.
- PCAC relation allows us to write the pion field in terms of the axial current and by the LSZ reduction *soft pion reduces to the chiral rotation of the operator.*

 $[Q_5^a, \bar{\psi}(0)\gamma^{\mu}(1, \gamma_5)\tau^b\psi(z)] = i\epsilon^{abc}\bar{\psi}(0)\gamma^{\mu}(\gamma_5, 1)\tau^c\psi(z)$

Soft-pion theorem

P. Pobylitsa, M. Polyakov, and M. Strikman, Phys. Rev. Lett. 87, 022001 (2001)

$$\left\langle \pi^{b}(k_{1})\pi^{c}(k_{2})|\mathcal{O}(z)|\pi^{a}(k)\right\rangle \Big|_{k_{2}\to0} = -\frac{i}{f_{\pi}}\left\langle \pi^{b}(k_{1})|[Q_{5}^{c},\mathcal{O}(z)]|\pi^{a}(k)\right\rangle + k_{2}^{\mu}R_{\mu}^{c}(k_{2})\Big|_{k_{2}\to0}$$

✓ The chiral rotation of the isoscalar (isovector) lightcone operator

 Q_5^a : axial charge

 $R^{a}(k_{2})$: pole contribution

 $[Q_5^a, \bar{\psi}(0)\gamma^{\mu}(1, \gamma_5)\psi(z)] = 0$

Soft-pion theorem

Pion GPD of the leading twist

$$\frac{1}{2} \int \frac{d\lambda}{2\pi} e^{iy\lambda n \cdot \bar{P}_{\pi}} \left\langle \pi^{b}(p_{\pi}') | \bar{\psi} \left(-\frac{\lambda n}{2} \right) \not\!\!/ \tau^{c} \psi \left(\frac{\lambda n}{2} \right) | \pi^{a}(p_{\pi}) \right\rangle = 2(\bar{P}_{\pi} \cdot n) i \epsilon^{abc} H_{\pi}^{(V)}(y,\zeta,t_{\pi})$$

 $\checkmark \pi \rightarrow \pi\pi$ transition GPDs is normalized by the diagonal pion GPD at the threshold.

Ex) In the case that $\pi(k_2)$ is taken to be soft

$$\zeta_1 = \frac{2\xi - (1 - \xi)\alpha}{2 - (1 - \xi)\alpha} \quad \text{and} \quad \zeta_2 = \frac{2\xi - (1 - \xi)(1 - \alpha)}{2 - (1 - \xi)(1 - \alpha)}$$

$$\begin{split} \tilde{H}_{1}^{(V)}(x,\xi,\alpha,t',\Delta^{2},W_{\pi\pi}^{2}) &= 0\\ \tilde{H}_{2}^{(V)}(x,\xi,\alpha,t',\Delta^{2},W_{\pi\pi}^{2}) &= 2n \cdot (k+k_{1})H_{\pi}^{(V)}\left(\frac{2x}{n \cdot (k+k_{1})},\zeta_{1},t'\right)\theta\left(1-\left|\frac{2x}{n \cdot (k+k_{1})}\right|\right)\\ \tilde{H}_{3}^{(V)}(x,\xi,\alpha,t',\Delta^{2},W_{\pi\pi}^{2}) &= -2n \cdot (k+k_{1})H_{\pi}^{(V)}\left(\frac{2x}{n \cdot (k+k_{1})},\zeta_{1},t'\right)\theta\left(1-\left|\frac{2x}{n \cdot (k+k_{1})}\right|\right) \end{split}$$

- As ρ -meson is likely to decay into two pions the $\pi \rightarrow \rho$ transition in the intermediate resonance state can be included.
- $\pi \rightarrow \rho$ transition GPDs (FFs) are accessed through the VCS (BH) amplitude.

✓ The $\rho \rightarrow \pi\pi$ decay is described by the effective $\rho\pi\pi$ Lagrangian

Effective Lagrangian for $\rho\pi\pi$ interaction

$$\mathcal{L}_{\rho\pi\pi} = g_{\rho\pi\pi} \epsilon_{abc} \rho^a_\mu \pi^b \partial^\mu \pi^c$$

O. Dumbrajs et al., Nucl. Phys. B 216, 277 (1983)

 $g_{\rho\pi\pi}: \rho\pi\pi$ coupling $\Gamma_{\rho}:$ decay width $\mathcal{E}(p_{\rho}, \lambda):$ polarization vector with helicity λ

 ρ -meson contribution to the $e\pi \rightarrow e\gamma\pi\pi$ amplitude

$$\mathcal{M}(e\pi \to e\gamma\pi\pi) = g_{\rho\pi\pi}C_{\rm iso}\frac{i}{W_{\pi\pi}^2 - m_{\rho}^2 + im_{\rho}\Gamma_{\rho}}\sum_{\lambda}\mathcal{M}_{\lambda}(e\pi \to e\gamma\rho(p_{\pi\pi},\lambda))\mathcal{E}^*(p_{\pi\pi},\lambda)\cdot(k_1 - k_2)$$

• Near $W_{\pi\pi} \simeq m_{\rho}$, the $\pi \rightarrow \rho$ transition will dominantly contribute. We describe it with the Breit-Wigner form of the propagator and $\rho\pi\pi$ coupling.

$e\pi \rightarrow e\gamma\pi\pi$ amplitude squared

Integrating over the azimuthal angle ϕ_{π}^* of $\pi\pi$ system relates the $e\pi \to e\gamma\pi\pi$ cross section to that of $e\pi \to e\gamma\rho$.

$$\int d\phi_{\pi}^{*} |\mathcal{M}(e\pi \to e\gamma\rho \to e\gamma\pi\pi)|^{2} = C_{\rm iso}^{2} \frac{g_{\rho\pi\pi}^{2}}{(W_{\pi\pi}^{2} - m_{\rho}^{2})^{2} + m_{\rho}^{2}\Gamma_{\rho}^{2}} \frac{16\pi}{3} |\vec{k}_{1}^{*}|^{2} \times \sum_{\lambda} |\mathcal{M}_{\lambda}(e\pi \to e\gamma\rho)|^{2} \left[\frac{3}{2}\cos^{2}\theta_{\pi}^{*}\delta_{\lambda,0} + \frac{3}{4}\sin^{2}\theta_{\pi}^{*}(\delta_{\lambda,1} + \delta_{\lambda,-1})\right]$$

- Yields the angular distribution of the $e\pi \rightarrow e\gamma\pi\pi$ cross section in the vicinity of the ρ -meson mass
- Explicit form of $e\pi \rightarrow e\gamma\rho$ amplitude squared for each helicity state λ is required

$$\left|\vec{k}_{1}^{*}\right| = \frac{\Lambda(W_{\pi\pi}^{2}, m_{\pi}^{2}, m_{\pi}^{2})}{2W_{\pi\pi}}$$

 Λ : Mandelstam ftn.

 $e\pi \rightarrow e\gamma\rho$ amplitude (BH + DVCS)

$$\mathcal{M}_{VCS} = \frac{ie^3}{q^2} \mathcal{E}^*_{\mu}(q') \bar{u}(l') \gamma_{\nu} u(l) T^{\mu\nu}(\gamma^* \pi \to \gamma \rho)$$

$$\mathcal{M}_{BH} = \frac{e^3 C_V}{\Delta^2} F_{\pi \to \rho}(\Delta^2) \epsilon_{\mu\alpha\beta\gamma} p^{\alpha}_{\pi\pi} k^{\beta} \mathcal{E}^{*\gamma}(p_{\pi\pi}) \mathcal{E}^*_{\nu}(q')$$

$$\times \bar{u}(l') \left[\gamma^{\nu} \frac{1}{l' + q'} \gamma^{\mu} + \gamma^{\mu} \frac{1}{l - q'} \gamma^{\nu} \right] u(l)$$

$$T^{\mu\nu}$$
: the hadronic tensor

 C_V : the $\gamma \pi \rho$ coupling

Unpolarized $\pi \rightarrow \rho$ GPD

Polarized $\pi \rightarrow \rho$ GPDs

$$\frac{1}{2} \int \frac{d\lambda}{2\pi} e^{i\lambda x} \sum_{q} e_{q}^{2} \langle \rho(p_{\pi\pi}) | \bar{q} \left(-\frac{\lambda n}{2} \right) \not \eta q \left(\frac{\lambda n}{2} \right) | \pi(k) \rangle$$

$$= \frac{1}{2\bar{P} \cdot n} C_{V} \epsilon(n, \mathcal{E}^{*}, \bar{P}, \Delta) H^{\pi \to \rho}(x, \xi, t)$$

$$\frac{1}{2} \int \frac{d\lambda}{2\pi} e^{i\lambda x} \sum_{q} e_{q}^{2} \langle \rho(p_{\pi\pi}) | \bar{q} \left(-\frac{\lambda n}{2} \right) \not \eta \gamma_{5} q \left(\frac{\lambda n}{2} \right) | \pi(k) \rangle$$

$$= \frac{1}{2\bar{P} \cdot n} \frac{i}{f_{\pi}} \left[(\mathcal{E}^{*} \cdot \Delta) (\bar{P} \cdot n) \tilde{H}_{1}^{\pi \to \rho}(x, \xi, t) + m_{\rho}^{2} (\mathcal{E}^{*} \cdot n) \tilde{H}_{2}^{\pi \to \rho}(x, \xi, t) \right]$$

Phenomenological models for $\pi \rightarrow \rho$ GPDs

1. Factorized model for the unpolarized GPD

$$H^{\pi \to \rho}(x,\xi,t) = q(x,\xi)F_{\pi \to \rho}(t)$$

- Simple Ansatz for GPD: factorized *t*-dependence
- Forward limit and Mellin moment conditions are satisfied

$$F(t) = \int_{-1}^{1} dx \ H(x,\xi,t) \qquad q(x) = H(x,\xi,t=0)$$

Unpolarized GPD, $H^{\pi \to \rho}(x, \xi, t)$

 ξ -independent forward parton distribution

$$q(x) = Nx^{-1/2}(1-x)^3\theta(x)$$

✓ Valence-type quark distribution

$$N = 1.09375$$
 \leftarrow $1 = \int_{-1}^{1} dx q(x)$

Phenomenological models for $\pi \rightarrow \rho$ GPDs

2. Pion pole model for the polarized GPD

- Pion pole contribution to the matrix elements of the non-local operator, $\langle \rho | \bar{\psi}(x) \gamma^{\mu} \gamma_5 \psi(0) | \pi \rangle$
- expressed through the pion distribution amplitude (DA) and the $\rho\pi\pi$ coupling

$$\begin{split} \tilde{H}_1^{\pi \to \rho}(x,\xi,t) &= \phi_\pi \left(\frac{x}{\xi}\right) \theta(\xi - |x|) \frac{1}{6} \frac{4f_\pi^2 g_{\rho\pi\pi}}{m_\pi^2 - t} \\ \tilde{H}_2^{\pi \to \rho}(x,\xi,t) &= 0 \end{split}$$

Asymptotic form of the pion DA

$$\phi_{\pi}(u) = \frac{3}{4}(1 - u^2)$$

$e\pi \rightarrow e\gamma\rho$ cross section

Differential cross section in the unit of $pb \text{ GeV}^{-2}$

 $\frac{d\sigma(e\pi \to e\gamma\rho)}{dx_B dy d\Delta^2 d\phi}$

- y: lepton energy loss
- x_B : Bjorken x
- ϕ : azimuthal angle between
 - leptonic and hadronic plane

Summary

- Transition GPDs arise in a description of non-diagonal hard exclusive reactions provide information on the dynamics of the hadron excitations in terms of partonic degrees of freedom.
- We study the $\pi \to \pi\pi$ GPDs describing the $e\pi \to e\gamma\pi\pi$ reaction near the regions where $W_{\pi\pi} \simeq 2m_{\pi}$ and $W_{\pi\pi} \simeq m_{\rho}$.
- The $\pi \to \rho$ contribution is included and the dependence of the $e\pi \to e\gamma\pi\pi$ cross section on the angles of the $\pi\pi$ c.m. system is studied in the vicinity of ρ mass.
- Phenomenological model for GPDs based on the pion pole dominance is adopted to estimate the $e\pi \rightarrow e\gamma\rho$ cross section.

Back up

- DVCS reaction of $e\pi \rightarrow e\gamma\pi\pi$ can be accessed through the pion emission from the Sullivan process.
- Near the threshold of pion production, the momentum transfer between nucleons is small.

Factorized into two subprocesses

 $\mathcal{M}_{eN \to eN\gamma\pi\pi} = \mathcal{M}_{N \to N\pi} \mathcal{M}_{e\pi \to e\gamma\pi\pi}$

The Sullivan-type of process, $eN \rightarrow e\gamma N'\pi\pi$

The meson cloud can be approximated by the one-pion-exchange.

✓ The intermediate pion is slightly off-shell.

D. Amrath, M. Diehl, and J. P. Lansberg, Eur. Phys. J. C 58, 179 (2008) J. Morgado et al., arXiv.2203.169472