Pion form factor and transverse momentum dependent distributions beyond the leading twist in the light-front quark model

Ho-Meoyng Choi (Kyungpook National Univ., Korea)

Work in progress (with Prof. Chueng-Ryong Ji)

Outline

- 1. Motivation
- 2. Why Light-Front?
- 3. Form Factors on the LF:
- New Development of self-consistent LFQM
- Pion Form Factor
- 4. Unpolarized Transverse Momentum Distributions (TMDs) of pion
- 5. QCD evolution of Pion Parton Distribution Functions (PDFs)
- 6. Conclusions

The Electron-Ion Collider (EIC)

aims to provide detailed insights into the behavior of quarks and gluons...

Physics Topics at the EIC

- 1. Precision 3D imaging of protons and nuclei.
- 2. Search for gluon saturation.
- 3. Solving the proton spin puzzle.

The Electron-Ion Collider (EIC)

aims to provide detailed insights into the behavior of quarks and gluons...

Physics Topics at the EIC

- 1. Precision 3D imaging of protons and nuclei.
- 2. Search for gluon saturation.
- 3. Solving the proton spin puzzle.

3D nucleon structure from 5D tomography

3D nucleon structure from 5D tomography

PDFs: inclusive and semi-inclusive processes

Form factors: elastic scattering

3D nucleon structure from 5D tomography

 $W(x, \mathbf{k}_{\perp}, \mathbf{b}_{\perp})$: Wigner distribution

PDFs: inclusive and semi-inclusive processes

Form factors: elastic scattering

 (x, \mathbf{k}_{\perp}) : Light front (LF) variables ...

1. Motivation

• Light-Front Dynamics(LFD) has been quite successful in describing various hadron properties such as Decay constants, DAs, PDFs, Form Factors, GPDs and TMDs etc.

• We have developed a new self-consistent covariant LFQM for decay constants, DAs, and weak form factors(e.g. $B \rightarrow Dll$) of mesons:

PRD 89, 033011(14); PRD91, 014018(15); PRD95, 056002(17) by HMC and C.-R. Ji PRD 103, 073004(21); Adv. High Energy Phys., 4277321(21) by HMC PRD 107, 053003(23); PRD108, 013006(23) by A. J. Arifi, HMC and C.-R. Ji

In this work, we apply our new developed LFQM to compute Form Factor, TMDs, and PDFs of Pion!

2. Why Light-Front?

Light-Front Dynamics (LFD) (by Dirac in 1949)

Hamiltonian	P^0	$P^- = P^0 - P^3$
Momentum	$\mathbf{P}_{\perp} = (P^1, P^2)$ P^3	P_{\perp} $P^{+}=P^{0}+P^{3}$
Energy-Momentum Dispersion Relation	$P^0 = \sqrt{M^2 + \vec{P}^2}$	$P^- = \frac{M^2 + \boldsymbol{P}_\perp^2}{P^+}$

Irrational

VS.

Rational

 \Rightarrow facilitates the <u>partonic interpretation</u> of the amplitude!

⇒ facilitates the <u>partonic interpretation</u> of the amplitude!

(e.g.) E&M form factors of pseudoscalar and vector mesons

$$x = \frac{k^{+}}{P^{+}}$$

$$F(Q^{2}) = \int [dx][d^{2}\mathbf{k}_{\perp}] \psi_{f}^{*}(x, \mathbf{k'}_{\perp}) \psi_{i}(x, \mathbf{k}_{\perp}) \qquad for J^{+} & \mathbf{J}^{\perp}$$

$$\psi_{i}(x, \mathbf{k}_{\perp}) \qquad \psi_{f}(x, \mathbf{k'}_{\perp})$$

Nonvanishing: LF Zero-Mode!

□ One has to take into account of the zero mode in using J current!

Light-Front Quark Model(LFQM)

$$P = (P^{+}, P^{-}, \mathbf{P}_{\perp})$$

$$P^{\pm} = P^{0} \pm P^{3}$$

$$p_{1}$$

$$P^{-} = p_{Q}^{-} + p_{Q}^{-} \text{, i. e. } M^{2} \rightarrow M_{0}^{2} = \frac{m_{Q}^{2} + \mathbf{k}_{\perp}^{2}}{x} + \frac{m_{Q}^{2} + \mathbf{k}_{\perp}^{2}}{1 - x}$$

Meson state: Noninteracting "on-mass" shell $Q \& \overline{Q}$ representation consistent with Bakamjian-Thomas(BT) constuction!

The interaction is added to the mass operator

$$M_{Q\bar{Q}} = \langle \Psi | H_{Q\bar{Q}} | \Psi \rangle$$

$$H_{Q\bar{Q}} = \sqrt{m_Q^2 + \vec{k}^2} + \sqrt{m_{\bar{Q}}^2 + \vec{k}^2} + V_{Q\bar{Q}} \qquad V_{Q\bar{Q}} = a + br - \frac{4\kappa}{3r} + \frac{2\vec{S}_Q \cdot \vec{S}_{\bar{Q}}}{3m_Q m_{\bar{Q}}} \nabla^2 V_{\rm Coul}$$

Refs.) PRD59, 074015(99); PLB460, 461(99) by HMC and CRJ; PRC92, 055203(2015) by HMC, CRJ, Z. Li, and H. Ryu PRD106, 014009(2022) by A. J. Arifi, HMC, and CRJ

General structure for $P(P) \rightarrow P(P')$ transition:

$$\langle P'|\bar{q} \ \gamma^{\mu} \ q|P\rangle = \wp^{\mu} F(q^2) + q^{\mu} \frac{(M^2 - M'^2)}{q^2} H(q^2), \qquad \wp^{\mu} = (P + P')^{\mu} - q^{\mu} \frac{(M^2 - M'^2)}{q^2}$$
$$q^{\mu} = (P - P')^{\mu}$$

General structure for $P(P) \rightarrow P(P')$ transition:

$$\langle P'|\bar{q} \ \gamma^{\mu} \ q|P\rangle = \wp^{\mu} F(q^2) + q^{\mu} \frac{(M^2 - M'^2)}{q^2} H(q^2), \qquad \wp^{\mu} = (P + P')^{\mu} - q^{\mu} \frac{(M^2 - M'^2)}{q^2}$$

$$q^{\mu} = (P - P')^{\mu}$$

For elastic process (M = M'), only gauge invariant form factor $F(q^2)$ survives!

$$\langle P'|\bar{q} \ \gamma^{\mu} \ q|P\rangle = \wp^{\mu} F_P(q^2) \qquad \wp \cdot q = 0$$

$$\langle P'|\bar{q} \ \gamma^{\mu} \ q|P\rangle = \wp^{\mu} F_P(q^2), \qquad \wp^{\mu} = (P+P')^{\mu} - q^{\mu} \frac{(M^2-M'^2)}{q^2}$$

In $q^+ = 0$ frame,

$$\langle P'|\bar{q} \ \gamma^{\mu} \ q|P\rangle = \int_0^1 \mathrm{d}p_1^+ \int \frac{\mathrm{d}^2\mathbf{k}_{\perp}}{16\pi^3} \ \phi'(x,\mathbf{k}_{\perp}')\phi(x,\mathbf{k}_{\perp}) \ \sum_{\lambda's} \mathcal{R}_{\lambda_2\bar{\lambda}}^{\dagger} \left[\frac{\bar{u}_{\lambda_2}(p_2)}{\sqrt{x_2}} \gamma^{\mu} \frac{u_{\lambda_1}(p_1)}{\sqrt{x_1}} \right] \mathcal{R}_{\lambda_1\bar{\lambda}},$$

$$F_P^{(\mu)}(Q^2) = \int_0^1 \mathrm{d}p_1^+ \int \frac{\mathrm{d}^2\mathbf{k}_\perp}{16\pi^3} \,\phi'(x,\mathbf{k}_\perp')\phi(x,\mathbf{k}_\perp) \,\frac{1}{\wp^\mu} \,\sum_{\lambda's} \mathcal{R}_{\lambda_2\bar{\lambda}}^\dagger \left[\frac{\bar{u}_{\lambda_2}(p_2)}{\sqrt{x_2}} \gamma^\mu \frac{u_{\lambda_1}(p_1)}{\sqrt{x_1}} \right] \mathcal{R}_{\lambda_1\bar{\lambda}},$$

$$\langle P'|\bar{q} \ \gamma^{\mu} \ q|P\rangle = \wp^{\mu} F_P(q^2), \qquad \wp^{\mu} = (P+P')^{\mu} - q^{\mu} \frac{(M^2-M'^2)}{q^2}$$

In $q^+ = 0$ frame,

$$\langle P'|\bar{q} \ \gamma^{\mu} \ q|P\rangle \ = \ \int_0^1 \mathrm{d}p_1^+ \int \frac{\mathrm{d}^2\mathbf{k}_{\perp}}{16\pi^3} \ \phi'(x,\mathbf{k}_{\perp}')\phi(x,\mathbf{k}_{\perp}) \ \sum_{\lambda's} \mathcal{R}_{\lambda_2\bar{\lambda}}^{\dagger} \left[\frac{\bar{u}_{\lambda_2}(p_2)}{\sqrt{x_2}} \gamma^{\mu} \frac{u_{\lambda_1}(p_1)}{\sqrt{x_1}} \right] \mathcal{R}_{\lambda_1\bar{\lambda}},$$

Apply
$$P^- = p_q^- + p_{\bar{q}}^-$$
 (i. e. $M^2 \to M_0^2$)

New Effective Method

$$F_P^{(\mu)}(Q^2) = \int_0^1 \mathrm{d}p_1^+ \int \frac{\mathrm{d}^2\mathbf{k}_\perp}{16\pi^3} \,\phi'(x,\mathbf{k}_\perp')\phi(x,\mathbf{k}_\perp) \,\frac{1}{\wp^\mu} \,\sum_{\lambda's} \mathcal{R}_{\lambda_2\bar{\lambda}}^\dagger \left[\frac{\bar{u}_{\lambda_2}(p_2)}{\sqrt{x_2}} \gamma^\mu \frac{u_{\lambda_1}(p_1)}{\sqrt{x_1}} \right] \mathcal{R}_{\lambda_1\bar{\lambda}},$$

Then we get
$$F_{\pi}^{(+)}(Q^2) = F_{\pi}^{(\perp)}(Q^2) = F_{\pi}^{(-)}(Q^2)$$

$$F_{\pi}^{\text{SLF}(\mu)}(Q^2) = \int_0^1 dx \int \frac{d^2 \mathbf{k}_{\perp}}{16\pi^3} \frac{\phi(x, \mathbf{k}_{\perp})\phi'(x, \mathbf{k}_{\perp}')}{\sqrt{\mathbf{k}_{\perp}^2 + m^2} \sqrt{\mathbf{k}_{\perp}'^2 + m^2}} O_{\text{LFQM}}^{(\mu)}$$

TABLE II: The operators $O_{LFOM}^{(\mu)}$ and their helicity contributions to the pion form factor in the standard LFQM.

$F_{\pi}^{(\mu)}$	$O_{ ext{LFQM}}^{(\mu)}$	$\mathcal{H}^{(\mu)}_{(\uparrow o \uparrow) + (\downarrow o \downarrow)}$	$\mathcal{H}^{(\mu)}_{(\uparrow o \downarrow) + (\downarrow o \uparrow)}$
$F_{\pi}^{(+)}$	$\mathbf{k}_{\perp} \cdot \mathbf{k}_{\perp}' + m^2$	$\mathbf{k}_{\perp} \cdot \mathbf{k}_{\perp}' + m^2$	0
$F_{m{\pi}}^{(\perp)}$	$\mathbf{k}_{\perp} \cdot \mathbf{k}_{\perp}' + m^2$	$\mathbf{k}_{\perp} \cdot \mathbf{k}_{\perp}' + m^2$	0
$F_{\pi}^{(-)}$	$\frac{2(1-x)\mathbf{q}_{\perp}^{2}M_{0}^{2}(\mathbf{k}_{\perp}\cdot\mathbf{k}_{\perp}'+m^{2}+\mathbf{q}_{\perp}\cdot\mathbf{k}_{\perp}')}{x[2M_{0}'^{2}\mathbf{q}_{\perp}^{2}+\mathbf{q}_{\perp}^{4}+(M_{0}^{2}-M_{0}'^{2})^{2}]}$	$\frac{2\mathbf{q}_{\perp}^{2}\left\{\left(\mathbf{k}_{\perp}\cdot\mathbf{k}_{\perp}'+m^{2}\right)\left(\mathbf{k}_{\perp}^{2}+\mathbf{k}_{\perp}\cdot\mathbf{q}_{\perp}+m^{2}\right)+\left(1-x\right)\left(\mathbf{k}_{\perp}\times\mathbf{q}_{\perp}\right)^{2}\right\}}{x^{2}\left[2M_{0}'^{2}\mathbf{q}_{\perp}^{2}+\mathbf{q}_{\perp}^{4}+\left(M_{0}^{2}-M_{0}'^{2}\right)^{2}\right]}$	$\frac{2\mathbf{q}_{\perp}^{2}\{(1-x)m^{2}\mathbf{q}_{\perp}^{2}\}}{x^{2}[2M_{0}^{\prime 2}\mathbf{q}_{\perp}^{2}+\mathbf{q}_{\perp}^{4}+(M_{0}^{2}-M_{0}^{\prime 2})^{2}]}$

$$F_{\pi}^{(+)}(Q^2) = F_{\pi}^{(\perp)}(Q^2) = F_{\pi}^{(-)}(Q^2)$$

$$\mathbf{k}_{\perp}' = \mathbf{k}_{\perp} + (1 - x)\mathbf{q}_{\perp}$$

"The first proof of the pion form factor's independence from current components in the LFQM!"

$$f_{\pi}^{LFQM} = 130 \text{ MeV}$$

$$(Exp.=131 \text{ MeV})$$

$$r_{\pi}^{LFQM} = 0.654 \text{ fm}$$
(Exp.=0.659(4)fm)

$$F_{\pi}^{(+)}(Q^2) = F_{\pi}^{(\perp)}(Q^2) = F_{\pi}^{(-)}(Q^2)$$

C. Lorcé, B. Pasquini, and P. Schweitzer, EPJC76,415(2016)

$$\int \frac{[dz]}{2(2\pi)^3} e^{ip \cdot z} \langle P | \bar{\psi}(0) \gamma^+ \psi(z) | P \rangle |_{z^+=0} = f_1^q(x, p_T),$$

$$\int \frac{[dz]}{2(2\pi)^3} e^{ip \cdot z} \langle P | \bar{\psi}(0) \gamma_T^j \psi(z) | P \rangle |_{z^+=0} = \frac{p_T^j}{P^+} f_3^q(x, p_T),$$

$$\int \frac{[dz]}{2(2\pi)^3} e^{ip \cdot z} \langle P | \bar{\psi}(0) \gamma^- \psi(z) | P \rangle |_{z^+=0} = \left(\frac{m_\pi}{P^+}\right)^2 f_4^q(x, p_T),$$

which are related with the forward matrix elements $\langle P|\bar{q} \ \gamma^{\mu} \ q|P\rangle$ as

C. Lorcé, B. Pasquini, and P. Schweitzer, EPJC76,415(2016)

$$\int \frac{[dz]}{2(2\pi)^3} e^{ip \cdot z} \langle P | \bar{\psi}(0) \gamma^+ \psi(z) | P \rangle |_{z^+=0} = f_1^q(x, p_T),$$

$$\int \frac{[dz]}{2(2\pi)^3} e^{ip \cdot z} \langle P | \bar{\psi}(0) \gamma_T^j \psi(z) | P \rangle |_{z^+=0} = \frac{p_T^j}{P^+} f_3^q(x, p_T),$$

$$\int \frac{[dz]}{2(2\pi)^3} e^{ip \cdot z} \langle P | \bar{\psi}(0) \gamma^- \psi(z) | P \rangle |_{z^+=0} = \left(\frac{m_\pi}{P^+}\right)^2 f_4^q(x, p_T),$$

which are related with the forward matrix elements $\langle P|\bar{q} \ \gamma^{\mu} \ q|P\rangle$ as

$$2P^{+} \int dx f_{1}^{q}(x) = \langle P|\bar{\psi}(0)\gamma^{+}\psi(0)|P\rangle,$$

$$2p_{T} \int dx f_{3}^{q}(x) = \langle P|\bar{\psi}(0)\gamma^{\perp}\psi(0)|P\rangle,$$

$$4P^{-} \int dx f_{4}^{q}(x) = \langle P|\bar{\psi}(0)\gamma^{-}\psi(0)|P\rangle,$$

PDF TMD
$$f(x) = \int d^2p_T f(x, p_T).$$

C. Lorcé, B. Pasquini, and P. Schweitzer, EPJC76,415(2016)

Sum rules:

Positivity inequalities:

$$\int dx \ f_1^{\,q}(x) = N_q$$

$$f_1^q(x, p_T) \ge 0$$

$$\sum_{q} \int dx \ x \, f_1^{\,q}(x) = 1 \qquad f_4^{\,q}(x, p_T) \ge 0$$

$$f_4^q(x, p_T) \ge 0$$

$$2\int dx \ f_4^q(x) = N_q$$

$$(e.g.N_u = N_{\bar{d}} = 1 \text{ in } \pi^+)$$

C. Lorcé, B. Pasquini, and P. Schweitzer, EPJC76,415(2016)

Sum rules:

Positivity inequalities:

In free quark model:

$$\int dx \ f_1^q(x) = N_q$$

$$f_1^q(x, p_T) \ge 0$$

$$xf_3^q(x,p_T) = f_1^q(x,p_T)$$

$$\sum_{q} \int dx \ x \, f_1^{\,q}(x) = 1 \qquad f_4^{\,q}(x, p_T) \ge 0$$

$$f_4^q(x, p_T) \ge 0$$

$$2\int dx \ f_4^q(x) = N_q$$

$$(e.g.N_u = N_{\bar{d}} = 1 \text{ in } \pi^+)$$

LF Zero-Mode for twist-4 PDF and its Resolution

C. Lorcé, B. Pasquini, and P. Schweitzer, EPJC76,415(2016)

Preliminary

This work!

Unpolarized PDFs for Pion

Preliminary

$$\int d^2 {m k}_{\perp}$$
 at the initial scale $\mu_0=1~{
m GeV}$

4. QCD Evolution of Pion PDFs

Preliminary

Evolved from $\mu_0^2 = 1 \text{ GeV}^2$ to $\mu^2 = 4 \text{ and } 27 \text{ GeV}^2$

We use the **Higher Order Perturbative Parton Evolution toolkit (HOPPET)** to solve the NNLO DGLAP equation.

Twist-2 PDF

$\mu^2 = 4 \text{ GeV}$	$\int_{t^2}^{2} \langle x \rangle_{t^2}^{u}$	$\langle x^2 \rangle_{t2}^u$	$\langle x^3 \rangle_{t2}^u$	$\langle x^4 \rangle_{t2}^u$
This work	0.236	0.101	0.055	0.033
[64]	0.2541(26)	0.094(12)	0.057(4)	0.015(12)
[65]	0.2075(106)	0.163(33)	_	_
[39]	0.24(2)	0.098(10)	0.049(7)	_
[40]	0.24(2)	0.094(13)	0.047(8)	_

Twist-2 PDF

$\mu^2 = 27 \text{ Ge}$	$V^2 \langle x \rangle_{t2}^u$	$\langle x^2 \rangle_{t2}^u$	$\langle x^3 \rangle_{t2}^u$	$\langle x^4 \rangle_{t2}^u$
This work	0.182	0.069	0.034	0.019
[66]	0.18(3)	0.064(10)	0.030(5)	_
[40]	0.20(2)	0.074(10)	0.035(6)	_
[48]	0.184	0.068	0.033	0.018
[53]	0.217(11)	0.087(5)	0.045(3)	

Twist-3 PDF

	$\langle x \rangle_{t3}^{u}$	$\langle x^2 \rangle_{t3}^u$	$\langle x^3 \rangle_{t3}^u$	$\langle x^4 \rangle_{t3}^u$
$\mu^2 = 4 \text{ GeV}^2$	0.471	0.164	0.079	0.045
$\mu^2 = 27 \text{ GeV}^2$	0.365	0.111	0.049	0.026

Twist-4 PDF

	$\langle x \rangle_{t4}^{u}$	$\langle x^2 \rangle_{t4}^u$	$\langle x^3 \rangle_{t4}^u$	$\langle x^4 \rangle_{t4}^u$
$\mu^2 = 4 \text{ GeV}^2$	0.069	0.021	0.009	0.005
$\mu^2 = 27 \text{ GeV}^2$	0.053	0.014	0.006	0.003

5. Conclusions

We developed a new method for the covariant analysis of LFQM

Our LFQM: Noninteracting $Q \& \bar{Q}$ representation consistent with the Bakamjian-Thomas(BT) constuction!

$$\langle 0|\bar{q}\;\Gamma^{\mu}q|\mathrm{P}\rangle = \mathfrak{F}\,\wp^{\mu} \qquad \mathfrak{F}: \text{ physical observables } (\mathfrak{F}=f_P,F\cdots)$$

$$\wp^{\mu}: \text{ Lorentz factors } (\wp=P^{\mu}\cdots)$$

$$\mathfrak{F} = \left\langle 0 \middle| \overline{q} \frac{\Gamma^{\mu}}{\wp^{\mu}} q \middle| P \right\rangle = \iint dx \ d^{2} \mathbf{k}_{\perp} \cdots \left(\frac{\Gamma^{\mu}}{\wp^{\mu}} \right) \cdots$$

Constrained by BT construction!

We obtain physical observables independent of μ , paving the way for the development of the self-consistency in the LFQM.

GPDs of Pion at zero skewness

$$F^q(t) = \int_0^1 dx \, H^q(x, t)$$

$$H^q(x,t) = H^q(x,\zeta=0,-t=Q^2)$$

GPD at $\zeta=0$

$$H_1^q(x,t) = H^{(+)}(x,t)$$

$$H_4^q(x,t) = H^{(-)}(x,t)$$

$$H_1^q(x,0) = f_1^q(x)$$

$$H_4^q(x,0) = 2 f_4^q(x)$$

