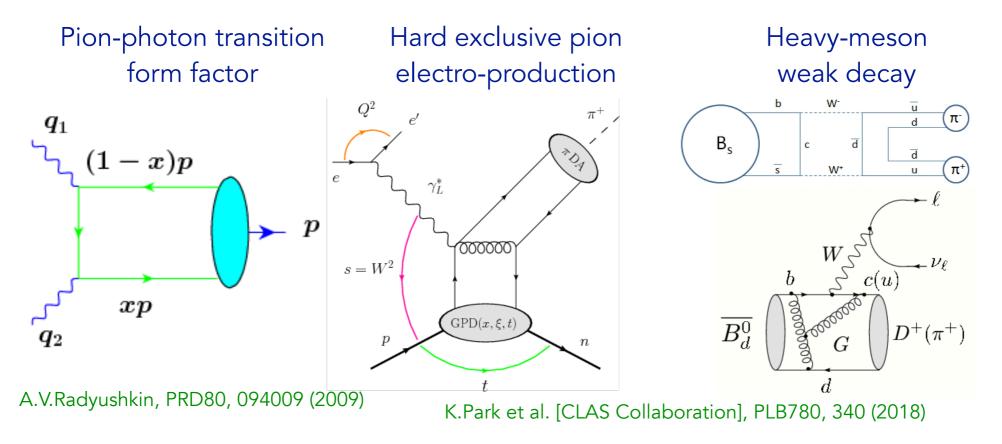
Quasi-distribution amplitudes for pseudo-scalar mesons

Department of Physics, Pukyong National University (PKNU), Busan, Republic of Korea

Contents based on SiN, Modern Physics Letters A32, 1750218 (2017)

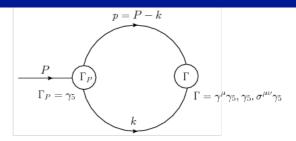
Theory

Quark distribution amplitude (DA) for PS mesons



Structural (nonpert.) information of DA as func. of x

Theory



- PS-meson DA defined in light-front (LF) formalism $\langle 0|\bar{q}_f(\tau \hat{n})\gamma_{\mu}\gamma_5 q_g(-\tau \hat{n})|\mathcal{M}(P)\rangle = i\sqrt{2}F_{\mathcal{M}}P_{\mu}\int_0^1 du\,e^{i(2u-1)P\cdot\tau \hat{n}}\phi_{\mathcal{M}}(u),$
- Well defined Fock-states for meson but not covariant
- LF formalism can not applied for lattice QCD (LQCD)
- Instead, LQCD computes *moments* of DA

X.Ji, A.V.Radyushkin have developed quasi-DA (QDA) in terms of Large-momentum effective theo. (LaMET) X. Ji, PRL110, 262002 (2013), A. V. Radyushkin, PRD93, 056002 (2016). Theory (LaMET) A. V. Radyushkin, PRD93, 056002 (2016).

Defining virtuality distribution amplitude (VDA)

$$\langle 0|\bar{q}(0)\gamma_{5}\gamma_{+}q(z_{-})|\mathcal{M}(p)\rangle = \frac{p_{+}}{\sqrt{2}F_{\mathcal{M}}}\int_{0}^{\infty}d\sigma\int_{0}^{1}dx\,\Phi_{\mathcal{M}}(x,\sigma)e^{-ixp_{+}z_{-}}$$
Relation between DA and VDA
$$\phi_{\mathcal{M}}(x) = \int_{0}^{\infty}d\sigma\,\Phi_{\mathcal{M}}(x,\sigma)\,,\qquad \int_{0}^{1}dx\,\phi_{\mathcal{M}}(x) = 1$$

Fourier transform (FT) of matrix element: TMDA

$$\langle 0|\bar{q}(0)\gamma_5\gamma_+q(z_-)|\mathcal{M}(p)\rangle = \frac{p_+}{\sqrt{2}F_{\mathcal{M}}}\int_0^\infty d^2k_\perp \int_0^1 dx \,\Psi_{\mathcal{M}}(x,k_\perp^2) \,e^{-ixp_+z_-}$$

Theory (LaMET)

TMDA in terms of VDA

$$\Psi_{\mathcal{M}}(x,k_{\perp}^2) = \frac{i}{\pi} \int_0^\infty \frac{d\sigma}{\sigma} \Phi_{\mathcal{M}}(x,\sigma) e^{-ik_{\perp}^2/\sigma}$$

TMDA integrated over k_T gives DA

$$\phi_{\mathcal{M}}(x) = \int_0^\infty dk_\perp^2 \,\Psi_{\mathcal{M}}(x,k_\perp^2) = 2\pi \int_0^\infty k_\perp \,dk_\perp \,\Psi_{\mathcal{M}}(x,k_\perp^2)$$

 $VDA \Leftrightarrow TMDA \Leftrightarrow DA$

Theory (LaMET) Now, matrix element at equal time $z = (0, 0, 0, z_3)$ $\langle 0|\bar{q}(0)\gamma_5\gamma_0q(z_3)|\mathcal{M}(p)\rangle = \frac{p_0}{\sqrt{2}F_{\mathcal{M}}} \int_0^\infty d\sigma \int_0^1 dx \, \Phi_{\mathcal{M}}(x,\sigma) e^{-ixp_3z_3 + i\sigma z_3^2/4} \,.$ Similarly, FT of equal-time matrix element: QDA [-∞,∞] $\langle 0|\bar{q}(0)\gamma_5\gamma_0q(z_3)|\mathcal{M}(p)\rangle = \frac{p_0}{\sqrt{2}F_{\mathcal{M}}}\int_{-\infty}^{\infty} dy Q_{\mathcal{M}}(y,p_3)e^{-iyp_3z_3}.$

QDA in terms of VDA: Constrained x, while not for y

$$Q_{\mathcal{M}}(y,p_3) = \int_0^1 dx \int_0^\infty d\sigma \sqrt{\frac{ip_3^2}{\pi\sigma}} e^{-i(x-y)^2 p_3^2/\sigma} \Phi_{\mathcal{M}}(x,\sigma) \,,$$

Theory (LaMET)

By equating them, TMDA and VDA related as

$$p_3 \int_{-\infty}^{\infty} dk_1 \,\Psi_{\mathcal{M}}(x, k_1^2 + (x - y)^2 p_3^2) = \int_0^{\infty} d\sigma \,\sqrt{\frac{ip_3^2}{\pi\sigma}} e^{-i(x - y)^2 p_3^2/\sigma} \Phi_{\mathcal{M}}(x, \sigma)$$

Thus, QDA given in terms of TMDA A. V. Radyushkin, PRD93, 056002 (2016).

$$Q_{\mathcal{M}}(y,p_3) = p_3 \int_{-\infty}^{\infty} dk_1 \int_0^1 dx \, \Psi_{\mathcal{M}}(x,k_1^2 + (x-y)^2 p_3^2) \,.$$

A useful limit $p_3 \rightarrow \infty$

$$\lim_{p_3 \to \infty} \left[\sqrt{\frac{ip_3^2}{\pi\sigma}} e^{-i(x-y)^2 p_3^2/\sigma} \right] = \delta(x-y)$$

Theory (LaMET)

Due to the limit, DA-like func. (covariant) relates to VDA

$$\lim_{p_3 \to \infty} Q_{\mathcal{M}}(y, p_3) \equiv \varphi_{\mathcal{M}}(y) = \int_0^1 dx \int_0^\infty d\sigma \, \delta(x - y) \Phi_{\mathcal{M}}(x, \sigma)$$
$$= \int_0^\infty d\sigma \, \Phi_{\mathcal{M}}(y, \sigma) \, .$$

DA-like func. and DA satisfy similar normalizations

$$\int_{-\infty}^{\infty} dy \,\varphi_{\mathcal{M}}(y) = \int_{0}^{1} dx \,\phi_{\mathcal{M}}(x) = 1$$

Theory (LaMET with a model for LFWF)

Introducing LFWF for DA, previous equation becomes

$$\lim_{p_3 \to \infty} p_3 \int_{-\infty}^{\infty} dy \int_{-\infty}^{\infty} dk_1 \int_{-\infty}^{\infty} dk_2 \Psi_{\mathcal{M}}(x, k_{\perp}^2) \delta(k_2 - (x - y)p_3)$$

$$= \int_0^\infty d^2 k_\perp \,\psi_{\mathcal{M}}(x,k_\perp^2) \underbrace{\mathsf{LFWF}}_{\mathsf{LFWF}}$$

After performing integration, arriving at

$$\lim_{p_3 \to \infty} \left. \Psi_{\mathcal{M}}(x, k_{\perp}^2) \right|_{x=y+\frac{k_2}{p_3}} = \psi_{\mathcal{M}}(x, k_{\perp}^2) \,.$$

If k₂ is small (nonpert.), $\lim_{p_3\to\infty} k_2/p_3 = 0$

Theory (LaMET with a model for LFWF)

As far as we are interested in NP region, we have

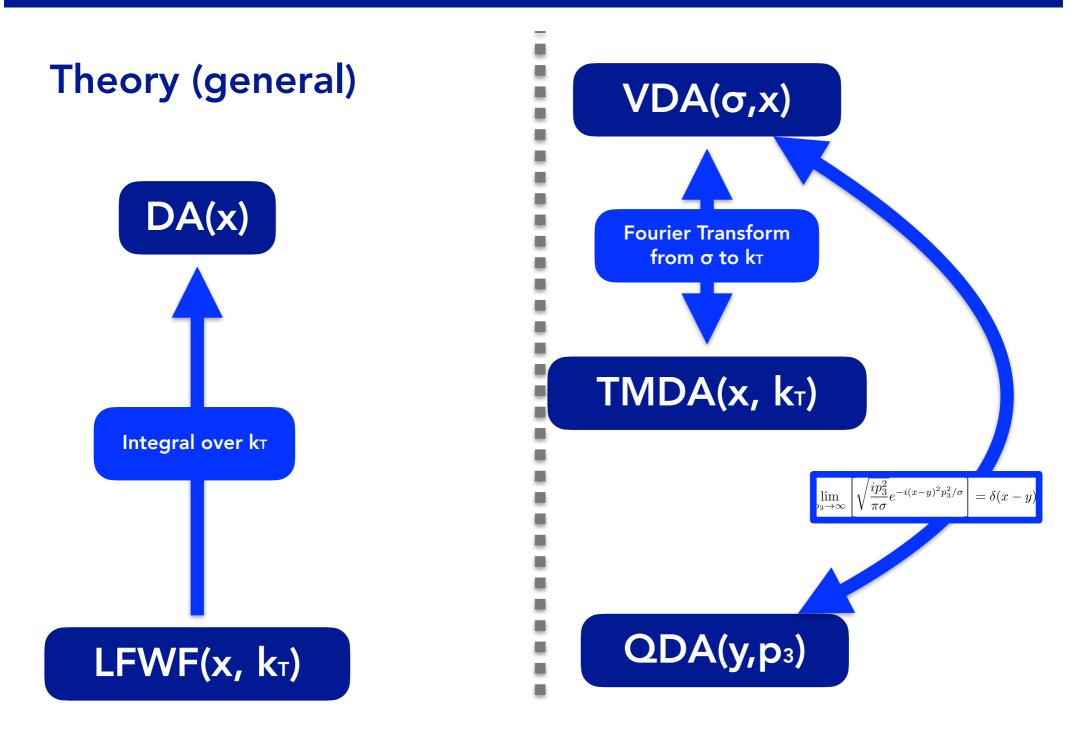
$$\Psi_{\mathcal{M}}^{\mathrm{NP}}(y,k_{\perp}^2) = \psi_{\mathcal{M}}^{\mathrm{NP}}(y,k_{\perp}^2) \quad \text{for } y = x = [0,1]$$

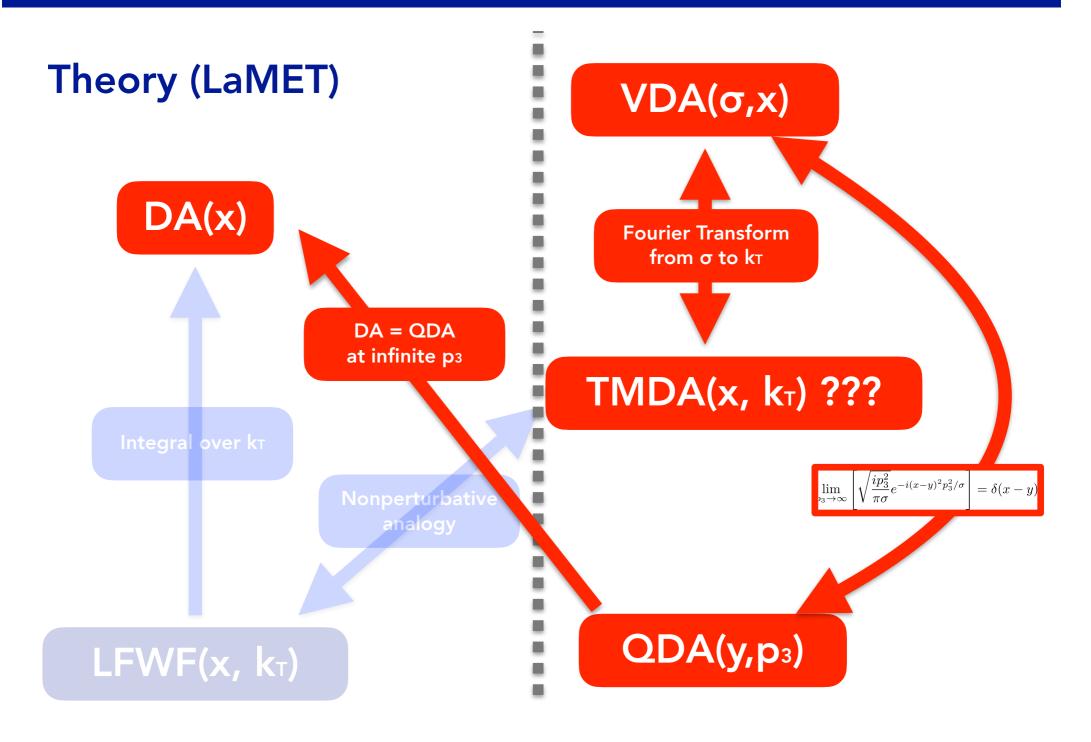
Saying, LFWF ~ TMDA in NP region

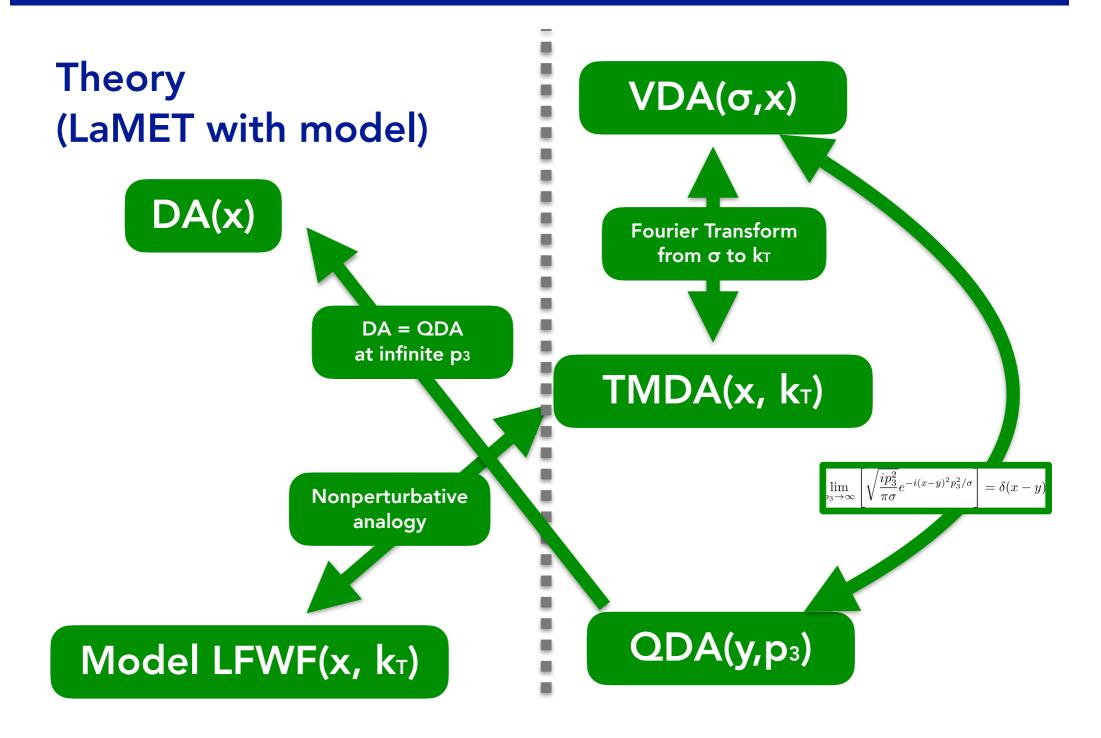
How can we test this relation?

$$F_{\gamma\gamma^*\pi^0}(Q^2) = \frac{2F_{\pi}}{3} \int_0^1 \frac{dx}{xQ^2} \int_0^{xQ^2} \frac{dk_{\perp}^2}{xQ^2} \int_0^{k_{\perp}} d^2p_{\perp} \Psi(x, p_{\perp}^2)$$

Replacing TMDA with LFWF, data reproduced?







Model: Non-local chiral-quark model (NLChQM)

Based on liquid-instanton model (LIM)

D. Diakonov, Prog. Part. Nucl. Phys. 51, 173 (2003).

Nonlocal inter-quark interactions via instanton

$$\mathcal{S}_{\text{eff}}[m_q, \mathcal{M}] = -\text{Sp}\,\ln\left[i\partial\!\!\!/ + im_q + i\sqrt{M_q(\partial^2)}U^{\gamma_5}(\mathcal{M})\sqrt{M_q(\partial^2)}\right]$$

Effective model describing SCSB at $\Lambda_{\text{NLChQM}} \sim 1.0 \text{ GeV}$

Performing Wick rotation from Euclidean to Minkowski Then, Minkowski to LF frame with light-like vector n

Model: Non-local chiral-quark model (NLChQM)

PS-meson DA within NLChQM reads

$$\phi_{\mathcal{M}}^{\rm NP}(x) = -\frac{2iN_c}{F_{q\bar{q}'}^2} \int \frac{d^4k}{(2\pi)^4} \sqrt{M_q(k)M_{q'}(k-p)} \delta[\bar{x}p \cdot n - k \cdot n]$$

SiN et al., Phys. Rev. D 74, 014019 (2006)

$$\times \frac{[M_{q'}k - M_q(k-p)] \cdot n}{[k^2 - M_q^2][(k-p)^2 - M_{q'}^2]} \,.$$

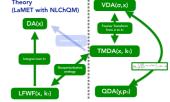
And, LFWF from NLChQM reads Sin, MPLA32, 1750218 (2017) $\psi^{\rm NP}_{\mathcal{M}}(x,k_{\perp}^2)$ $ar{x}=1-x$

$$= \frac{\bar{x}N_c\Lambda^4\sqrt{M_qM_{q'}}[xM_q + \bar{x}M_{q'}]}{4\pi^3 F_{\mathcal{M}}^2[M_q^2 - \Lambda^2][k_{\perp}^2 + \Lambda^2 - x\bar{x}M_{\mathcal{M}}^2][k_{\perp}^2 + \bar{x}M_{q'}^2 + x\Lambda^2 - x\bar{x}M_{\mathcal{M}}^2]} + \frac{\bar{x}N_c\Lambda^4\sqrt{M_qM_{q'}}[xM_q + \bar{x}M_{q'}]}{4\pi^3 F_{\mathcal{M}}^2[\Lambda^2 - M_q^2][k_{\perp}^2 + xM_q^2 + \bar{x}\Lambda^2 - x\bar{x}M_{\mathcal{M}}^2][k_{\perp}^2 + xM_q^2 + \bar{x}\Lambda_{q'}^2 - x\bar{x}M_{\mathcal{M}}^2]},$$

Model: Non-local chiral-quark model (NLChQM)

An analytic expression for QDA beyond chiral limit within NLChQM SIN, MPLA32, 1750218 (2017)

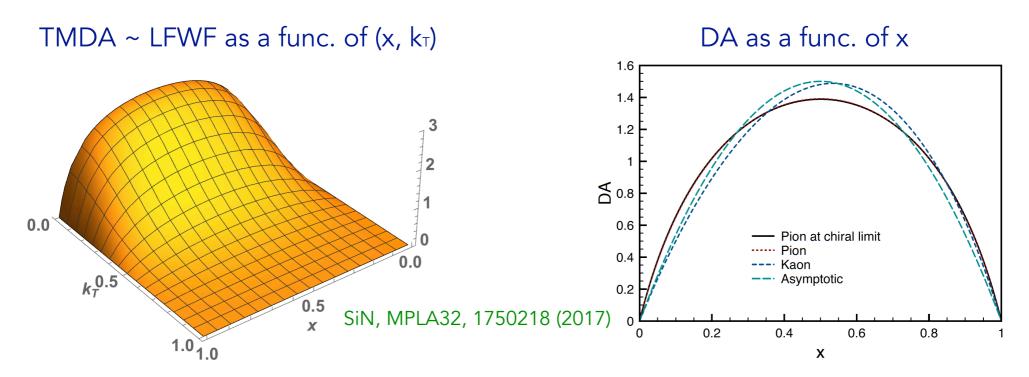
$$Q_{\mathcal{M}}^{\rm NP}(y,p_3) = \frac{N_c M_0^2 \Lambda^4}{8\pi^2 F_{\pi}^2 \eta^4}$$



$$\times \left\{ \ln \left[\frac{[\eta^2 + 2p_3f_-(\bar{y},\Lambda)]^2 [\eta^2 - 2p_3f_-(\bar{y},M_0)]^2 f_+(\bar{y},\Lambda)f_+(\bar{y},M_0)f_+(y,\Lambda)f_+(y,M_0)}{[\eta^2 + 2p_3f_+(y,\Lambda)]^2 [\eta^2 - 2p_3f_+(y,M_0)]^2 f_-(\bar{y},\Lambda)f_-(\bar{y},M_0)f_-(y,\Lambda)f_-(y,M_0)]} \right] \right. \\ \left. - \frac{\Delta M}{M_0} \left[(2y-3) \ln \left[\frac{f_-(\bar{y},\Lambda)f_-(\bar{y},M_0)[\eta^2 + 2p_3f_+(y,\Lambda)][\eta^2 - 2p_3f_+(y,M_0)]}{f_+(y,\Lambda)f_+(y,M_0)[\eta^2 + 2p_3f_-(\bar{y},\Lambda)][\eta^2 - 2p_3f_-(\bar{y},M_0)]} \right] \right] \right. \\ \left. + \frac{\eta^2}{p_3^2} \ln \left[\frac{[\eta^2 + 2p_3f_+(y,\Lambda)][\eta^2 + 2p_3f_-(\bar{y},\Lambda)]}{[\eta^2 - 2p_3f_+(y,M_0)][\eta^2 - 2p_3f_-(\bar{y},M_0)]} \right] \right] \right\} + \mathcal{O}(\Delta M^2) \,, \\ \Delta M = |M_q - M_{q'}| = |m_q - m_{q'}| \\ \left. f_{\pm}(y,M_0) = xp_3 \pm \sqrt{M_0^2 + y^2p_3^2} \,, \\ \eta^2 = \Lambda^2 - M_0^2 \right] \right\}$$

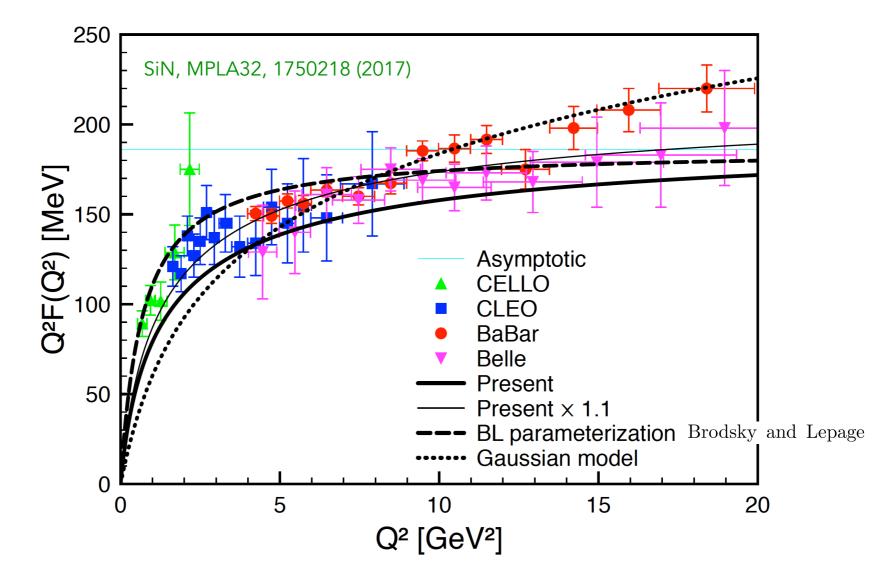
Table 1. Model parameters for the present calculations. With these values, the pion and kaon DAs satisfy the normalization condition, i.e. $\int dx \, \phi_{\pi,K}(x) = 1$.

	$M_0 = 350 \text{ MeV}$	$m_{u,d} = 5 \text{ MeV}$	$m_s = 135 \text{ MeV}$		
Pion at CL	$F_{\pi} = 93 \text{ MeV}$	$M_q = M_0$	$M_{q'} = M_0$	$M_{\pi} = 0 \mathrm{MeV}$	$\Lambda = 1.02 {\rm GeV}$
Pion	$F_{\pi} = 93 \text{ MeV}$	$M_q = (m_{u,d} + M_0)$ $= 355 \text{ MeV}$	$M_{q'} = (m_{u,d} + M_0)$ $= 355 \text{ MeV}$	$M_{\pi} = 140 \text{ MeV}$	$\Lambda = 1.01~{\rm GeV}$
Kaon	$F_K = 113 \text{ MeV}$	$M_q = (m_{u,d} + M_0)$ $= 355 \text{ MeV}$	$M_{q'} = (m_s + M_0)$ $= 485 \text{ MeV}$	$M_K = 495 \text{ MeV}$	$\Lambda = 1.05~{\rm GeV}$



$$F_{\gamma\gamma^*\pi^0}(Q^2) = \frac{2F_\pi}{3} \int_0^1 \frac{dx}{xQ^2} \int_0^{xQ^2} \frac{dk_\perp^2}{xQ^2} \int_0^{k_\perp} d^2p_\perp \Psi(x, p_\perp^2) \, dx \, dx$$

Photon-pion transition FF with TMDA ~ LFWF



Non-zero at Q²=0, via Adler-Bell-Jackiw axial anomaly for real photons: $F_{\gamma\gamma\pi^0}(0) = (4\pi^2 F_{\pi})^{-1} \approx 0.272 \text{ GeV}^{-1}$

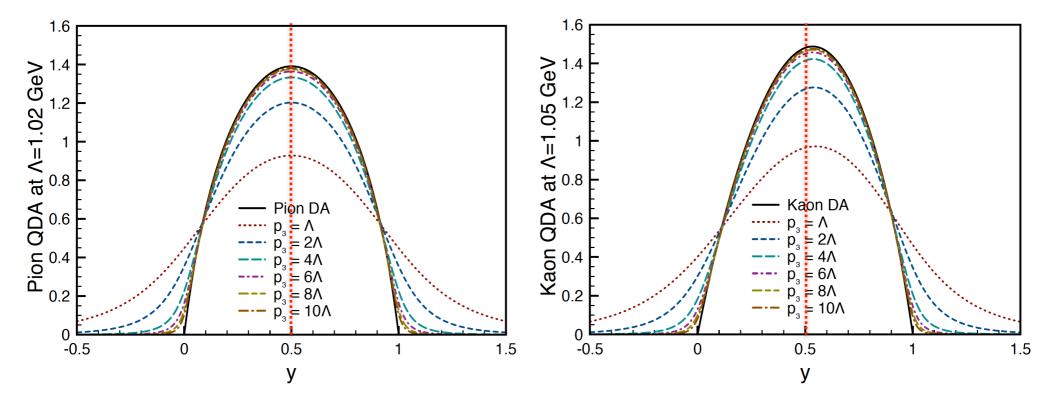
From NLChQM gives $\lim_{Q^2 \to 0} F_{\gamma \gamma^* \pi^0}^{\text{NLChQM}}(Q^2) = 0.191 \text{ GeV}^{-1}$ Sin, MPLA32, 1750218 (2017)

The ratio becomes $F_{\gamma\gamma^*\pi^0}^{\text{NLChQM}}(0)/F_{\gamma\gamma\pi^0}(0) = 0.702$

Slightly larger than 0.5 G. P. Lepage and S. J. Brodsky, PRD22, 2157 (1980) A. V. Radyushkin, PRD93, 056002 (2016).

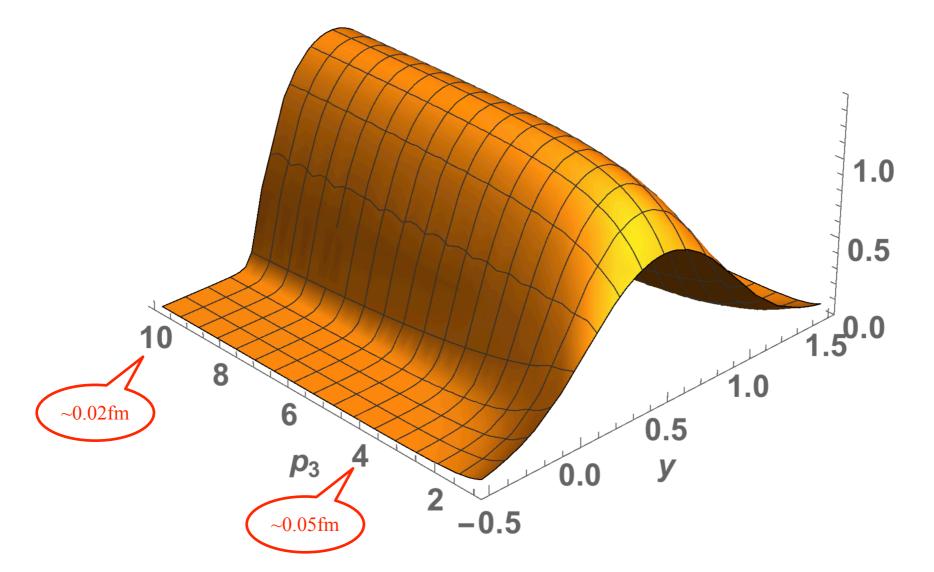
> E. Ruiz Arriola and W. Broniowski, PRD74, 034008 (2006) A. G. Oganesian et al., PRD93, 054040 (2016).

Pion and kaon QDA for p₃[GeV]



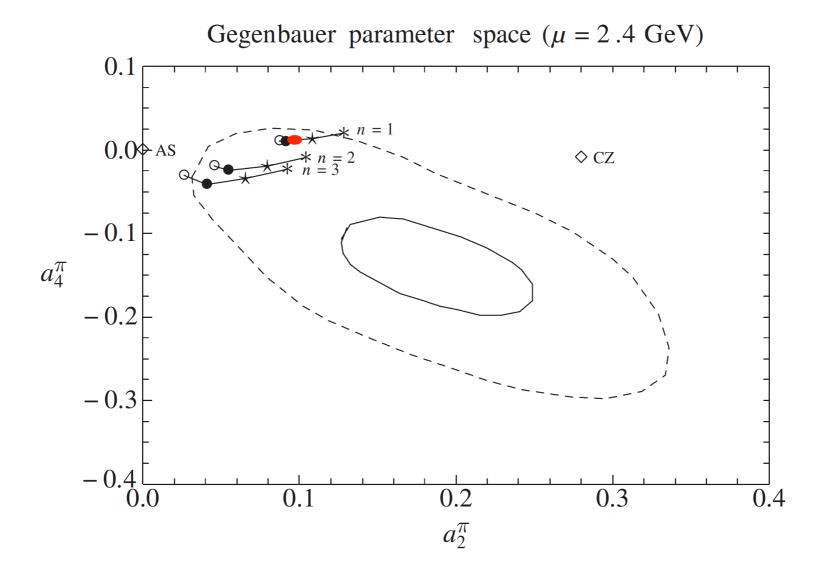
Slightly tilted curves for kaon, due to m_s > m_u, m_d

Pion QDA for p₃[GeV] and y



J. Gronberg et al. (CLEO Collaboration), Phys. Rev. D 57, 33 (1998). A. Schmedding and O. I. Yakovlev, Phys. Rev. D 62, 116002 (2000).

Gegenbauer coefficients from pion QDA for $p_3 \rightarrow \infty$



Moments from DA and QDA $\xi \equiv (y - \bar{y}) = 2x - 1$

$$\langle \xi^n \rangle_{\mathcal{M}}^{\mathrm{DA}} = \int_0^1 (2x-1)^n \phi_{\mathcal{M}}(x) dx, \quad \langle \xi^n \rangle_{\mathcal{M}}^{\mathrm{QDA}} = \lim_{p_3 \to \infty} \int_{-\infty}^\infty (2y-1)^n Q_{\mathcal{M}}(y,p_3) dy$$

Table 2. The moments from the pion and kaon DA and QDA for $\xi = 2x - 1$ and 2y - 1, respectively.

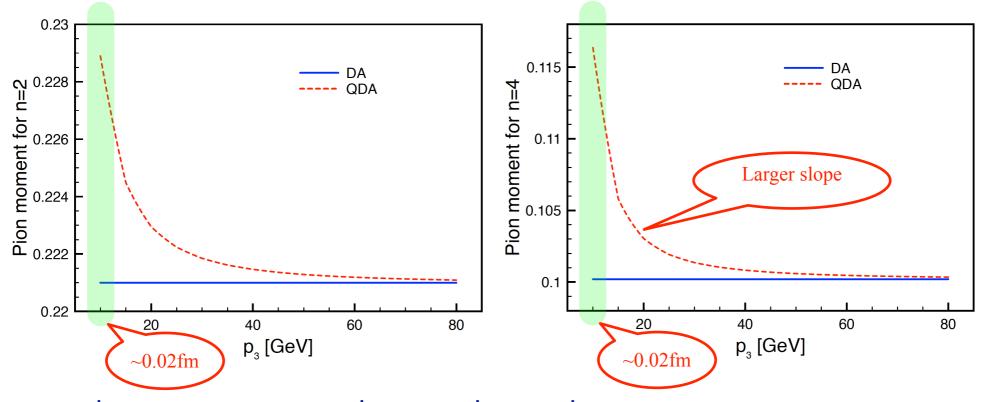
	n = 1	n = 2	n = 3	n = 4		n = 1	n = 2	n = 3	n = 4
$\langle \xi^n angle^{\mathrm{DA}}_\pi$	-	0.2210	_	0.1002	$\langle \xi^n angle_K^{\mathrm{DA}}$	0.0277	0.2043	0.0122	0.0887
$\langle \xi^n \rangle^{\text{QDA}}_{\pi}$ at $p_3 = 10\Lambda$	_	0.2287	_	0.1159	$\langle \xi^n \rangle_K^{ ext{QDA}}$ at $p_3 = 10\Lambda$	0.0277	0.2118	0.0120	0.1034
$\langle \xi^n \rangle^{ m QDA}_{\pi}$ at $p_3 = 20\Lambda$	_	0.2229	_	0.1030	$\langle \xi^n angle_K^{ m QDA}$ at $p_3 = 20\Lambda$	0.0277	0.2062	0.0121	0.0913
$\langle \xi^n \rangle^{\text{QDA}}_{\pi}$ at $p_3 = 30\Lambda$	_	0.2218	_	0.1013	$\langle \xi^n angle^{ ext{QDA}}_K$ at $p_3 = 30 \Lambda$	0.0277	0.2052	0.0122	0.0898

 $\langle \xi^2 \rangle^{\overline{\text{MS}}} = \int_0^1 du \, (2u-1)^2 \phi_\pi(u,\mu) = 0.2361(41)(39)(?)$

V.Braun et al. (RQCD Collaboration), PRD 92, 014504 (2015)

For $p_3 > 30$ GeV, differences reduced to ~ 10%

Behavior of moments for p₃



Higher moments depend much on p₃

Summary and perspectives

Verified that TMDA ~ LFWF at NP region

From LFWF from NLCHQM, analytic form for QDA derived for nonzero current-quark mass

Obtained QDA for pion and kaon successfully describe DAs for p3 $\rightarrow \infty$, showing reproduction of exp. data

Higher moments are sensitive for p₃

Fragmentation func. (FragF) ↔ PDF via Drell-Levy-Yan Then, QPDF ↔ QFragF ?!?! In progress!!

Thank you for your attention!

This talk was supported by NRF-2018R1A5A1025563, NRF-2022R1A2C1003964, and NRF-2022K2A9A1A06091761.