Entanglement between Valence and Sea Quarks in Hadrons of 1+1 Dimensional QCD

Peter Ehlers

International Light Cone Advisory Committee

May 17, 2023

< 口 > < 同 >

A = A = A = E =
 O Q O

Table of Contents

2 Definition of Entanglement

Intuition for QCD

The intuitive picture of the inside of a hadron has a small number of valence quarks amidst a sea of other quarks and gluons.

• Valence quarks determine properties of the hadron.

Intuition Difficulties

Intuitive picture does not explain certain properties of hadrons

• Results suggest that the valence spin content of the nucleon is only 30-40% of the total

A. Deur, S. J. Brodsky, and G. F. De Téramond, Rept. Prog. Phys. 82 (2019) 076201, arXiv:1807.05250 (□ > (□ > (∂ > (≥ > (

Intuition Difficulties

Intuitive picture does not explain certain properties of hadrons

• Results suggest that the valence spin content of the nucleon is only 30-40% of the total

Valence content is obscured in QCD state vectors.

• Could be signature of strong entanglement between valence and sea content.

A. Deur, S. J. Brodsky, and G. F. De Téramond, Rept. Prog. Phys. 82 (2019) 076201, arXiv:1807.05250 (□ > (□ > (

Entanglement in QCD

Entanglement of hadrons in QCD is generally not well understood.

D. E. Kharzeev and E. M. Levin, Phys. Rev. D 95, 114008 (2017), arXiv:1702:03489 + 🗦 = 🗠 <

Quark Entanglement in Hadrons

Entanglement in QCD

Entanglement of hadrons in QCD is generally not well understood.

• Kharzeev & Levin posed the question "What is the entanglement entropy of deep inelastic scattering processes?"

D. E. Kharzeev and E. M. Levin, Phys. Rev. D 95, 114008 (2017), arXiv:1702:03489 🕨 🚊 😑 🔊 🤇 🔿

Entanglement in QCD

Entanglement of hadrons in QCD is generally not well understood.

- Kharzeev & Levin posed the question "What is the entanglement entropy of deep inelastic scattering processes?"
- Could be useful for simulation on quantum computers.

D. E. Kharzeev and E. M. Levin, Phys. Rev. D 95, 114008 (2017), arXiv:1702:03489 + 🔤 🖘 🧟 🖓

Goal

Goal is to elucidate the valence and sea quark structure of hadrons in QCD.

• No reason to assume it can be accessed by perturbation theory.

Goal

Goal is to elucidate the valence and sea quark structure of hadrons in QCD.

- No reason to assume it can be accessed by perturbation theory.
- \bullet Investigating the confined sector of QCD via 1+1d QCD

Goal

Goal is to elucidate the valence and sea quark structure of hadrons in QCD.

- No reason to assume it can be accessed by perturbation theory.
- Investigating the confined sector of QCD via 1+1d QCD
- Need a definition of valence-sea entanglement for QCD state vectors

Entanglement Entropy

Entropy is information to be gained from measurement.

• calculable for a state $|\psi\rangle$ in a Hilbert space $\mathcal{H} = \mathcal{H}_A \otimes \mathcal{H}_B$

◆□ > ◆□ > ◆三 > ◆三 > 三日 のへの

Entanglement Entropy

Entropy is information to be gained from measurement.

- calculable for a state $|\psi
 angle$ in a Hilbert space $\mathcal{H}=\mathcal{H}_A\otimes\mathcal{H}_B$
- Take $\rho_A = \operatorname{Tr}_B[|\psi\rangle \langle \psi|].$

◆□ > ◆□ > ◆三 > ◆三 > 三日 のへの

Entanglement Entropy

Entropy is information to be gained from measurement.

- calculable for a state $|\psi
 angle$ in a Hilbert space $\mathcal{H}=\mathcal{H}_A\otimes\mathcal{H}_B$
- Take $\rho_A = \operatorname{Tr}_B[|\psi\rangle \langle \psi|].$
- Entanglement entropy is $S(\rho_A) = -\text{Tr}_A[\rho_A \log(\rho_A)].$

◆□ > ◆□ > ◆三 > ◆三 > 三日 のへの

Entanglement Difficulties

Standard definition will not work for quark entanglement.

• Requires bipartition of Hilbert space.

Entanglement Difficulties

Standard definition will not work for quark entanglement.

- Requires bipartition of Hilbert space.
- Valence quarks and sea quarks are indistinguishable outside of flavor.

Extended Definition

Need to define a procedure for calculating valence-sea (VS) entanglement in QCD.

• Duplicate the Hilbert space $\mathcal{H} \to \mathcal{H}_1 \otimes \mathcal{H}_2$.

くちゃく 御や ふぼや ふぼう くちゃ

Quark Entanglement in Hadrons

Extended Definition

Need to define a procedure for calculating valence-sea (VS) entanglement in QCD.

- Duplicate the Hilbert space $\mathcal{H} \to \mathcal{H}_1 \otimes \mathcal{H}_2$.
- Move valence quarks from hadron state in \mathcal{H}_1 to vacuum in \mathcal{H}_2 .

Extended Definition

Need to define a procedure for calculating valence-sea (VS) entanglement in QCD.

- Duplicate the Hilbert space $\mathcal{H} \to \mathcal{H}_1 \otimes \mathcal{H}_2$.
- Move valence quarks from hadron state in \mathcal{H}_1 to vacuum in $\mathcal{H}_2.$
- Get the valence quark density matrix of the hadron ρ_h in \mathcal{H}_2 .

Extended Definition

This definition seems sensible for two reasons:

• Entanglement entropy vanishes when no sea quarks are present (Large-N_c limit).

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目目 めんの

Extended Definition

This definition seems sensible for two reasons:

- Entanglement entropy vanishes when no sea quarks are present (Large-N_c limit).
- Standard definition of bipartite entanglement is a special case.

Spatial Entanglement Example 1

Consider a quantum system where particles can occupy two spatial sites.

• $|\psi\rangle$ is some arbitrary state.

Spatial Entanglement Example 1

Consider a quantum system where particles can occupy two spatial sites.

• $|\psi\rangle$ is some arbitrary state.

The reduced density matrix for spatial entanglement is

$$\rho_X = \mathcal{N} \mathrm{Tr}_1[X |\psi\rangle_1 |\mathrm{OO}\rangle_2 \langle \mathrm{OO}|_2 \langle \psi|_1 X]$$

Spatial Entanglement Example 2

Density matrix is $\rho_A \otimes (|O\rangle \langle O|)_B$, where ρ_A is the usual bipartite density matrix.

Spatial Entanglement Example 2

Density matrix is $\rho_A \otimes (|O\rangle \langle O|)_B$, where ρ_A is the usual bipartite density matrix.

This logic can be applied to study any form of bipartite entanglement within this formalism.

< □ > < □ > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

VS Entanglement Example 1

Consider the same quantum system and a state $|\phi\rangle$ which has one valence particle (no $|OO\rangle$ overlap).

・ロト・西・・川・・日・ 日下 うくの

VS Entanglement Example 1

Consider the same quantum system and a state $|\phi\rangle$ which has one valence particle (no $|OO\rangle$ overlap).

The reduced density matrix for valence-sea entanglement is

 $\rho_{Q} = \mathcal{N} \mathrm{Tr}_{1}[Q |\phi\rangle_{1} |\mathrm{OO}\rangle_{2} \langle \mathrm{OO}|_{2} \langle \phi|_{1} Q]$

VS Entanglement Example 2

This definition is sensible for several reasons:

• No entanglement with no sea particles.

< 口 > < 同 >

★ 문 ▶ ★ 문 ▶ 문 범 = ♥ ♥ ♥

VS Entanglement Example 2

This definition is sensible for several reasons:

- No entanglement with no sea particles.
- Does not discriminate between spatial sites.

< 口 > < 同 >

★ 문 ▶ ★ 문 ▶ 문 범 = ♥ ♥ ♥

ELE DOG

VS Entanglement Example 2

This definition is sensible for several reasons:

- No entanglement with no sea particles.
- Does not discriminate between spatial sites.
- Highly sensitive to the presence of the sea.

Quark Entanglement

A single quark operator of flavor i in the light-cone formalism is given by

$$Q_{i} = \int dx^{-} dx_{\perp}^{2} \bar{q}_{i,2}(x^{-}, \vec{x}_{\perp}) \gamma^{+} q_{i,1}(x^{-}, \vec{x}_{\perp})$$
$$\bar{Q}_{i} = -\int dx^{-} dx_{\perp}^{2} \bar{q}_{i,1}(x^{-}, \vec{x}_{\perp}) \gamma^{+} q_{i,2}(x^{-}, \vec{x}_{\perp}),$$

with $x^-=\frac{1}{\sqrt{2}}(x^0-x^3)$ and $\gamma^+=\frac{1}{\sqrt{2}}(x^0+x^3).$ (Kogut-Soper conventions)

Quark Entanglement

A single quark operator of flavor i in the light-cone formalism is given by

$$Q_{i} = \int dx^{-} dx_{\perp}^{2} \ \bar{q}_{i,2}(x^{-}, \vec{x}_{\perp}) \gamma^{+} q_{i,1}(x^{-}, \vec{x}_{\perp})$$
$$\bar{Q}_{i} = -\int dx^{-} dx_{\perp}^{2} \ \bar{q}_{i,1}(x^{-}, \vec{x}_{\perp}) \gamma^{+} q_{i,2}(x^{-}, \vec{x}_{\perp}),$$

with $x^-=\frac{1}{\sqrt{2}}(x^0-x^3)$ and $\gamma^+=\frac{1}{\sqrt{2}}(x^0+x^3).$ (Kogut-Soper conventions)

- Note that $Q_i |\Psi\rangle_1 |0\rangle_2 \sim \int dk^+ dk_\perp^2 (b_{i,2}^\dagger(k) |0\rangle_2) (b_{i,1}(k) |\Psi\rangle_1).$
- Likewise for \bar{Q}_i and antiquark operators d^{\dagger}, d .

Single Quark Entanglement

As an aside, we can also define single quark entanglement when the operator is chosen to be Q_i and $|0\rangle$ is the LC vacuum.

Single Quark Entanglement

As an aside, we can also define single quark entanglement when the operator is chosen to be Q_i and $|0\rangle$ is the LC vacuum.

The resulting density matrix is given by (in light-cone gauge)

$$\rho_i \approx \mathcal{N} \int_0^1 dx \int_{-\infty}^\infty d\vec{k}_\perp^2 f_i(x, \vec{k}_\perp) \left(b_i^\dagger(k^+, \vec{k}_\perp) \left| 0 \right\rangle \left\langle 0 \right| b_i(k^+, \vec{k}_\perp) \right)$$

where $f_i(x, \vec{k}_{\perp})$ is the transverse momentum dependent PDF.

◆□ > ◆□ > ◆三 > ◆三 > 三日 のへで

Single Quark Entanglement

As an aside, we can also define single quark entanglement when the operator is chosen to be Q_i and $|0\rangle$ is the LC vacuum.

The resulting density matrix is given by (in light-cone gauge)

$$\rho_i \quad \approx \quad \mathcal{N} \int_0^1 dx \int_{-\infty}^\infty d\vec{k}_\perp^2 \, f_i(x, \vec{k}_\perp) \left(b_i^\dagger(k^+, \vec{k}_\perp) \left| 0 \right\rangle \left\langle 0 \right| b_i(k^+, \vec{k}_\perp) \right)$$

where $f_i(x, \vec{k}_{\perp})$ is the transverse momentum dependent PDF.

• Provides an interpretation of PDFs as a measure of quark entanglement within a hadron.

◆□▶ ◆□▶ ◆ヨ▶ ◆ヨ▶ ヨヨ シのの

Valence-Sea Entanglement

Valence-sea (VS) entanglement can be defined by taking the operator to be a product of Q_i 's, one for each valence quark.
Valence-Sea Entanglement

Valence-sea (VS) entanglement can be defined by taking the operator to be a product of Q_i 's, one for each valence quark.

For example, the VS density matrix for a π^+ meson is given by

$$\rho_{\pi^+} = \mathcal{N} \operatorname{Tr}_1 \left[Q_u \bar{Q}_d \left| \pi^+ \right\rangle_1 \left| 0 \right\rangle_2 \left\langle 0 \right|_2 \left\langle \pi^+ \right|_1 \bar{Q}_d^{\dagger} Q_u^{\dagger} \right].$$

◆□▶ ◆□▶ ◆ヨ▶ ◆ヨ▶ ヨヨ シスペ

Valence-Sea Entanglement

Valence-sea (VS) entanglement can be defined by taking the operator to be a product of Q_i 's, one for each valence quark.

For example, the VS density matrix for a π^+ meson is given by

$$\rho_{\pi^+} = \mathcal{N} \operatorname{Tr}_1 \left[Q_u \bar{Q}_d \left| \pi^+ \right\rangle_1 \left| 0 \right\rangle_2 \left\langle 0 \right|_2 \left\langle \pi^+ \right|_1 \bar{Q}_d^{\dagger} Q_u^{\dagger} \right].$$

• In Large- N_c QCD, all quarks are moved into \mathcal{H}_2 , so this becomes quark-gluon entanglement as expected.

◆□▶ ◆□▶ ◆ヨ▶ ◆ヨ▶ ヨヨ シのの

Lagrangian and Hamiltonian

1+1d QCD Lagrangian density:

$$\mathcal{L} = \bar{q}(i\gamma^{\mu}D_{\mu} - m_q)q - \frac{1}{2}\text{Tr}[G^{\mu\nu}G_{\mu\nu}]$$

Quark Entanglement in Hadrons

Lagrangian and Hamiltonian

1+1d QCD Lagrangian density:

$$\mathcal{L} = \bar{q}(i\gamma^{\mu}D_{\mu} - m_q)q - \frac{1}{2}\mathrm{Tr}[G^{\mu\nu}G_{\mu\nu}]$$

Null plane Hamiltonian (in LC gauge):

$$H = \int_{-\infty}^{\infty} dx^{-} \left(q_{+}^{\dagger} \frac{m_{q}^{2}}{2i\partial^{+}} q_{+} + \frac{g^{2}}{2} \left(\frac{1}{\partial^{+}} (q_{+}^{\dagger} T^{a} q_{+}) \right)^{2} \right)$$

where the T^a are the generators of $SU(N_c)$ transformations.

Lagrangian and Hamiltonian

1+1d QCD Lagrangian density:

$$\mathcal{L} = \bar{q}(i\gamma^{\mu}D_{\mu} - m_q)q - \frac{1}{2}\mathrm{Tr}[G^{\mu\nu}G_{\mu\nu}]$$

Null plane Hamiltonian (in LC gauge):

$$H = \int_{-\infty}^{\infty} dx^{-} \left(q_{+}^{\dagger} \frac{m_{q}^{2}}{2i\partial^{+}} q_{+} + \frac{g^{2}}{2} \left(\frac{1}{\partial^{+}} (q_{+}^{\dagger} T^{a} q_{+}) \right)^{2} \right)$$

where the T^a are the generators of $SU(N_c)$ transformations.

• Gluons are integrated out completely.

Quark Operators in DLCQ

Use discrete light-cone quantization (DLCQ)

◆□▶ ◆圖▶ ◆目▶ ◆目▶ 目目 のへで

Quark Operators in DLCQ

Use discrete light-cone quantization (DLCQ)

A single quark operator of flavor i in the light-cone formalism is given by

$$Q_{i} = \sum_{k,c} \left(b_{k,i,c,2}^{\dagger} b_{k,i,c,1} + d_{k,i,c,2} d_{k,i,c,1}^{\dagger} \right)$$
$$\bar{Q}_{i} = \sum_{k,c} \left(b_{k,i,c,2} b_{k,i,c,1}^{\dagger} + d_{k,i,c,2}^{\dagger} d_{k,i,c,1} \right).$$

Quark Operators in DLCQ

Use discrete light-cone quantization (DLCQ)

A single quark operator of flavor i in the light-cone formalism is given by

$$Q_{i} = \sum_{k,c} \left(b_{k,i,c,2}^{\dagger} b_{k,i,c,1} + d_{k,i,c,2} d_{k,i,c,1}^{\dagger} \right)$$
$$\bar{Q}_{i} = \sum_{k,c} \left(b_{k,i,c,2} b_{k,i,c,1}^{\dagger} + d_{k,i,c,2}^{\dagger} d_{k,i,c,1} \right).$$

• Vacuum state in \mathcal{H}_2 eliminates $d_2d_1^{\dagger}$ in Q_i and $b_2b_1^{\dagger}$ in \bar{Q}_i .

< □ > < □ > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

π^+ VS Entanglement

For the π^+ meson in $1+\mathrm{1d}$ QCD, the reduced density matrix is

 $\rho_{\pi^+} = \mathcal{N} \operatorname{Tr}_1 \left[Q_u \bar{Q}_d \left| \pi^+, K \right\rangle_1 \left| 0 \right\rangle_2 \left\langle 0 \right|_2 \left\langle \pi^+, K \right|_1 Q_d \bar{Q}_u \right] \right]$

π^+ VS Entanglement

For the π^+ meson in $1+\mathrm{1d}$ QCD, the reduced density matrix is

 $\rho_{\pi^+} = \mathcal{N} \operatorname{Tr}_1 \left[Q_u \bar{Q}_d \left| \pi^+, K \right\rangle_1 \left| 0 \right\rangle_2 \left\langle 0 \right|_2 \left\langle \pi^+, K \right|_1 Q_d \bar{Q}_u \right]$

• $|\pi^+, K\rangle$ is the π^+ meson state with total momentum K.

< □ > < □ > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

π^+ VS Entanglement

For the π^+ meson in $1+\mathrm{1d}$ QCD, the reduced density matrix is

 $\rho_{\pi^+} = \mathcal{N} \operatorname{Tr}_1 \left[Q_u \bar{Q}_d \left| \pi^+, K \right\rangle_1 \left| 0 \right\rangle_2 \left\langle 0 \right|_2 \left\langle \pi^+, K \right|_1 Q_d \bar{Q}_u \right]$

• $|\pi^+, K\rangle$ is the π^+ meson state with total momentum K.

• $|0\rangle$ is the light-cone vacuum.

< □ > < □ > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

π^+ VS Entanglement

For the π^+ meson in 1 + 1d QCD, the reduced density matrix is

 $\rho_{\pi^{+}} = \mathcal{N} \operatorname{Tr}_{1} \left[Q_{u} \bar{Q}_{d} \left| \pi^{+}, K \right\rangle_{1} \left| 0 \right\rangle_{2} \left\langle 0 \right|_{2} \left\langle \pi^{+}, K \right|_{1} Q_{d} \bar{Q}_{u} \right]$

- $|\pi^+,K\rangle$ is the π^+ meson state with total momentum K.
- $|0\rangle$ is the light-cone vacuum.
- $Q_i(\bar{Q}_i)$ moves a quark(antiquark) of flavor i from \mathcal{H}_1 to \mathcal{H}_2 .

◆□ > ◆□ > ◆三 > ◆三 > 三日 のへで

π^+ VS Density Matrix

The matrix elements of ρ_{π^+} are given by

$$\langle 0 | d_{k_2,d,b} b_{k_1,u,a} \rho_{\pi^+} b^{\dagger}_{k_4,u,d} d^{\dagger}_{k_3,d,c} | 0 \rangle = \mathcal{N} f_{k_1 k_2 k_3 k_4, abcd},$$

with $f\ {\rm defined}$ to be

$$f_{k_1k_2k_3k_4,abcd} = \left\langle \pi^+, K \right| b_{k_4,u,d}^{\dagger} d_{k_3,d,c}^{\dagger} d_{k_2,d,b} b_{k_1,u,a} \left| \pi^+, K \right\rangle.$$

π^+ VS Density Matrix

The matrix elements of ρ_{π^+} are given by

$$\langle 0 | d_{k_2,d,b} b_{k_1,u,a} \rho_{\pi^+} b^{\dagger}_{k_4,u,d} d^{\dagger}_{k_3,d,c} | 0 \rangle = \mathcal{N} f_{k_1 k_2 k_3 k_4, abcd},$$

with f defined to be

$$f_{k_1k_2k_3k_4,abcd} = \left\langle \pi^+, K \right| b_{k_4,u,d}^{\dagger} d_{k_3,d,c}^{\dagger} d_{k_2,d,b} b_{k_1,u,a} \left| \pi^+, K \right\rangle.$$

This turns out to be separable by the color representations of the valence quarks $(N_c\otimes\bar{N}_c=1\oplus(N_c^2-1)).$

$$f_{k_1k_2k_3k_4,abcd} = \frac{\delta_{ab}\delta_{cd}}{N_c} f_{k_1k_2k_3k_4}^S + \frac{1}{N_c^2 - 1} \left(\delta_{ad}\delta_{bc} - \frac{1}{N_c}\delta_{ab}\delta_{cd}\right) f_{k_1k_2k_3k_4}^A$$

▲□▶▲圖▶▲≣▶▲≣▶ 差世 めんの

π^+ VS Entropy

The density matrix thus separates by color and momentum into singlet and adjoint terms.

$$\rho_{\pi^+} = \omega^S (\Pi^S \otimes \rho_S) + \frac{1}{N_c^2 - 1} \omega^A (\Pi^A \otimes \rho_A)$$

The density matrix thus separates by color and momentum into singlet and adjoint terms.

$$\rho_{\pi^+} = \omega^S (\Pi^S \otimes \rho_S) + \frac{1}{N_c^2 - 1} \omega^A (\Pi^A \otimes \rho_A)$$

• Π^S and Π^A are independent projection operators in color space.

< □ > < □ > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

The density matrix thus separates by color and momentum into singlet and adjoint terms.

$$\rho_{\pi^+} = \omega^S (\Pi^S \otimes \rho_S) + \frac{1}{N_c^2 - 1} \omega^A (\Pi^A \otimes \rho_A)$$

- Π^S and Π^A are independent projection operators in color space.
- ρ_S and ρ_A are normalized density matrices in momentum space.

< □ > < □ > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

The density matrix thus separates by color and momentum into singlet and adjoint terms.

$$\rho_{\pi^+} = \omega^S (\Pi^S \otimes \rho_S) + \frac{1}{N_c^2 - 1} \omega^A (\Pi^A \otimes \rho_A)$$

- Π^S and Π^A are independent projection operators in color space.
- ρ_S and ρ_A are normalized density matrices in momentum space.
- ω^S and $\omega^A=1-\omega^S$ form a binary probability distribution.

◆□▶ ◆□▶ ◆ヨ▶ ◆ヨ▶ ヨヨ シのの

π^+ VS Entropy

This leads to an entanglement entropy that looks like

$$S_{\pi^+} = \boxed{\omega^S S_S + \omega^A S_A} + \boxed{\omega^A \log(N_c^2 - 1)} - \frac{\omega^S \log \omega^S - \omega^A \log \omega^A}{\text{Distribution}}.$$
Momentum Color Distribution

This leads to an entanglement entropy that looks like

$$S_{\pi^+} = \boxed{\omega^S S_S + \omega^A S_A} + \boxed{\omega^A \log(N_c^2 - 1)} - \omega^S \log \omega^S - \omega^A \log \omega^A}.$$

Momentum Color Distribution

This entropy separates nicely into 3 components.

• Average entropy in momentum space.

< □ > < □ > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

This leads to an entanglement entropy that looks like

$$S_{\pi^+} = \boxed{\omega^S S_S + \omega^A S_A} + \boxed{\omega^A \log(N_c^2 - 1)} - \omega^S \log \omega^S - \omega^A \log \omega^A}.$$

Momentum Color Distribution

This entropy separates nicely into 3 components.

- Average entropy in momentum space.
- Average entropy in color space.

This leads to an entanglement entropy that looks like

$$S_{\pi^+} = \boxed{\omega^S S_S + \omega^A S_A} + \boxed{\omega^A \log(N_c^2 - 1)} - \omega^S \log \omega^S - \omega^A \log \omega^A}.$$

Momentum Color Distribution

This entropy separates nicely into 3 components.

- Average entropy in momentum space.
- Average entropy in color space.
- Entropy of the ω distribution.

$N^+ \ {\rm VS} \ {\rm Entanglement}$

For the 2-color baryons $(N_c = 2)$, the results are very similar to mesons.

$$\rho_{N^+} = \mathcal{N} \operatorname{Tr}_1 \left[Q_u Q_d \left| N^+, K \right\rangle_1 | 0 \rangle_2 \left\langle 0 |_2 \left\langle N^+, K \right|_1 \bar{Q}_d \bar{Q}_u \right] \right]$$

N^+ VS Entanglement

For the 2-color baryons $(N_c = 2)$, the results are very similar to mesons.

$$\rho_{N^{+}} = \mathcal{N} \operatorname{Tr}_{1} \left[Q_{u} Q_{d} \left| N^{+}, K \right\rangle_{1} \left| 0 \right\rangle_{2} \left\langle 0 \right|_{2} \left\langle N^{+}, K \right|_{1} \bar{Q}_{d} \bar{Q}_{u} \right] \right]$$

The density matrix and entropy also separate by color representations $(\mathbf{2}\otimes\mathbf{2}=\mathbf{1}\oplus\mathbf{3})$

$$S_{N^+} = \boxed{\omega^S S_S + \omega^T S_T} + \boxed{\omega^T \log(3)} - \omega^S \log \omega^S - \omega^T \log \omega^T}.$$

$N^+ \ {\rm VS} \ {\rm Entanglement}$

For the proton $(N_c = 3)$, the results are similar.

 $\rho_{N^{+}} = \mathcal{N} \operatorname{Tr}_{1} \left[Q_{u} Q_{u} Q_{d} \left| N^{+}, K \right\rangle_{1} \left| 0 \right\rangle_{2} \left\langle 0 \right|_{2} \left\langle N^{+}, K \right|_{1} \bar{Q}_{d} \bar{Q}_{u} \bar{Q}_{u} \right]$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ◆

N^+ VS Entanglement

For the proton $(N_c = 3)$, the results are similar.

 $\rho_{N^{+}} = \mathcal{N} \operatorname{Tr}_{1} \left[Q_{u} Q_{u} Q_{d} \left| N^{+}, K \right\rangle_{1} \left| 0 \right\rangle_{2} \left\langle 0 \right|_{2} \left\langle N^{+}, K \right|_{1} \bar{Q}_{d} \bar{Q}_{u} \bar{Q}_{u} \right]$

The density matrix and entropy also separate by color representations $(3 \otimes 3 \otimes 3 = 1_A \oplus 8_M \oplus 8_M \oplus 10_S)$

$$S_{N^{+}} = \boxed{\omega^{\mathcal{A}}S_{\mathcal{A}} + \omega^{M}S_{M} + \omega^{\mathcal{S}}S_{\mathcal{S}}} + \boxed{\omega^{M}\log(8) + \omega^{\mathcal{S}}\log(10)}$$
$$-\omega^{\mathcal{A}}\log\omega^{\mathcal{A}} - \omega^{M}\log\omega^{M} - \omega^{\mathcal{S}}\log\omega^{\mathcal{S}}.$$

Motivation 0000 VS Entanglement

Plots

• Plotted with $N_f=2$, $K_{tot}=8$, $m^2=\frac{g^2N_c}{2\pi}$, and $g^2\sim \frac{1}{N_c}$.

• Maximum entropy is $S_{max} = 2 \log_2(6N_c)$ (above the plots).

▲□▶▲圖▶▲圖▶▲圖▶ 圖圖 のQ@

Plots 2

- Plotted with $N_f = N_c = 2$, $K_{tot} = 11$, $\lambda = \frac{g^2}{\pi m^2 + a^2}$.
- Maximum entropy is $S_{max} \approx 8.04$.

Plots 2

- Plotted with $N_f = N_c = 2$, $K_{tot} = 11$, $\lambda = \frac{g^2}{\pi m^2 + a^2}$.
- Maximum entropy is $S_{max} \approx 8.04$.
- These are exactly the same due to a $d_c \leftrightarrow \epsilon_{cc'} b_{c'}$ symmetry.

< □ > < □ > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Plots 3

• First plot has $N_f = 2$, $N_c = 3$, $K_{tot} = \frac{21}{2}$, and $\lambda = \frac{3g^2}{2\pi m^2 + 3g^2}$.

• Second plot has $N_f = 3$, $N_c = 3$, $K_{tot} = \frac{17}{2}$, and $\lambda = \frac{3g^2}{2\pi \bar{m}^2 + 3g^2}$, where $\bar{m}^2 = \frac{2m_u^2 + m_d^2}{3}$.

• Maximum entropies are $S_{max} \approx 11.47$ and 10.58 respectively.

VS entropy in real QCD

Previous work modeled quark entanglement due to chiral symmetry breaking.

S. R. Beane and P. Ehlers, Mod. Phys. Lett. A 35, 2050048 (2019), arxiv: 1905.03295 🛛 🗐 = 🔗 < 🔗

Quark Entanglement in Hadrons

29/31

VS entropy in real QCD

Previous work modeled quark entanglement due to chiral symmetry breaking.

• Used a small basis of chiral Fock states and fit parameters to nuclear physics data $(g_A, C_{N\Delta})$.

S. R. Beane and P. Ehlers, Mod. Phys. Lett. A 35, 2050048 (2019), arxiv: 1905.03295 🛛 🗏 🖻 🔊 ९ ९

VS entropy in real QCD

Previous work modeled quark entanglement due to chiral symmetry breaking.

- Used a small basis of chiral Fock states and fit parameters to nuclear physics data $(g_A, C_{N\Delta})$.
- Suggests large entanglement from integrating over small length scales.

S. R. Beane and P. Ehlers, Mod. Phys. Lett. A 35, 2050048 (2019), arxiv: 1905.03295 🛛 🗏 🖻 🔊 ९ ९

VS entropy in real QCD

Current work suggests that quark entanglement is low at confined scales.

VS entropy in real QCD

Current work suggests that quark entanglement is low at confined scales.

• Little quark entanglement in asymptotically free scales as well.

VS entropy in real QCD

Current work suggests that quark entanglement is low at confined scales.

- Little quark entanglement in asymptotically free scales as well.
- Source should then be at scales near Λ_{QCD} .

VS Entanglement

Conclusion

• Rigorously defined VS entanglement in QCD.

・ 日 > ・ 御 > ・ 画 > ・ 画 目 ・ の < ??

Quark Entanglement in Hadrons

31/31

VS Entanglement

Conclusion

- Rigorously defined VS entanglement in QCD.
- Find that lowest energy states always have relatively low VS entropy.
 - Due to resemblance to large- N_c states.

Quark Entanglement in Hadrons

31/31

Conclusion

- Rigorously defined VS entanglement in QCD.
- Find that lowest energy states always have relatively low VS entropy.
 - Due to resemblance to large- N_c states.
- \bullet Ground state meson is well described by a $1/N_c$ approximation.
 - May hold for baryons and in real QCD.

E ► ★ E ► .

EL OQO

A D > <
A P >
A

Conclusion

- Rigorously defined VS entanglement in QCD.
- Find that lowest energy states always have relatively low VS entropy.
 - ${\, \bullet \, }$ Due to resemblance to large- N_c states.
- \bullet Ground state meson is well described by a $1/N_c$ approximation.
 - May hold for baryons and in real QCD.
- May signal the shift between perturbative & nonperturbative scales in 3+1d QCD.

< E ▶ < E ▶ E = のQ (~

A D > <
A P >
A

1+1 dimensional QCD

We look to 1+1d QCD to get some sense for how VS entanglement behaves in a confining theory.

• Exhibits confinement at all scales

<□> < => < => < => < =| = のへの

1+1 dimensional QCD

We look to 1+1d QCD to get some sense for how VS entanglement behaves in a confining theory.

- Exhibits confinement at all scales
- Exactly solved in the large- N_c limit ('t Hooft model)

同 ト イヨト イヨト ヨヨ つくべ

1+1 dimensional QCD

We look to 1+1d QCD to get some sense for how VS entanglement behaves in a confining theory.

- Exhibits confinement at all scales
- Exactly solved in the large- N_c limit ('t Hooft model)
- Amenable to discrete light-cone quantization.

同 ト イヨト イヨト ヨヨ つくべ

Light-cone Formalism

In 1+1d QCD it is especially useful to work in light-cone coordinates $x^+ = \frac{1}{\sqrt{2}}(x^0 + x^3)$ and $x^- = \frac{1}{\sqrt{2}}(x^0 - x^3)$. (Kogut-Soper conventions)

Light-cone Formalism

In 1+1d QCD it is especially useful to work in light-cone coordinates $x^+ = \frac{1}{\sqrt{2}}(x^0 + x^3)$ and $x^- = \frac{1}{\sqrt{2}}(x^0 - x^3)$. (Kogut-Soper conventions)

Construct the Hilbert space and along $x^+ = 0$ plane rather than t = 0.

< □ > < □ > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Light-cone Formalism

In 1+1d QCD it is especially useful to work in light-cone coordinates $x^+ = \frac{1}{\sqrt{2}}(x^0 + x^3)$ and $x^- = \frac{1}{\sqrt{2}}(x^0 - x^3)$. (Kogut-Soper conventions)

Construct the Hilbert space and along $x^+ = 0$ plane rather than t = 0.

• Hamiltonian $H = P^-$ translates along x^+ coordinate instead of t.

◆□▶ ◆□▶ ◆ヨ▶ ◆ヨ▶ ヨヨ シのの

Use discrete light-cone quantization (DLCQ)

• Discretize momentum space to half-integers with spacing δp .

$$\left|\Psi(4)\right\rangle = \alpha \left|1,3\right\rangle + \beta \left|2,2\right\rangle + \gamma \left|3,1\right\rangle + \delta \left|1,1,1,1\right\rangle$$

Quark Entanglement in Hadrons

Use discrete light-cone quantization (DLCQ)

- Discretize momentum space to half-integers with spacing δp .
- H can be separated by eigenstates of P^+ .

$$\left|\Psi(4)\right\rangle = \alpha \left|1,3\right\rangle + \beta \left|2,2\right\rangle + \gamma \left|3,1\right\rangle + \delta \left|1,1,1,1\right\rangle$$

Quark Entanglement in Hadrons

Use discrete light-cone quantization (DLCQ)

- Discretize momentum space to half-integers with spacing δp .
- H can be separated by eigenstates of P^+ .
- Since momentum is strictly positive, total momentum *K* provides a natural cutoff.

$$\left|\Psi(4)\right\rangle = \alpha \left|1,3\right\rangle + \beta \left|2,2\right\rangle + \gamma \left|3,1\right\rangle + \delta \left|1,1,1,1\right\rangle$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ◆

Use discrete light-cone quantization (DLCQ)

- Discretize momentum space to half-integers with spacing δp .
- H can be separated by eigenstates of P^+ .
- Since momentum is strictly positive, total momentum *K* provides a natural cutoff.
- $\mathcal{M}^2 = 2P^+H$ has no explicit dependence on δp .

$$\left|\Psi(4)\right\rangle = \alpha \left|1,3\right\rangle + \beta \left|2,2\right\rangle + \gamma \left|3,1\right\rangle + \delta \left|1,1,1,1\right\rangle$$

Use discrete light-cone quantization (DLCQ)

- Discretize momentum space to half-integers with spacing δp .
- H can be separated by eigenstates of P^+ .
- Since momentum is strictly positive, total momentum *K* provides a natural cutoff.
- $\mathcal{M}^2 = 2P^+H$ has no explicit dependence on δp .
- Continuum limit is approached as K increases.

$$\left|\Psi(4)\right\rangle = \alpha \left|1,3\right\rangle + \beta \left|2,2\right\rangle + \gamma \left|3,1\right\rangle + \delta \left|1,1,1,1\right\rangle$$