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Stating the problem

Charge density of a nucleon is traditionally defined as the
three-dimensional Fourier transform of its electric FF in the Breit
frame.

R. Hofstadter, F. Bumiller, and M. R. Yearian, Rev. Mod. Phys. 30, 482
(1958).
F. J. Ernst, R. G. Sachs and K. C. Wali, Phys. Rev. 119, 1105-1114 (1960).
R. G. Sachs, Phys. Rev. 126, 2256-2260 (1962).

Similar relations have been suggested for Fourier transforms of
gravitational FFs and various local distributions in

M. V. Polyakov and A. G. Shuvaev, [arXiv:hep-ph/0207153 [hep-ph]].
M. V. Polyakov, Phys. Lett. B 555, 57 (2003).
M. V. Polyakov and P. Schweitzer, Int. J. Mod. Phys. A 33 (2018) no.26,
1830025.



For systems whose intrinsic size is comparable with the Compton
wavelength this definition of spatial densities was criticized in

M. Burkardt, Phys. Rev. D 62 (2000), 071503(R), [erratum: Phys. Rev. D
66 (2002), 119903(E)].
G. A. Miller, Phys. Rev. Lett. 99, 112001 (2007).
G. A. Miller, Phys. Rev. C 79, 055204 (2009).
G. A. Miller, Ann. Rev. Nucl. Part. Sci. 60 (2010), 1-25.
R. L. Jaffe, Phys. Rev. D 103 (2021) no.1, 016017.
G. A. Miller, Phys. Rev. C 99, no.3, 035202 (2019).
A. Freese and G. A. Miller, Phys. Rev. D 103, 094023 (2021).

Miller pointed out that Sachs’s derivation implicitly assumes
delocalized wave packets, resulting in moments of the charge
density governed by the size of the wave packet.

Charge density for spin-0 systems was studied by Jaffe in
relationship to ∆2 = 6F ′(0), the size of the wave packet R and the
Compton wavelength 1/m.

He argued that the interpretation of the Fourier transformed FFs as
charge densities is not valid for systems with ∆ ∼ 1/m.



Definition of spatial distributions has attracted much attention.

To give examples ...

The light-front approach allows one to define purely intrinsic spatial
densities, which have probabilistic interpretation
M. Burkardt, Phys. Rev. D 62 (2000), 071503(R).
G. A. Miller, Phys. Rev. Lett. 99, 112001 (2007).
G. A. Miller, Phys. Rev. C 79, 055204 (2009).
G. A. Miller, Ann. Rev. Nucl. Part. Sci. 60 (2010), 1-25.
Y. Guo, X. Ji and K. Shiells, Nucl. Phys. B 969, 115440 (2021).

These densities are obtained only as two-dimensional distributions.

Alternatively, the phase-space approach allows one to define fully
relativistic and unambiguous three-dimensional spatial densities.
C. Lorcé, Phys. Rev. Lett. 125, no.23, 232002 (2020).
C. Lorcé, P. Schweitzer, K. Tezgin, Phys. Rev. D 106, no.1, 1 (2022).
C. Lorcé, H. Moutarde, A. P. Trawiński, Eur. Phys. J. C 79, no.1, 89 (2019).

These densities depend on both coordinates and momenta and do
not have a strict probabilistic interpretation.



We revisited the definition of the charge density and other spatial
densities ...

Disclaimer:

What I know about internal structure of hadrons
What I do not know

≈ 0 !



I present definition of spatial densities via sharply localized states.

We use spherically symmetric wave packets, corresponding to zero
averaged momentum frame - ZAMF.

Why spherically symmetric Packets?

Short answer: Because our space is rotationally invariant!

We put our system in a specially designed state which reveasls its
3D structure.

Constructing a three-dimensional image of an object by putting
together all possible two-dimensional cuts, the coefficients of
magnification of all cuts must be the same.

Otherwise the three-dimensional image will be distorted.

Within our approach the moments of charge distribution do not
depend on the state also for non-symmetric packets!



Localized states
We use normalizable Heisenberg-picture states:

|Φ,X, s⟩ =
∫

d3p√
2E(2π)3

ϕ(s,p)e−ip·X|p, s⟩,

where X is the position of the system, and |p, s⟩ are normalized as

⟨p′, s′|p, s⟩ = 2E(2π)3δs′s δ
(3)(p′ − p) , p = (E ,p) .

Profile function ϕ(s,p) = ϕ(p) = ϕ(|p|) corresponds to ZAMF and
satisfies the condition ∫

d3p |ϕ(s,p)|2 = 1 .

It is convenient to define dimensionless profile functions

ϕ(p) = R3/2 ϕ̃(Rp) ,

Sharp localizations of the system correspond to small R.



Figure: Symbolic representation of the localized state.



The charge density of a spin-0 system in ZAMF

We start with a spin-0 system (following Jaffe).

We assume that the system is an eigenstate of the charge operator

Q̂|p⟩ = Q|p⟩, Q̂ =

∫
d3r ρ̂(r,0),

ρ̂(r,0) is the electric charge density at t = 0, and we take Q = 1.

Matrix elements of ρ̂(r,0) for momentum eigenstates:

⟨p′|ρ̂(r,0)|p⟩ = ei(p′−p)·r(E + E ′)F (q2) ,

where F (q2) is the electric FF and q = p′ − p.



The charge density distribution has the form

⟨Φ,X|ρ̂(r,0)|Φ,X⟩ =
∫

d3p d3p′(E + E ′)

(2π)3
√

4EE ′
F
(

q2
)
ϕ⋆(p′)ϕ(p)eiq·(X+r),

where q2 = (E ′ − E)2 − q2.

Without loss of generality we choose X = 0.

Introducing the total and relative momenta via p = P − q/2 and
p′ = P + q/2, the charge density is written as

ρϕ(r) ≡ ⟨Φ,0|ρ̂(r,0)|Φ,0⟩

=

∫
d3P d3q

(2π)3
√

4EE ′
(E + E ′)F

[
(E − E ′)2 − q2

]
× ϕ

(
P − q

2

)
ϕ⋆

(
P +

q
2

)
eiq·r.



Traditional interpretation of the charge density in terms of F (−q2),
emerges by first taking the static limit E = E ′ = m in the integrand,

ρϕ, naive(r)=
∫

d3P d3q
(2π)3 ϕ

(
P − q

2

)
ϕ⋆

(
P +

q
2

)
F
(
−q2

)
eiq·r,

and subsequently taking the limit R → 0.

This can be done without specifying the functions F
(
q2) and ϕ(p)

using the method of dimensional counting

J.Gegelia, G.Japaridze, K.Turashvili, Theor. Math. Phys. 101, 1313 (1994).



For F
(
q2) decreasing at large q2 faster than 1/q2, the only

non-vanishing contribution to ρϕ, naive(r) in the R → 0 limit is
obtained from the region of large P.

The resulting "naive" charge density has the familiar form

ρnaive(r) =

∫
d3P̃ d3q
(2π)3 F

(
−q2

)
|ϕ̃(P̃)|2 eiq·r

=

∫
d3q
(2π)3 F

(
−q2

)
eiq·r.

This expression corresponds to ZAMF in states with R ≫ 1
m .

As argued by Jaffe ρnaive(r) is valid for the hierarchy of scales
∆ ≫ 1/m, because we have to take ∆ ≫ R ≫ 1/m.



New definition

The method of dimensional counting allows to take the R → 0 limit
without employing the static approximation, resulting in

ρϕ(r) =
∫

d3P̃ d3q
(2π)3 F

[
(P̃ · q)2

P̃2
− q2

]
|ϕ̃(P̃)|2 eiq·r.

Using ϕ̃(P̃) = ϕ̃(|P̃|) ans switching to spherical coordinates we get

ρ(r) =
1

4π

∫
d2n̂ δ(r∥)ρn̂(r⊥) ,

where

ρn̂(r⊥)=
∫

d2q⊥
(2π)2 F (−q2

⊥)eiq⊥·r⊥ ,

n̂ is a unit vector, a⊥ = n̂ × (a × n̂), a∥ = a · n̂, a⊥ ≡ |a⊥|.

These expressions establish a geometric interpretation of ρ(r).



The validity of the new definition does not depend on the relation
between ∆ and 1/m.

The obtained result for ρ(r) does not depend on the particle’s mass.

Therefore ρnaive(r), does not emerge from ρ(r) by taking the static
limit:

ρnaive(r) ̸= lim
m→∞

ρ(r).

Mathematically, the reason for this mismatch is the
non-commutativity of the R → 0 and m → ∞ limits of ρϕ(r).

We thank Cedric Lorcé for pointing out that similar results for spin-0
systems have been published long ago in

G. N. Fleming, Charge Distributions from Relativistic Form Factors.
Physical Reality & Math. Descrip., 357 (1974).



The dependence of ρ(r) on F (−q2
⊥) rather than on F (−q2) affects

the radial profile of the charge density.

We compare ρ(r) and ρnaive(r) for a charged and a neutral particles.

We employ form factors

Fp(q2) = GD(q2) = (1 − q2/Λ2)−2

with Λ2 = 0.71 GeV2,

and

Fn(q2) = Aτ/(1 + Bτ)GD(q2),

where τ = −q2/(4m2
p), A = 1.70, B = 3.30.
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Figure: Radial charge density distributions 4πr2ρ(r) (solid lines) and
4πr2ρnaive(r) (dashed lines) for a charged and a neutral particles.



The charge density in moving frames

To consider the same system from the point of view of a moving
frame we replace ϕ(p) with

ϕv(p) =
√

γ
(

1 − v · p
E

)
ϕ
[
p⊥ + γ(p∥ − vE)

]
,

where v denotes the boost velocity and γ = (1 − v2)−1/2,
p∥ = (p · v̂)v̂, p⊥ = p − p∥.

S. E. Hoffmann, [arXiv:1804.00548 [quant-ph]].



Analogously to ZAMF we evaluate the R → 0 limit and obtain

ρv(r) =

∫
d3q
(2π)3 F̄

(
q∥,q⊥

)
eiq·r ,

F̄ (q∥,q⊥) =
1

4π

∫ +1

−1
dη

∫ 2π

0
dϕ

× F

{[√
1 − η2 cosϕq⊥ + γ(η + v)q∥

]2

γ2(1 + vη)2 − q2

}
.

where q∥ ≡ v̂ · q and q⊥ ≡ |q⊥|.



In the IMF with v → 1 and γ → ∞, the charge density turns into the
usual two-dimensional distribution in the transverse plane

ρIMF(r) = δ(r∥) ρIMF(r⊥)

with

ρIMF(r⊥) =
∫

d2q⊥
(2π)2 F

(
−q2

⊥

)
eiq⊥·r⊥ .



The interpretation of the obtained results follows from the
comparison of ZAMF and IMF.

The ZAMF expression ρ(r) is given by a continuous (isotropic)
superposition of the two-dimensional "images" of the system,
ρIMF(r), corresponding to all possible IMFs.

The full image of a three-dimensional object can be reconstructed
by putting together all possible two-dimensional projections.



Figure: 3D image as a composition of 2D pictures



EMT spatial densities

Spatial densities of EMT differ from the ones of the e.m. current.

A localized state is a superposition of eigenstates of the charge
operator, which is also an eigenstate of the charge operator with the
same eigenvalue.

A packet which is a superposition of one-particle eigenstates of the
four-momentum operator with different four-momenta is not an
eigenstate of the same operator.

This makes matrix elements of EMT more complicated.



Matrix element of EMT in a localized state using the parametrization
in terms of form factors Θ1(q2) and Θ2(q2):

tµνϕ (r) = ⟨Φ,0|T̂µν(r,0)|Φ,0⟩

=

∫
d3P d3q

(2π)3
√

4EE ′

[(
q2gµν − qµqν

)
Θ1

(
q2

)
+ 2PµPνΘ2

(
q2

)]
×ϕ

(
P − q

2

)
ϕ⋆

(
P +

q
2

)
e−iq·r .



Static approximation

Local densities in terms of FFs in the Breit frame emerge by
expanding the integrand in 1/m and localizing the wave packet.

t00
naive(r) =

∫
d3q
(2π)3 mΘ2

(
−q2

)
e−iq·r ,

t0i
naive(r) = 0 ,

t ij
naive(r) =

1
mR2

∫
d3P̃ P̃ i P̃ j |ϕ̃(P̃)|2

∫
d3q
(2π)3 Θ2

(
−q2

)
e−iq·r

+
1

2m

∫
d3q
(2π)3

(
q2δij − qiqj

)
Θ1

(
−q2

)
e−iq·r ,

In t ij
naive we kept terms up to different orders in R !

t00
naive and the second term of t ij

naive coincide with the spatial densities
defined via the gravitational FFs in the Breit frame.

Both of these terms do not depend on the packet.



Spatial densities in sharply localized states (R → 0):

tµν(r)= Nϕ,R

∫
d2 ˆ̃P d3q
(2π)3

ˆ̃Pµ ˆ̃Pν Θ2

[
−q2

⊥

]
e−iq·r

−Nϕ,R,2

∫
d2 ˆ̃P d3q
(2π)3

(
q̃µq̃ν + q2

⊥gµν
)
Θ1

[
−q2

⊥

]
e−iq·r ,

where q̃µ = (ˆ̃P · q,q), P̃µ = (P̃, P̃), ˆ̃Pµ =
(

1, P̃
P̃

)
, P̃ = |P̃|,

q⊥ = ˆ̃P ×
(

q × ˆ̃P
)

, q2
⊥ ≡ −q̃2 and

Nϕ,R =
1
R

∫
dP̃P̃3|ϕ̃(|P̃|)|2 ,

Nϕ,R,2 =
R
2

∫
dP̃P̃|ϕ̃(|P̃|)|2 .

The dependence on the profile function remains in Nϕ,R and Nϕ,R,2.



Gravitational densities in moving frames

Analogously to the case of EM current we replace ϕ(p) with

ϕv(p) =
√
γ
(

1 − v · p
E

)
ϕ
[
p⊥ + γ(p∥ − vE)

]
and obtain in the R → 0 limit:

tµνv (r) = Nϕ,R

∫
d3q
(2π)3 t̄µν

(
q∥,q⊥

)
e−iq·r

+ Nϕ,R,2

∫
d3q
(2π)3 t̄µν2

(
q∥,q⊥

)
e−iq·r ,



with

t̄ µν(q∥,q⊥) =

∫ +1

−1
dη

∫ 2π

0
dϕ

ΩµΩν

γ(1 + vη)
Θ2

[
q̄2

]
,

t̄ µν2 (q∥,q⊥) = −
∫ +1

−1
dη

∫ 2π

0
dϕ

1
γ(1 + vη)

[
q̄µq̄ν − q̄2gµν

]
Θ1

[
q̄2

]
,

where Ωµ = (γ(1 + vη), ω̂⊥ + γ(ω̂∥ + v)),

q̄µ = (
[√

1 − η2 cosϕq⊥ + γ(η + v)q∥
]
/(γ(1 + vη)),q)

ω̂ = (
√

1 − η2 cosϕ,
√

1 − η2 sinϕ, η).



In the infinite momentum frame (IMF) with v → 1, γ → ∞, we obtain

t̄ µν(q∥,q⊥) = 4π γ v̂µv̂ν Θ2

[
−q2

⊥

]
,

t̄ µν2 (q∥,q⊥) = −2π
γ

α
[
q2
⊥gµν + qµ

v qν
v

]
Θ1

[
−q2

⊥

]
, (1)

where v̂µ = (1, v̂), qµ
v = (q∥,q) and

α = lim
v→1

∫ +1

−1

dη
1 + vη

. (2)

α/γ ∼
√

1 − v ln(1 − v) when the v → 1.



Interpretation

In IMF the matrix elements of EMT in localized states represent
two-dimensional distributions.

There are two types of contributions:
1. Depending on the velocity - characterizing the movement of the
system as a whole.
2. Contributions which are related to internal properties.

For the t ij
v(r) the contribution generated by t̄ ij corresponds to the

motion of the system as a whole, while the term generated by t̄ ij
2 is

related to internal characteristics.

Separate interpretation of different contributions has been given
previously in

A. Freese and G. A. Miller, Phys. Rev. D 105, no.1, 014003 (2022),
[arXiv:2108.03301 [hep-ph]].



By integrating the IMF expressions over all possible directions one
repoduces the corresponding terms in ZAMF.

Thus, the spatial distributions in the ZAMF can be understood as an
integral over all directions of the IMF velocity.

In IMF t̄ ij
2 characterizes the internal structure.

Therefore also in the ZAMF the corresponding term

t ij
2(r) = Nϕ,R,2

∫
d2n̂ d3q
(2π)3

(
−qiqj + q2

⊥δ
ij
)
Θ1

[
−q2

⊥

]
e−iq·r

is interpreted as characterizing the distribution of internal forces.



While normalization depends on the profile function the spatial
distribution is uniquely determined by the EMT form factor.

We identify the traceless and the trace parts via

t ij
2(r) =

(
r i r j

r2 − 1
3
δij
)

s(r) + δijp(r) , (3)

Quantities s(r) and p(r) have been interpreted as the shear force
and the pressure, respectively.

M. V. Polyakov, Phys. Lett. B 555, 57 (2003). [hep-ph/0210165].
M. V. Polyakov and P. Schweitzer, Int. J. Mod. Phys. A 33 (2018) no.26,
1830025. [arXiv:1805.06596 [hep-ph]].

Notice that this interpretation has been questioned in
X. Ji and Y. Liu, Phys. Rev. D 106, no.3, 034028 (2022),
[arXiv:2110.14781 [hep-ph]].



Breit-frame expressions correspond to systems in ZAMF in states
with characteristic scales of packets much larger than 1/m.

Such packet is dominated by eigenstates of the energy with E ≈ m,
and therefore it is an approximate eigenstate of the energy operator
with the eigenvalue m.

Therefore t00(r) can be interpreted in this case as the spatial
distribution of the mass, which is the same as the full energy of the
system in the ZAMF in the static approximation.



In sharply localized states t00(r) and t0i(r) can be interpreted as
energy and momentum spatial distributions, respectively.

For a spin-0 system in the ZAMF we have:

t00(r) = Nϕ,R

∫
d2n̂ d3q
(2π)3 Θ2

[
−q2

⊥

]
e−iq·r .

t0i(r) = 0 .

Sharp localization of the system requires huge amount of energy,
therefore the normalization factor Nϕ,R explodes.
However, the functional form of the densities is uniquely determined
by the corresponding form factors.

For non-vanishing X, it specifies the center of the spatial densities,
therefore X should be interpreted as the position of the
center-of-gravity of the system.



Summary

▶ We introduced an unambiguous definition of spatial distributions
of expectation values of local operators via localized states.

▶ New definition also applies to systems independently on the
Compton wavelength.

▶ Our results suggest an unconventional ⟨r2⟩ = 4F ′(0) in contrast
to the usual relationship ⟨r2⟩naive = 6F ′(0) motivated by the Breit
frame distribution.

▶ In case of EMT and gravitational FFs the static approximation
leads to spatial densities obtained from FFs in Breit frame.

Sharply localized states lead to analogous but different results.

▶ Spatial density related to FF Θ1(q2) is interpreted as
characterizing internal forces.


