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In ordinary quantum mechanics, we do not usually incorporate the
observer as part of the system.

That is fine for most purposes, but if one is studying gravity, one
has to take into account the fact that the observer gravitates.
Still, in an open universe, it is likely not essential to explicitly
incorporate an observer in the description, because in a general
open universe, the gravity of the observer can be arbitrarily weak.
It is in a closed universe that one might expect that it is essential
to include the observer in the description. (This might be the
situation also in some open universes in which the region of space
visible to the observer is compact).



I will give a concrete example – the static patch of de Sitter space
– where it is important to explicitly include the observer in the
description. (Based on arXiv:2206.10790 by Chandrasekharan,
Longo, Penington, and EW.) However first I want to discuss what
an observer can observe.



We are going to need two classic but not that well known results
about quantum field theory:

H. J. Borchers, “Field Operators as C∞ Functions In Spacelike
Directions,” Il Nuovo Cimento 33 (1964) 1

and

H. J. Borchers, “Uber die Vollstandigkeit lorentzinvarianter Felder
in einer zeitartigen Röhre,” Il Nuovo Cimento 19 (1961) 787.

H. Araki, “A Generalization Of Borchers’ Theorem,” Helv. Phys.
Acta 36 (1963) 132-9.



In ordinary quantum field theory – without gravity – in a spacetime
M, one can arbitrarily specify any open set U ⊂ M and define an
algebra AU of operators in U :

In the presence of gravity, since spacetime fluctuates, it doesn’t
make sense talk about the region U unless we have an invariant
way to identify it.



For example, in an asymptotically flat spacetime, in the presence of
a black hole, we could talk about the region outside the black hole
horizon. That is invariantly defined and presumably makes sense
(at least to all finite orders in G ) even when spacetime fluctuates.
We could introduce an observer who is more or less at rest near
infinity and describe the region outside the horizon as the region
visible to this observer. However, as I’ve remarked, in an open
universe we do not expect that it is essential to incorporate the
observer in the description.



If we assume the existence of an observer, we can invariantly
identify various regions in spacetime, For example, if the observer
carries a clock, we can discuss the region that is visible to the
observer prior to 2 o’clock



or, alternatively, the region that is causally accessible to the
observer in a stated time interval (meaning that the observer can
both see and influence this region)



But what can an observer actually measure? I will assume a very
simple model in which the observer is described by a timelike
worldline, and what the observer can measure are simply the
quantum fields along this worldline. (The observer is assumed to
also carry a clock, and measuring equipment, and has access to
operators that act on the measuring equipment, but I won’t try to
make all that explicit.) This seems like a rather minimal model of
what an observer is and what the observer can measure, but it
raises two immediate questions, which we can answer nicely in the
absence of gravity:

(1) Can well-defined operators be defined by smearing a quantum
field along a timelike worldline?

(2) Given a “yes” answer to this question, what sort of thing is the
algebra generated by these operators?



Let me elaborate a bit on the first question. We are accustomed in
QFT to talking about “local operators” φ(x), but a local operator
isn’t really a Hilbert space operator, since acting on a Hilbert space
state it takes us out of Hilbert space. In the case of the vacuum
state Ω in Minkowski space, this is clear from the fact that
|φ(x)|Ω〉|2 =∞ or equivalently

〈Ω|φ†(x)φ(x)|Ω〉 =∞,

due to a short distance singularity. Since the leading short distance
singularity is universal, it is also true that |φ(x)|Ψ〉|2 =∞ for any
state Ψ in any spacetime M.



Thus matrix elements of φ(x) (between suitable states, such as
Fock space states in a free field theory) make sense, but
eigenvectors and eigenvalues of φ(x) do not make sense. If we
could measure φ(x), the answer would be one of its eigenvalues, so
φ(x) (for a point x along the worldline) isn’t an example of what
our observer can measure.



What are actually measureable are suitable smeared versions of
φ(x). Let us discuss which ones. Suppose we are going to smear
φ(x) over a set S to get a smeared “operator”

φf =

∫
S
dµf (x)φ(x).

If this is going to be a real operator, the smearing has to be such
that the φ†(x ′)φ(x) OPE singularity is integrable, when smeared in
this fashion.



For example, spatial smearing will only succeed if φ has rather low
dimension. Spatial smearing (at, say, t = 0) produces an operator
φf =

∫
d~x f (~x)φ(~x , 0), leading to an OPE singularity∫

d~x d~x ′f (~x)f (~x ′)φ†(~x ′, 0)φ(~x , 0).

In d space dimensions, this is integrable if and only if φ has
dimension less than d/2. For example, in QCD, d = 3, and the
lowest dimension operator is a quark bilinear qq, of dimension 3,
which is more than d/2 = 3/2. So in QCD, no operators can be
defined by smearing in space.



Smearing in Euclidean space is only slightly better. If we try to
define a smeared operator φf =

∫
dx f (x)φ(x) in D = d + 1

dimensional Euclidean space, we will run into the OPE singularity∫
dx dx ′f (x)f (x ′)φ†(x ′)φ(x).

This is integrable if and only if φ has dimension less than
D/2 = (d + 1)/2, so we have slightly extended the range in which
we can define a true operator, but not enough to be able to define
any operators in QCD, for example.



How then do we get true operators by smearing of “local
operators”? The secret is the Feynman iε. No amount of smearing
in space will produce a true operator (unless we start with a “local
operator” of small dimension) but smearing in time turns a local
operator of any dimension into a true operator. This is an old
result (Borchers 1964) but I will pause to explain it a little. In
doing so I will take the timelike curve to be a straight line in
Minkowski space, and I will consider only the leading OPE
singularity. Neither of these restrictions is essential. Subleading
OPE singularities and general timelike curves in any spacetime can
be treated similarly.



Suppose that at ~x = 0, we smear a “local operator” φ by a smooth
function f (t) of compact support. If φ has dimension ∆, then the
leading OPE singularity that we run into will be∫

dt ′ dt f (t ′)f (t)
1

(t ′ − t + iε)2∆
.

(There are also subleading OPE singularities, but the iε disposes of
them in a similar way.) The integral is obviously well-defined for
ε > 0 and we want to show that no divergence appears in the limit
ε→ 0. For this we just write

1

(t ′ − t + iε)2∆
= Cn

∂n

∂tn
(t − t ′ + iε)n−2∆,

for any integer n > 0, with a constant Cn. Inserting this in the
OPE integral and integrating by parts n times, we replace the
original integral with

(−1)nCn

∫
dt ′ dt f (t ′)f [n](t) (t − t ′ + iε)n−2∆.

For large enough n, this is manifestly convergent for ε→ 0.



So quantum fields, smeared along the observer worldline, give
well-defined operators, and it makes sense to talk about the
algebra generated by such operators. We can limit the support of
the smearing functions to any interval, say the interval in which
the observer’s proper time is in the range τ1 ≤ τ ≤ τ2. So we can
define an algebra associated to any interval on the worldline.



But what are the algebras that we make this way? In the context
of quantum field theory without gravity, this question is answered
by the “timelike tube theorem.” This theorem was originally
formulated for quantum fields in Minkowski space (Borchers 1961,
Araki 1963). It was generalized to free field theories in curved
spacetime by Strohmaier (2000), and in forthcoming work,
Strohmaier and I hope to prove a version of the theorem for
non-free theories in curved spacetime.



If U is an open set in spacetime, its “timelike envelope” E(U) is
the smallest set that contains all points that can be reached by
deforming timelike curves in U through a family of timelike curves:



The timelike tube theorem asserts that the algebra of operators in
U is the same as the algebra of observables in the possibly much
larger region E(U). I find this result quite striking. I will try to give
at least a hint of why it is true, but first I want to explain an
implication (noted by Strohmaier 2000). Suppose we are actually
interested in a timelike curve γ, say one of finite extent that
connects points q, p:

We can thicken γ slightly to an open set U , such that the timelike
envelope E does not depend on U – it is just the region causally
accessible to γ.



The timelike tube theorem says that the algebra A(U) of operators
in U doesn’t really depend on U but only on γ – it is the timelike
envelope E(γ). So we can define an algebra for every (possibly
bounded) timelike curve γ. That should not surprise us per se,
since we deduced the same result (in a much more elementary
way) by looking at the OPE singularities. That is a pleasing
consistency check. More important for our purposes, we’ve learned
that the algebra A(γ) of operators supported on a curve γ is a
good stand-in for the algebra A(E) of the spacetime region E with
which γ is in causal contact.



For our purposes, I think what is important about this is that A(γ)
– the algebra generated by the fields along γ – is:

(1) more operationally meaningful than A(E), since it is more
directly what an observer can measure

(2) better defined in the presence of gravity than A(E) would
appear to be.

So A(γ) seems like a good substitute for algebras associated to
open sets, which one would consider in the absence of gravity.



To try to give at least a hint of why the timelike tube theorem is
true, I will explain the classical limit. Suppose we have a
reasonable relativistic wave equation like the Klein-Gordon
equation (� + m2)φ = 0. We are given a solution in one region U
(light blue) and we want to predict the solution in a larger region
E(U) (purple). Here are two cases:

In a), one is given a solution in a “spacelike tube” and one wants to
extend it over the “spacelike envelope” (which is called the domain
of dependence). In b), one is given a solution in a “timelike tube”
and one wants to extend the solution over the “timelike envelope.”



The “Holmgren uniqueness theorem” of PDE’s asserts that the
extension is unique, if it exists, in both cases a) and b), but
existence is a more special result and only holds in case a):



To see that an existence result cannot possibly hold in case b),
here is a counterexample:



The existence and uniqueness result in the case of a) is the basis
for much of physics. It says that the solution can be predicted
from initial data – physics is causal. But by contrast the
uniqueness result without a guarantee of existence in case b)

is not usually useful at the classical level because in fact the
extension over E(U) of a solution on U usually does not exist and
it is very hard to predict when it does.



Suppose, however, that we are doing quantum field theory and for
simplicity consider a free field φ with the action

I =
1

2

∫
M
dDx
√
g
(
−DµφDµφ−m2φ2

)
.

In this case, we can view φ as an operator-valued solution of the
Klein-Gordon equation (� + m2)φ = 0. If we are studying this
quantum field theory on M, then the field φ(x) does exist
throughout M and therefore existence of the extension from U to
E(U) is not an issue.



But what does uniqueness mean?

In some sense, uniqueness means “the field φ(x) for x ∈ E(U) is
uniquely determined by φ(y) for y ∈ U .” As explained by Borchers
and Araki in the early 1960’s, the quantum meaning of this
statement is really “φ(x) for x ∈ E(U) is contained in the algebra
generated by φ(y) for y ∈ U” or equivalently the operator algebras
of the two regions are the same:

A(E(U)) = A(U).

This is the timelike tube theorem.



(As I already noted, the theorem was originally proved in
Minkowski space and those proofs were not limited to free field
theory, while in curved spacetime the presently available proof –
Strohmaier 2000 – is for free field theories.) One last detail about
this: the statement “φ(x) for x ∈ E(U) is uniquely determined by
φ(y) for y ∈ U” cannot be expressed, even in free field theory, in
the existence of a formula

φ(x)
?
=

∫
U
dy G (x , y)φ(y)

for some Green function G (x , y). A suitable Green function does
not exist; if it did, this would imply existence of the extension over
E(U) for every solution φ(y) on U , and we have seen that in
general the extension does not exist.



In the AdS/CFT correspondence, this problem has been noted in
the context of causal wedge reconstruction – also called HKLL
reconstruction. In that context, U is a small neighborhood of the
conformal boundary and one wants to determine the field in the
causal wedge E(U), which (usually) is the same as the timelike
envelope, from the field in U :

I believe that the timelike tube theorem is actually the correct
formulation of HKLL reconstruction.



This completes what I will say about what an observer can observe.



In the rest of this talk (following a paper with Chandrasekharan,
Penington, and Longo that was mentioned previously) I am going
to analyze a concrete example of an observer in a closed universe
with cosmological horizons. This will be de Sitter space dSD ,
which is the maximally symmetric solution of Einstein’s equations
in D = d + 1 dimensions with a positive cosmological constant. It
can be described by the metric

ds2 = −dt2 + R2 cosh2(t/R)dΩ2

where R is the radius of curvature and dΩ2 is the metric of a
round sphere of unit radius. This is compact, so dSD is an example
of a closed universe. At time t, the sphere has radius

R(t) = R cosh(t/R)

so it exponentially grows for t → +∞ (or t → −∞). The
exponential growth for t >> R is believed to be a good
approximation to what is currently beginning to happen in the real
world.



In the 1970’s, Gibbons and Hawking studied de Sitter space as a
simple example of a spacetime with a cosmological horizon – in
which an observer cannot see the whole universe. They attached
an entropy to the de Sitter horizon.



A Penrose diagram of de Sitter space is as follows

Given an observer traveling on a geodesic in dSD , coordinates can
be chosen so that the worldline of the observer is the left boundary
of the diagram. If this is done, the observer has past and future
horizons which are the diagonals in the picture. These diagonals
bound the green region, which is the region causally accessible to
the observer, and is called a “static patch.”



In Euclidean signature, dSD becomes simply a D-sphere, with
metric

dτ2 + R2 cos2(τ/R)dΩ2.

In ordinary quantum field theory in de Sitter space (and also in the
presence of semiclassical gravity) there is a natural de Sitter state
ΨdS such that correlation functions in this state can be obtained
by analytic continuation from Euclidean signature. Let H be the
generator of a one-parameter rotation subgroup of the sphere. In
Euclidean signature, it obeys exp(−2πRH) = 1. When continued
to Lorentz signature, this leads to the fact that correlation
functions in the state ΨdS have a thermal interpretation at the de
Sitter temperature TdS = 1/βdS, where βdS = 2πR (Gibbons and
Hawking; Figari, Hoegh-Krohn, and Nappi). A slightly abstract
way to describe this thermal interpretation is to say (Sewell, 1982)
that the “modular Hamiltonian” of the state ΨdS is

Hmod = βdSH.



The one parameter symmetry generator H can be chosen so that
in Lorentz signature it is a symmetry of this picture

moving the observer worldline and the green region forwards in
time (and moving the region spacelike separated from the observer
backwards in time). In thinking about the experience of the
observer, it is common to think of H as a time-translation
generator and to refer to the H-invariant green region as a “static
patch.” What motivates this name is that coordinates can be
chosen so that H ∼ ∂

∂t and the metric of the static patch is
time-independent; thus the static patch looks time-independent to
the observer.



In ordinary quantum field theory, we would associate to the static
patch an algebra of observables, which actually is a possibly
unfamiliar Type III von Neumann algebra. This is an algebra with
an infinite amount of quantum entanglement built in, giving an
abstract explanation of the fact that entanglement entropy is
ultraviolet divergent in quantum field theory. Including weakly
coupled gravitational fluctuations does not qualitatively change the
picture, but what does really change the picture is that in a closed
universe, such as de Sitter space, the isometries have to be treated
as constraints. This means that we should replace A0 by AH

0 , its
invariant subalgebra. But that does not work: the invariant
subalgebra is trivial. Basically, anything that commutes with H can
be averaged over all the thermal fluctuations and replaced by its
thermal average, a c-number.



To get a reasonable algebra of observables, we include an observer
in the analysis. Of course, in principle an observer should really be
described by the theory, not injected from outside. What it really
means to include an observer is that we consider a “code
subspace” of states in which an observer is present in the static
patch, and then we consider operators that can be defined in the
low energy effective field theory in this code subspace, though they
are not well-defined on the whole Hilbert space.



Should we be surprised that we need to include the observer in the
analysis to get a sensible answer? As we discussed at the outset, in
ordinary quantum mechanics without gravity, one can consider the
observer who studies a quantum system to be external to the
system. With gravity included, the observer inevitably gravitates
and cannot truly be considered external to the system. However, in
an open universe – for example one that is asymptotically flat –
the gravity of the observer can be negligible. It is in a closed
universe that it may be impossible to ignore the gravity of the
observer. That is exactly the situation that we are in here because
de Sitter space is a simple model of a closed universe, that is, a
universe with compact spatial sections. And indeed we find that to
get a sensible result we need to take into account the gravity of
the observer.



As a minimal model of the observer, we consider a clock with
Hamiltonian

Hobs = q.

It is physically reasonable to assume that the observer’s energy is
bounded below by 0, so we assume q ≥ 0. Thus the effect of
including the observer is to modify the Hilbert space by

H0 → H0 ⊗ L2(R+).

(Positive half-line since q ≥ 0.) The algebra is likewise extended
from A0 to

A1 = A0 ⊗ B(L2(R+)).

The last factor is the (Type I) algebra of all bounded operators on
L2(R+); it is generated by q and by p = −i d

dq .



Finally the constraint becomes the total Hamiltonian of the
quantum fields plus the observer:

H → Ĥ = H + Hobs.

The “correct” algebra of observables taking account of the
presence of the observer is therefore

A = AĤ
1 ,

that is, the Ĥ-invariant part of A1.



This answer makes sense, unlike the previous one. The reason is
that once an observer is present, we can “gravitationally dress” any
operator to the observer’s world-line. For any a ∈ A0, the operator

â = e ipHae−ipH

commutes with the constraint Ĥ = H + q. One more operator that
commutes with the constraint is q itself (or equivalently −H). It
follows from classic results of Connes and Takesaki from the 1970’s
that (1) there are no more operators that commute with the
constraint, and (2) the algebra A that is generated by â, a ∈ A0

along with q is actually a von Neumann algebra of Type II.



Since von Neumann algebras of Type II and Type III may be quite
unfamiliar, for now let me just say that a Type II von Neumann
algebra is much simpler than one of Type III, because it has a
trace. As a result, familiar ideas like density matrices and entropies
make sense. To a global state Ψ of de Sitter space plus the
observer, reduced to the static patch, one can associate a density
matrix ρ ∈ A, characterized by

〈Ψ|a|Ψ〉 = Tr aρ, ∀a ∈ A.

Therefore, we can define a von Neumann entropy

S(ρ) = −Tr ρ log ρ.

There is no such definition in the absence of gravity. The fact that
gravity turns the Type III algebra into a Type II algebra gives an
abstract explanation for why entropy is better defined in the
presence of gravity than in ordinary quantum field theory. I should
point out, however, that from a physical point of view, Type II
entropy is a renormalized entropy from which an infinite constant
has been subtracted.



There are actually two relevant varieties of Type II algebra and we
can get either one of them in this construction:

(1) If we put no lower bound on the observer energy, we get an
algebra of Type II∞. In such an algebra, depending on ρ there is
no upper bound on the von Neumann entropy. This is appropriate
for describing a black hole (whose entropy can grow indefinitely as
the mass increases) but not for describing de Sitter space.

(2) If we do put a lower bound on the observer energy, we get an
algebra of Type II1. The main difference for our purposes today is
that in a Type II1 algebra, there is a state of maximum possible
entropy, which is the “maximally mixed” state with density matrix
ρ = 1. (This is consistent with Tr ρ = 1 because the trace in a
Type II1 algebra is usually normalized so that Tr 1 = 1.)



De Sitter space is believed to have a state of maximum entropy –
namely “empty de Sitter space,” with all the entropy in the
cosmological horizon (Bousso 2000). So to get a reasonable model
of de Sitter space, we should assume that the observer’s energy is
bounded below, which is a more reasonable assumption anyway.
The maximum entropy state is then the one with density matrix
ρ = 1. Density matrix ρ = 1 is the Type II1 analog of a maximally
mixed state in ordinary quantum mechanics, in which the density
matrix is a multiple of the identity.



We can now compare with some claims made in the past by others
(such as Banks; Susskind; Dong, Silverstein, and Torroba). First of
all, since the maximum entropy state has ρ = 1, it has a “flat
entanglement spectrum” (all eigenvalues of the density matrix are
equal) and accordingly the Rényi entropies are constant:

Sα(ρ) =
1

1− α
log Tr ρα = 0.

Given the assertion that de Sitter space has a state of maximum
entropy, this is what one should expect: In ordinary quantum
mechanics, the maximum entropy state of a system is “maximally
mixed,” with a “flat entanglement spectrum” (the density matrix
is a multiple of the identity and all its eigenvalues are equal) and
its Rényi entropies are independent of α.



Now, suppose that the observer makes a measurement with two
outcomes that correspond to the projection operators Π and 1−Π.
The probabilities of the two outcomes are TrΠ and
Tr (1− Π) = 1−TrΠ. All values 0 ≤ TrΠ ≤ 1 are possible. If the
outcome corresponding to Π is observed, then after this
measurement, the density matrix is

σ =
1

TrΠ
Π.

Since the two eigenvalues of σ are 0 and 1/TrΠ, one has
σ log σ = σ log(1/TrΠ) so the entropy after the observation is

S(σ) = −Trσ log σ = − log(1/TrΠ).

The entropy reduction from knowing the outcome is therefore
∆S = log(1/TrΠ), and this is related to the probability p = TrΠ
of the given outcome by

p = e−∆S .



However, the probability of a (low entropy) energy E fluctuation of
the static patch is

p = e−βdSE ,

according to the thermal interpretation of de Sitter space. Since
also p = e−∆S , we must have for consistency of the two
descriptions

e−βdSE = e−∆S .

In other words, “‘thermal” suppression of a fluctuation can be
understood as purely entropic suppression. This is surprising, but it
has been argued before on other grounds, notably by considering
the case that the “fluctuation” is a small black hole at the center
of the static patch.



Which part of this is surprising? The formula p = e−∆S for the
probability of an outcome is an inevitable consequence of having a
maximum entropy state in which all states are equally probable. In
other words, if all states are equally likely, then the probability of a
given outcome is just proportional to the number of microstates
that are compatible with that outcome. Here I am using language
appropriate for an ordinary quantum system with a
finite-dimensional Hilbert space. A moment ago, I explained how
to reach the same conclusion in the context of a Type II1 algebra.



The surprise is not that p = e−∆S , which one should expect for a
maximum entropy state, but that the maximum entropy state also
has a thermal interpretation. Let us discuss how to see this in the
context of the Type II1 algebra. First of all, ignoring the constraint
for the moment, the time dependence of an operator a ∈ A0 is
defined in the usual way by

a(t) = e iHtae−iHt .

Then time-dependent correlations such as

〈ΨdS|a(t1)a′(t2)|ΨdS〉

have thermal properties that reflect the fact that these correlation
functions can be computed by analytic continuation from
Euclidean signature.



After imposing the constraint, we replace a with the dressed version
â = e ipHae−ipH , and again we define its time dependence by

â(t) = e iHt âe−iHt .

Then, because
HΨdS = 0,

we rather trivially find

〈Ψmax|â(t1)â′(t2)|Ψmax〉 = 〈ΨdS|a(t1)a′(t2)|ΨdS〉.

So correlators of gravitationally dressed operators after imposing
the constraints have the same thermal properties that correlators
of “bare” operators had before imposing the constraints.



Thus weakly coupled gravity does not disturb the thermal
interpretation of de Sitter space, but it leads to a new
interpretation, which we would not have without gravity:

The natural de Sitter state is a maximally mixed state of maximum
possible entropy.



In sum, I have explained a concrete example of including an
observer in order to get a sensible answer in a cosmological model
with a closed universe. And, at least in the example of de Sitter
space, I have explained that gravity makes the notion of entropy
better defined that it is in ordinary quantum field theory.
Something important that is discussed in the paper, but which I
have not had time to explain, is that entropy defined this way
agrees – up to an overall additive constant – with generalized
gravitational entropy, as defined by formulas whose earliest version
goes back to Bekenstein (1972). There is actually a similar story
for a black hole, but that will have to be for another time.


