DIS in the dipole picture at one loop with massive quarks

T. Lappi

Academy of Finland Center of Excellence in Quark Matter, University of Jyväskylä, Finland

ILCAC seminar

JYVÄSKYLÄN YLIOPISTO UNIVERSITY OF JYVÄSKYLÄ

STR@NG-2 20

Outline

Outline of this talk

- Eikonal scattering and gluon saturation
- DIS in the dipole picture at NLO: massless quarks

Balitsky \& Chirilli 2010, G. Beuf Phys. Rev. D 94 (2016) no.5, 054016, Phys. Rev. D 96 (2017) no.7, 074033 H. Hänninen, T.L., R. Paatelainen, Annals Phys. 393 (2018), 358-412

- Massive quarks

Beuf, T.L. Paatelainen, Phys.Rev.Lett. 129 (2022) 7, 072001, Phys.Rev.D 104 (2021) 5, 056032, Phys.Rev.D 106 (2022) 3,034013

Process of interes \dagger

DIS cross section at high energy

High energy collisions as eikonal scattering

Eikonal scattering off target of glue

How to measure small-x glue?

- Dilute probe through target color field
- At high energy interaction is eikonal, $\mathbf{x}(2 d \perp$ coordinate) conserved in scattering (T-matrix diagonal in \perp coordinate space)
- Amplitude for quark: Wilson line

$$
\mathbb{P} \exp \left\{-i g \int^{x^{+}} d y^{+} A^{-}\left(y^{+}, x^{-}, \mathbf{x}\right)\right\} \underset{x^{+} \rightarrow \infty}{\approx} V(\mathbf{x}) \in \operatorname{SU}\left(N_{C}\right)
$$

- Amplitude for color dipole

$$
\mathcal{N}(r=|\mathbf{x}-\mathbf{y}|)=1-\left\langle\frac{1}{N_{c}} \operatorname{tr} V^{\dagger}(\mathbf{x}) V(\mathbf{y})\right\rangle
$$

- $r=0$: color transparency, $r \gg 1 / Q_{s}$: saturation,
nonperturbative!

Dipole picture of DIS

Limit of small x, i.e. high γ^{*}-target energy

Leading order

- $\gamma^{*} \rightarrow q \bar{q}$ in vacuum
- $q \bar{q}$ interacts eikonally with target
- $\sigma^{\text {tot }}$ is $2 \times$ Im-part of amplitude
"Dipole model": Nikolaev, Zakharov 1991
Many fits to HERA data, starting with Golec-Biernat,
Wüsthoff 1998

Leading Log: add soft gluon

- Soft gluon: large logarithm

$$
\int_{x_{B j}} \frac{\mathrm{~d} k_{g}^{+}}{k_{g}^{+}} \sim \ln \frac{1}{x_{B j}}
$$

Absorb into renormalization of target:
BK equation Balitsky 1995, Kovchegov 1999

Dipole picture of DIS

Limit of small x, i.e. high γ^{*}-target energy

Leading order

- $\gamma^{*} \rightarrow q \bar{q}$ in vacuum
- $q \bar{q}$ interacts eikonally with target
- $\sigma^{\text {tot }}$ is $2 \times$ Im-part of amplitude
"Dipole model": Nikolaev, Zakharov 1991
Many fits to HERA data, starting with Golec-Biernat,
Wüsthoff 1998

Leading Log: add soft gluon

- Soft gluon: large logarithm

$$
\int_{x_{B j}} \frac{\mathrm{~d} k_{g}^{+}}{k_{g}^{+}} \sim \ln \frac{1}{x_{B j}}
$$

Absorb into renormalization of target:
BK equation Balitsky 1995, Kovchegov 1999

Why light cone perturbation theory

Bjorken, Kogut, Soper: "Quantum Electrodynamics at ∞ Momentum: Scattering from an External Field" Phys.Rev. D (1971)

LCPT: ideal computational tool for HE scattering, dipole factorization

Rotational symmetry already broken by physical situation

- LC quantize γ^{*}
- Clean perturbative object
- Evolution $x^{+}=-\infty \rightarrow 0$ in vacuum
- Encoded in γ^{*} light cone wave function
- Less work than covariant P.T.
- Dipole-target amplitude
- Nonperturbative physics of target
- Eikonal, \perp coordinate space
- Naturally includes gluon saturation
- Satisfies BK evolution equation in $\ln 1 / x_{B j}$

$$
\sigma_{\text {tot }}^{\gamma^{*}+p}=\left|\psi_{T, L}^{\gamma^{*} \rightarrow q \bar{q}}\right|^{2} \otimes \sigma_{\text {tot }}^{q \bar{a}+p}
$$

$$
+\left|\psi_{T, L}^{\gamma^{*} \rightarrow a \bar{q} g}\right|^{2} \otimes \sigma_{t o t}^{a \bar{q} g+p}
$$

Example: leading order $\psi^{\gamma^{*} \rightarrow a \bar{q}}$

- Matrix element

$$
q, \varepsilon_{\lambda} \sim \underbrace{k, s ; k^{+}=z q^{+}}
$$

$$
e \bar{u}_{s}(k) \nexists_{\lambda} v_{s^{\prime}}\left(k^{\prime}\right) \quad ; \quad s, s^{\prime}= \pm \frac{1}{2} ; \quad \lambda=0=L, \quad \lambda= \pm 1=T
$$

- Energy denominator $\left(q^{-}-k^{-}-k^{\prime-}\right)^{-1}$

$$
=-\left(\frac{Q^{2}}{2 q^{+}}+\frac{\mathbf{k}^{2}+m^{2}}{2 z q^{+}}+\frac{\mathbf{k}^{2}+m^{2}}{2(1-z) q^{+}}\right)=\underbrace{\frac{-2 q^{+} z(1-z)}{Q^{2} z(1-z)+m^{2}}+\mathbf{k}^{2}}_{\equiv \varepsilon^{2}}
$$

Fourier-transform $\mathbf{k} \rightarrow \mathbf{r}$, sum over spins; result has Bessel K^{\prime} s that enforce $r \sim 1 / Q$:

$$
\begin{aligned}
\left|\psi_{T}^{\gamma^{*} \rightarrow a \bar{a}}\right|^{2} & =\frac{\alpha_{\mathrm{e} . \mathrm{m}}}{2 \pi^{2}} N_{\mathrm{c}} \mathrm{e}_{f}\left(K_{l}^{2}(\varepsilon r)\left[z^{2}+(1-z)^{2}\right]+m_{f}^{2} K_{0}^{2}(\varepsilon r)\right) \\
\left|\psi_{L}^{\gamma^{*} \rightarrow q \bar{a}}\right|^{2} & =N_{\mathrm{c}} e_{f} \frac{\alpha_{\mathrm{e} . \mathrm{m} .}}{2 \pi^{2}} 4 Q^{2} z^{2}(1-z)^{2} K_{0}^{2}(\varepsilon r)
\end{aligned}
$$

NLO DIS cross section with massless quarks

DIS at NLO: Fock state expansion

Balitsky \& Chirilli 2010, Beuf 2016, 2017, H. Hänninen, T.L., Paatelainen 2017
To be specific: want total γ^{*}-target cross section using optical theorem:

$$
\begin{gathered}
\sigma_{\lambda}^{\gamma^{*}}=2 \operatorname{Re}\left[(-i) \mathcal{M}_{\gamma_{\lambda}^{*} \rightarrow \gamma_{\lambda}^{*}}^{f w d}\right], \\
i\left\langle\gamma_{\lambda}\left(\vec{q}^{\prime}, Q^{2}\right)\right|\left(\hat{\mathcal{S}}_{E}-1\right)\left|\gamma_{\lambda}\left(\vec{q}, Q^{2}\right)\right\rangle_{i}=2 q^{+}(2 \pi) \delta\left(q^{++}-q^{+}\right) i \mathcal{M}_{\gamma_{\lambda}^{*} \rightarrow \gamma_{\lambda}^{*}}^{\mathrm{fwd}} .
\end{gathered}
$$

$\hat{\mathcal{S}}_{E}$: eikonal scattering \Longrightarrow Wilson line in coordinate space.
At NLO need Fock state decomposition of $\left|\gamma_{\lambda}\left(\vec{q}, Q^{2}\right)\right\rangle_{i}\left(\right.$ and $\left._{i}\left\langle\gamma_{\lambda}\left(\vec{q}^{\prime}, Q^{2}\right)\right|\right)$ up to g^{2} :

$$
\begin{aligned}
\left|\gamma_{\lambda}\left(\vec{q}, Q^{2}\right)\right\rangle_{i}=\sqrt{Z_{\gamma^{*}}}\left[\left|\gamma_{\lambda}\left(\vec{q}, Q^{2}\right)\right\rangle+\right. & \sum_{q \bar{q}} \psi^{\gamma^{*} \rightarrow q \bar{व}}\left|q\left(\vec{k}_{0}, h_{0}\right) \bar{q}\left(\vec{k}_{1}, h_{1}\right)\right\rangle \\
& \left.+\sum_{q \bar{q} g} \psi^{\gamma^{*} \rightarrow q \bar{q} g}\left|q\left(\vec{k}_{0}, h_{0}\right) \bar{q}\left(\vec{k}_{1}, h_{1}\right) g\left(\vec{k}_{2}, \sigma\right)\right\rangle+\cdots\right]
\end{aligned}
$$

with Light Cone Wave Functions $\psi^{\gamma^{*} \rightarrow q \bar{a}}$ and $\psi \gamma^{*} \rightarrow q \bar{q} g$

DIS at NLO: procedure

1. Evaluate LCPT diagrams

- $\psi^{\gamma^{*} \rightarrow a \bar{a}}$ to 1 loop
- $\Psi^{\gamma^{*} \rightarrow a \bar{a} 9}$ at tree level

2. Fourier-transform to transverse coordinate
3. Square to get ${ }_{i}\left\langle\gamma_{\lambda}\left(\vec{q}^{\prime}, Q^{2}\right)\right|\left(\hat{\mathcal{S}}_{E}-1\right)\left|\gamma_{\lambda}\left(\vec{q}, Q^{2}\right)\right\rangle_{i}$

$$
\vec{k}, \lambda ; \quad k^{+}=\mathrm{zp}^{+}
$$

- Intermediate (\ni "final") state k^{-}denominators
- On-shell vertices, most importantly $q \bar{a} g$

$$
\left[\bar{u}_{h^{\prime}}\left(p^{\prime}\right) 申_{\lambda}^{*}(k) u_{n}(p)\right]=\frac{-2}{z \sqrt{1-z}}\left[\left(1-\frac{z}{2}\right) \delta_{h^{\prime}, h} \delta^{i j}+\frac{z}{2} i h \delta_{h^{\prime}, h} \varepsilon^{i j}\right] \mathbf{q}^{i} \varepsilon_{\lambda}^{* j},
$$

(This is in $d=4$, generalize for $d<4$)
Note 2 index structures for massless quarks.

- Regularize: in $2-2 \varepsilon$-dim $\perp+$ cutoff in k^{+}

DIS at NLO: real and virtual corrections

Here example diagams only

interaction with target is

$$
\mathcal{N}_{\mathrm{G} \bar{q}}\left(\mathbf{x}_{0}, \mathbf{x}_{1}\right)
$$

+ UV divergence in loop
 interaction with target is

$$
\mathcal{N}_{\text {q}} \bar{q} g\left(\mathbf{x}_{0}, \mathbf{x}_{1}, \mathbf{x}_{2}\right)
$$

UV (!) divergence in \mathbf{x}_{2}-integral

These UV-divergences cancel because for Wilson lines $\in \operatorname{SU}\left(N_{C}\right)$

$$
\mathcal{N}_{\mathrm{q} \bar{q} g}\left(\mathbf{x}_{0}, \mathbf{x}_{1}, \mathbf{x}_{2} \rightarrow \mathbf{x}_{0}\right)=\mathcal{N}_{\mathrm{q} \bar{q} g}\left(\mathbf{x}_{0}, \mathbf{x}_{1}, \mathbf{x}_{2} \rightarrow \mathbf{x}_{1}\right)=\mathcal{N}_{\mathrm{q} \bar{a}}\left(\mathbf{x}_{0}, \mathbf{x}_{1}\right)
$$

DIS at NLO: subtracting BK equation

B. Ducloué, H. Hänninen, T. L. and Y. Zhu, Phys. Rev. D 96 (2017) no.9, 094017

Evaluate cross section as $\sigma_{L, T}^{\mathrm{NLO}}=\sigma_{L, T}^{\mathrm{LO}}+\sigma_{L, T}^{\text {dip }}+\sigma_{L, T, \text { sub }}^{\mathrm{ag}}$.

$$
\sim \quad \sigma^{L O} \sim \int_{0}^{1} \mathrm{~d} z_{1} \int_{\mathbf{x}_{0}, \mathbf{x}_{1}}\left|\psi_{\gamma^{*} \rightarrow q \bar{a}}^{L O}\left(z_{1}, \mathbf{x}_{0}, \mathbf{x}_{1}\right)\right|^{2} \mathcal{N}_{01}\left(x_{B j}\right)
$$

$$
\sigma^{\operatorname{dip}} \sim \alpha_{S} C_{F} \int_{\mathbf{x}_{0}, \mathbf{x}_{1}, z_{1}}\left|\psi_{\gamma^{*} \rightarrow a \bar{a}}^{\mathrm{LO}}\right|^{2}\left[\frac{1}{2} \ln ^{2}\left(\frac{z_{1}}{1-z_{1}}\right)-\frac{\pi^{2}}{6}+\frac{5}{2}\right] \mathcal{N}_{01}\left(x_{B j}\right)
$$

$$
\begin{aligned}
\sigma_{\text {sub. }}^{\text {qg }} & \sim \alpha_{\mathrm{s}} C_{\mathrm{F}} \int_{z_{1}, z_{2}, \mathbf{x}_{0}, \mathbf{x}_{1}, \mathbf{x}_{2}} \mathrm{~d} z_{2}\left[\left|\psi_{\gamma^{*} \rightarrow q \bar{q} g}\left(z_{1}, z_{2},\left\{\mathbf{x}_{i}\right\}\right)\right|^{2} \mathcal{N}_{012}\left(X\left(z_{2}\right)\right)+*\right. \\
& \left.-\left|\psi_{\gamma^{*} \rightarrow a \bar{q} g}\left(z_{1}, 0,\left\{\mathbf{x}_{i}\right\}\right)\right|^{2} \mathcal{N}_{012}\left(X\left(z_{2}\right)\right)+*\right] .
\end{aligned}
$$

* UV-divergence

DIS at NLO: subtracting BK equation

B. Ducloué, H. Hänninen, T. L. and Y. Zhu, Phys. Rev. D 96 (2017) no.9, 094017

Evaluate cross section as $\sigma_{L, T}^{\mathrm{NLO}}=\sigma_{L, T}^{\mathrm{LO}}+\sigma_{L, T}^{\text {dip }}+\sigma_{L, T, \text { sub }}^{\mathrm{ag}}$.

$$
\sigma^{\text {dip }} \sim \alpha_{s} C_{F} \int_{\mathbf{x}_{0}, \mathbf{x}_{1}, z_{1}}\left|\psi_{\gamma^{*} \rightarrow a \bar{a}}^{\mathrm{LO}}\right|^{2}\left[\frac{1}{2} \ln ^{2}\left(\frac{z_{1}}{1-z_{1}}\right)-\frac{\pi^{2}}{6}+\frac{5}{2}\right] \mathcal{N}_{01}\left(x_{B j}\right)
$$

$$
\begin{aligned}
\sigma_{\text {sub. }}^{\text {qg }} & \sim \alpha_{\mathrm{s}} C_{\mathrm{F}, z_{2}, \mathbf{x}_{0}, \mathbf{x}_{1}, \mathbf{x}_{2}} \int_{z_{2}}\left[\left|\psi_{\gamma^{*} \rightarrow q \bar{q} g}\left(z_{1}, z_{2},\left\{\mathbf{x}_{i}\right\}\right)\right|^{2} \mathcal{N}_{012}\left(X\left(z_{2}\right)\right)+*\right. \\
& \left.-\left|\psi_{\gamma^{*} \rightarrow q \bar{q} g}\left(z_{1}, 0,\left\{\mathbf{x}_{i}\right\}\right)\right|^{2} \mathcal{N}_{012}\left(X\left(z_{2}\right)\right)+*\right]
\end{aligned}
$$

* UV-divergence

LL: subtract leading log, already in BK-evolved \mathcal{N} in $\sigma^{\text {LO }}$

DIS at NLO: subtracting BK equation

B. Ducloué, H. Hänninen, T. L. and Y. Zhu, Phys. Rev. D 96 (2017) no.9, 094017

Evaluate cross section as $\sigma_{L, T}^{\mathrm{NLO}}=\sigma_{L, T}^{\mathrm{LO}}+\sigma_{L, T}^{\text {dip }}+\sigma_{L, T, \text { sub }}^{\mathrm{q}}$.

$\sim \sqrt{\xi}-* \Rightarrow$

$$
\sigma^{\text {dip }} \sim \alpha_{S} C_{F} \int_{\mathbf{x}_{0}, \mathbf{x}_{1}, z_{1}}\left|\psi_{\gamma^{*} \rightarrow q \bar{a}}^{\mathrm{LO}}\right|^{2}\left[\frac{1}{2} \ln ^{2}\left(\frac{z_{1}}{1-z_{1}}\right)-\frac{\pi^{2}}{6}+\frac{5}{2}\right] \mathcal{N}_{01}\left(X_{B j}\right)
$$

$$
\begin{aligned}
\sigma_{\text {sub. }}^{\text {qg }} & \sim \alpha_{S} C_{F} \int_{z_{1}, z_{2}, \mathbf{x}_{0}, \mathbf{x}_{1}, \mathbf{x}_{2}} d z_{2}\left[\left|\psi_{\gamma^{*} \rightarrow q \bar{q} g}\left(z_{1}, z_{2},\left\{\mathbf{x}_{i}\right\}\right)\right|^{2} \mathcal{N}_{012}\left(X\left(z_{2}\right)\right)+*\right. \\
& \left.-\left|\psi_{\gamma^{*} \rightarrow q \bar{q} g}\left(z_{1}, 0,\left\{\mathbf{x}_{i}\right\}\right)\right|^{2} \mathcal{N}_{012}\left(X\left(z_{2}\right)\right)+*\right]
\end{aligned}
$$

* UV-divergence

LL: subtract leading log, already in BK-evolved \mathcal{N} in $\sigma^{\text {LO }}$

- Parametrically $X\left(z_{2}\right) \sim x_{B j}$, but $X\left(z_{2}\right) \sim 1 / z_{2}$ essential!

Fits to HERA data

G. Beuf, H. Hänninen, T. L. and H. Mäntysaari, (arXiv:2007.01645 (hep-ph)).

Free parameters:

- σ_{0} : proton area
- $Q_{s 0}$: initial saturation scale
- γ shape of initial condition as function of r
- C^{2} : scale of α_{s} as function of r (could think of as fitting α_{s} or $\Lambda_{Q C D}$)

Main conclusions

- Fits are very good, χ^{2} / N varies $1.03 \ldots 2.77$
- Different ~NLO BK-eqs equally good (Differences absorbed in initial conditions).
Similar to finding of Albacete 2015

Only see differences at LHeC kinematics

- Generally prefer smallish σ_{0}

Including quark masses

Heavy quarks, motivation, issues

- Data
- HERA F_{2}^{c}
- Charm big part of EIC program
- LO F_{2}^{c} problematic in existing fits

Dirty little secret: heavy quarks in rcBK fits do not actually work!

LCPT loops with massive quarks are so much fun!

- Working with fixed helicity states (not Dirac traces=sums) : physics very explicit
- New Lorentz structures \Longrightarrow rotational invariance constraints

Approach for this talk: start with same regularization as in massless case

- Cutoff in k^{+}
- \perp dim. reg.

Then see how far we get before trouble!
Beuf, T.L. Paatelainen 2021-2022

Elementary vertex with masses

- h, h^{\prime} : light cone (z-axis) helicities
- q: center-of-mass \perp momentum in splitting
- polarization λ, with \perp polarization vector $\varepsilon_{\lambda}^{* j}$
$\left[\bar{u}_{h^{\prime}}\left(p^{\prime}\right) \ddagger_{\lambda}^{*}(k) u_{h}(p)\right] \sim \overbrace{\bar{u}_{h^{\prime}} \gamma^{+} u_{h}}^{\sim \delta_{n, h^{\prime}}} \delta^{i j} q^{i} \varepsilon_{\lambda}^{* j}+\overbrace{\bar{u}_{h^{\prime}} \gamma^{+}\left[\gamma^{i}, \gamma^{j}\right] u_{n}}^{\sim \delta_{n, h^{\prime}}} q^{i} \varepsilon_{\lambda}^{* j}+\overbrace{\bar{u}_{h^{\prime}} \gamma^{+} \gamma^{j} u_{h}}^{\sim \delta_{n,-h^{\prime}}} m_{q} \varepsilon_{\lambda}^{* j}$
- New 3rd ligh-cone-helicity-flip structure $\sim m_{a}$ (Loops: also 4th $\left.\bar{u}_{h^{\prime}} \gamma^{+} \gamma^{i} u_{n} \varepsilon_{\lambda}^{* j} q^{i} q^{\prime}\right)$
- Note: \perp momentum in non-flip, but not in flip vertex \Longrightarrow less UV-divergent

Then look at diagrams for $\gamma^{*} \rightarrow Q \bar{Q}$, new UV-divergent and finite contributions in

1. "Vertex correction" diagrams: calculation complicated, physics simple
2. "Propagator correction" diagrams: calculation simple, interpretation not!

Vertex corrections to LC helicity flip vertex

- 1 flip vertex ($h_{1} \neq h, h_{2} \neq h_{1}$ or $h_{2} \neq h$)
\Longrightarrow log-divergent $\sim m_{a} \frac{1}{\varepsilon} \quad\left(2\right.$ ED's $\sim \mathbf{k}^{2}$ each, 2 vertices \mathbf{k} each, measure $d^{2} \mathbf{k}$)
\Longrightarrow absorb into vertex mass counterterm δm_{v},
same as δm_{q} in conventional perturbation theory
- 3 flip vertices:($h_{1} \neq h, h_{2} \neq h_{1}$ and $h_{2} \neq h$)
\Longrightarrow finite NLO contribution

Vertex corrections to non-flip vertex

Non-flip part of LO vertex

Corrections from

- no flip vertices ($h_{1}=h, h_{2}=h_{1}$ and $h_{2}=h$) vertices as in massless theory \Longrightarrow not new contribution
- 2 flip +1 non-flip ($h_{1}=-h$ or $h_{2}=-h_{1}$ or $h_{2}=-h$) \Longrightarrow again finite NLO contribution
$\left(2\right.$ ED's $\sim \mathbf{k}^{2}$ each, 1 vertex $\sim \mathbf{k}$, finite integral $\left.\sim \int d^{2} \mathbf{k} \frac{\mathbf{k}}{\left.\left((\mathbf{k}-\ldots)^{2}+\ldots\right)(\mathbf{k}-\ldots)^{2}+\ldots\right)}\right)$

Quark propagator corrections

can have 0 or 2 flip vertices (1 gives zero by symmetry)

- Loops give m_{q}-dependent divergence \sim $\left(\int d^{2} \mathbf{k} \frac{m_{q}^{2}}{(\mathbf{k}-\ldots)^{2}+\ldots}\right)$

- Can absorb into a renormalization of m_{q}^{2} in ED of LO LCWF $\left(k_{q}^{-}=\left(\mathbf{k}_{q}^{2}+m_{q}^{2}\right) /\left(2 k_{q}^{+}\right)\right)$
- But now the problem, known since 90's e.g. Haridranath, Zhang, also Burkardt in Yukawa th.
- In our regularization: k^{+}cutoff, \perp dim. reg. this kinetic mass counterterm δm_{k} is not same as the vertex correction δm_{v}
- In fact δm_{v} is same as in covariant theory, δm_{k} different

Mass renormalization

- Mass has 2 conceptually different roles:
- Kinetic mass: relates energy and momentum
- Vertex mass: amplitude of helicity flip in gauge boson vertex
- 1 parameter in Lagrangian, but 2 parameters in LCPT Hamiltonian
- and thus in Hamiltonian LC quantization
- Lorentz-invariance requires they stay the same
- In practical LCPT calculations so far used k^{+}-cutoff and \perp dim. reg. violates rotational invariance $\Longrightarrow m_{v} \neq m_{k}$ at loop level \Longrightarrow "textbook stuff"

There are 3 options to deal with this

1. Smartly combine with instantaneous "normal ordering" diagrams before regularizing \& integrating \Longrightarrow can keep $m_{k}=m_{v}$ but cannot calculate blindly For details see Beuf @ Hard Probes 2018
2. Use some other regularization \Longrightarrow finite parts hard!
3. Regularize as before, but use additional renormalization condition to set separately m_{v} and $m_{k} \Longrightarrow$ discuss next

Two mass renormalization conditions

- Pole mass: on-shell renormalization point:
- Timelike virtual $\gamma^{*} \rightarrow q \bar{q}$ with $q^{2}=M^{2}$ (Same diagrams as for spacelike γ^{*})
- On-shell final state $M^{2}=\left(\mathbf{P}^{2}+m_{q}^{2}\right) /(z(1-z))$ (i.e. $E D_{\mathrm{LO}} \rightarrow 0$)
- One condition:

- Second condition (+ cross checks) from Lorentz-invariance @ on-shell point 1-loop vertex corrections: 4 scalar coefficients of 4 Dirac structures
$\bar{u}(0) \not \ddagger_{\lambda}(q) v(1) \quad\left(\mathbf{P} \cdot \varepsilon_{\lambda}\right) \bar{u}(0) \gamma^{+} v(1) \quad \frac{\left(\mathbf{P} \cdot \varepsilon_{\lambda}\right)}{\mathbf{P}^{2}} \mathbf{P}^{j} \bar{u}(0) \gamma^{+} \gamma^{j} v(1) \quad \varepsilon_{\lambda}^{j} \bar{u}(0) \gamma^{+} \gamma^{j} v(1)$
must reproduce 2 Lorentz-invariant form factors (Dirac \& Pauli) \Longrightarrow vertex mass

NLO heavy quark cross section in action

H. Hänninen, H. Mäntysaari, R. Paatelainen and J. Penttala, (arXiv:2211.03504 (hep-ph)).

- NLO dipole picture fit to light quark HERA data
- Calculate charm reduced cross section: $\chi^{2} / N_{\text {dof }} \gtrsim 1$
- LO problem of simultaneous fit of σ_{r} and σ_{r}^{c} resolved.

Conclusions

- High energy scattering of dilute probe off strong color fields:
- Target: classical color field
- Probe: virtual photon,
develop in a Fock state expansion in Light Cone Perturbation Theory
- This calculation carried out to one-loop order for massless quarks in 2017
- Successful description of HERA total cross section data
- Calculation for massive quarks, 2022:
- Many features similar to massless case
- Sizeable calculation, nontrivial amount of algebra
- Full practicable solution for mass renormalization, including finite parts
- Future: diffractive DIS, forward proton-nucleus physics, ...

$\gamma^{*} \rightarrow q \bar{q}$ with massive quarks

New result Beuf, Paatelainen, T.L. 2112.03158, 2204.02486 full LC gauge 1-loop structure of $\gamma^{*} \rightarrow Q \bar{Q}$

$$
\begin{aligned}
\tilde{\psi}_{\text {NLO }}^{\gamma_{T}^{*} \rightarrow q \bar{q}} & =-\frac{e e_{f}}{2 \pi}\left(\frac{\alpha_{S} C_{F}}{2 \pi}\right)\left\{\left[\left(\frac{k_{0}^{+}-k_{1}^{+}}{q^{+}}\right) \delta^{i j} \bar{u}(0) \gamma^{+} v(1)+\frac{1}{2} \bar{u}(0) \gamma^{+}\left[\gamma^{i}, \gamma^{j}\right] v(1)\right] \mathcal{F}\left[\mathbf{p}^{i} \mathcal{V}^{T}\right]+\bar{u}(0) \gamma^{+} v(1) \mathcal{F}\left[\mathbf{p}^{j} \mathcal{N}^{T}\right]\right. \\
& \left.+m \bar{u}(0) \gamma^{+} \gamma^{i} v(1) \mathcal{F}\left[\left(\frac{\mathbf{p}^{i} \mathbf{p}^{j}}{\mathbf{p}^{2}}-\frac{\delta^{i j}}{2}\right) \mathcal{S}^{T}\right]-m \bar{u}(0) \gamma^{+} \gamma^{j} v(1) \mathcal{F}\left[\mathcal{V}^{T}+\mathcal{M}^{T}-\frac{\mathcal{S}^{T}}{2}\right]\right\} \varepsilon_{\lambda}^{j} .
\end{aligned}
$$

$$
\begin{aligned}
& \mathcal{F}\left[\mathbf{P}^{i} \mathcal{V}^{T}\right]=\frac{i \mathbf{x}_{01}^{i}}{\left|\mathbf{x}_{01}\right|}\left(\frac{\kappa_{z}}{2 \pi\left|\mathbf{x}_{01}\right|}\right)^{\frac{D}{2}-2}\left\{[\frac { 3 } { 2 } + \operatorname { l o g } (\frac { \alpha } { z }) + \operatorname { l o g } (\frac { \alpha } { 1 - z })] \left\{\frac{(4 \pi)^{2-\frac{D}{2}}}{\left(2-\frac{D}{2}\right)} \Gamma\left(3-\frac{D}{2}\right)+\log \left(\frac{\left|\mathbf{x}_{01}\right|^{2} \mu^{2}}{4}\right)\right.\right. \\
& \left.+2 \gamma_{E}\right\}+\frac{1}{2} \frac{\left.D_{s}-4\right)}{(D-4)} \kappa_{z} \kappa_{\frac{D}{2}-1}\left(\left|\mathbf{x}_{01}\right| \kappa_{z}\right)+\frac{i \mathbf{x}_{01}^{i} \mid}{\left|\mathbf{x}_{01}\right|}\left\{\left[\frac{5}{2}-\frac{\pi^{2}}{3}+\log ^{2}\left(\frac{z}{1-z}\right)-\Omega_{V}^{T}+L\right]_{\left.\kappa_{z} K_{1}\left(\left|\mathbf{x}_{01}\right| \kappa_{z}\right)+I_{V}^{T}\right\}}\right.
\end{aligned}
$$

$$
\mathcal{F}\left[\mathbf{P}^{j} \mathcal{N}^{T}\right]=\frac{i \mathbf{x}_{01}^{j}}{\left|\mathbf{x}_{01}\right|}\left\{\Omega_{\mathcal{N}}^{T} \kappa_{z} K_{1}\left(\left|\mathbf{x 0}_{01}\right| \kappa_{z}\right)+I_{\mathcal{N}}^{T}\right\}
$$

$$
\begin{gathered}
\mathcal{F}\left[\left(\frac{\mathbf{P}^{i} \mathbf{P}^{j}}{\mathbf{P}^{2}}-\frac{\delta^{i j}}{2}\right) \mathcal{S}^{T}\right]=\frac{(1-z)}{2}\left[\frac{\mathbf{x}_{01}^{i} \mathbf{x}_{01}^{j}}{\left|\mathbf{x}_{01}\right|^{2}}-\frac{\delta^{i j}}{2}\right] \int_{0}^{z} \frac{\mathrm{~d} \chi}{(1-\chi)} \int_{0}^{\infty} \frac{\mathrm{d} u}{(u+1)^{2}}\left|\mathbf{x}_{01}\right| \sqrt{\kappa_{z}^{2}+u \frac{(1-z)}{(1-\chi)} \kappa_{\chi}^{2}} \\
\times K_{1}\left(\left|\mathbf{x}_{01}\right| \sqrt{\kappa_{z}^{2}+u \frac{(1-z)}{(1-\chi)} \kappa_{x}^{2}}\right)+[z \leftrightarrow 1-z] .
\end{gathered}
$$

$$
\begin{aligned}
& \mathcal{F}\left[V^{T}+\mathcal{M}^{T}-\frac{\mathcal{S}^{T}}{2}\right]=\left(\frac{\kappa_{z}}{2 \pi \mid \mathbf{x}_{01}}\right)^{\frac{D}{2}-2}\left\{[\frac { 3 } { 2 } + \operatorname { l o g } (\frac { \alpha } { z }) + \operatorname { l o g } (\frac { \alpha } { 1 - z })] \left\{\frac{(4 \pi)^{2-\frac{D}{2}}}{\left(2-\frac{D}{2}\right)} \Gamma\left(3-\frac{D}{2}\right)+\log \left(\frac{\left|\mathbf{x}_{01}\right|^{2} \mu^{2}}{4}\right)\right.\right. \\
& \left.\left.+2 \gamma_{E}\right\}+\frac{1}{2} \frac{\left(D_{s}-4\right)}{(D-4)}\right\} K_{\frac{D}{2}-2}\left(\left|\mathbf{x}_{01}\right| \kappa_{z}\right)+\left\{3-\frac{\pi^{2}}{3}+\log ^{2}\left(\frac{z}{1-z}\right)-\Omega_{V}^{T}+L\right\} K_{0}\left(\left|\mathbf{x}_{01}\right| \kappa_{z}\right)+I_{\mathcal{M} \mathcal{S} S}^{T},
\end{aligned}
$$

$$
\begin{aligned}
& -\int_{0}^{0} \frac{d x}{(1-x)^{2}} \int_{0}^{0} \frac{d x}{(x+1)}(x-x)\left[1-\frac{2 x}{1+u}(x-x)+\left(\frac{x}{1+x+u}\right)^{2} \frac{1}{2}(x-x)^{2}\right]
\end{aligned}
$$

$$
\begin{aligned}
& L_{K}^{X}=\frac{2(1-z)}{z} \int_{0}^{z} d x \int_{0}^{\infty} \frac{d u}{(u+1)^{s}}\left\{\left[(2+u) u z+u^{2} x\right] \sqrt{\kappa_{z}^{2}+u\left(\frac{(1-z)}{(1-x)} \kappa_{x}^{2}\right.} K_{1}\left(\left|x_{01}\right| \sqrt{\kappa_{z}^{2}+u_{(}^{(1-s)}(1-x)} \kappa_{x}^{2}\right)\right. \\
& +\frac{m^{2}}{\kappa_{x}^{2}}\left(\frac{z}{1-z}+\frac{x}{1-x}[u-2 z-2 u x \mid)\left[\sqrt{\kappa_{z}^{2}+u\left(\frac{(1-z)}{(1-x)} k_{x}^{2}\right.} K_{1}\left(\left|x_{u 1}\right| \sqrt{\kappa_{x}^{2}+\frac{u(1-z)}{(1-x)} k_{x}^{2}}\right)-[u \rightarrow 0]\right]\right\}-\{z \leftrightarrow 1-z \mid-
\end{aligned}
$$

```
T
```


