What is light-front
quantization?

Xiangdong Ji, UMD
ILCAC seminar, Jan, 18, 2023




Outline

* The standard definition

* LFQ as Infinite-momentum frame (IMF) limit of
Instant quantization
 Super-renormalizable theories
 Theories with non-trivial UV divergences
 Analogy with critical phenomena

 LFQCD as an EFT of Euclidean QCD (LaMET)
* Some examples
* Summary



The standard definition



Relativistic dynamics
e Three forms; (Dirac, 1949)
Instant: ordinary dynamics

Point: used in heavy-ion collision
Light-front: light-traveler dynamics?

REVIEWS OF MODERN PHYSICS VOLUME 21, NUMBER 3 JULY, 1949

Forms of Relativistic Dynamics

P. A. M. DirAc
St. John's College, Cambridge, England

For the purposes of atomic theory it is necessary to combine the restricted principle of relativity with
the Hamiltonian formulation of dynamics. This combination leads to the appearance of ten fundamental
quantities for each dynamical system, namely the total energy, the total momentum and the 6-vector
which has three components equal to the total angular momentum. The usual form of dynamics expresses
everything in terms of dynamical variables at one instant of time, which results in specially simple expres-
sions for six or these ten, namely the components of momentum and of angular momentum. There are
other forms for relativistic dynamics in which others of the ten are specially simple, corresponding to
various sub-groups of the inhomogeneous Lorentz group. These forms are investigated and applied to a
system of particles in interaction and to the electromagnetic field.




Front-form (light-front) dynamics

* Front-form coordinates
xt = % (x% + x3)
x"= % (x% — x3)
x; = (x1,x?)
* The front-front dynamics is
determined by x™ evolution

through the “Light-front
Hamiltonian”

_ 1
P~ =—=(P"—P?)

Light-front travelling in z(x%)
direction x*=const

‘Cl

P.AM. Dirac,
Rev. Mod. Phys. 21, 1949



LF QuantumAeld Theory

* Postulating commutators at equal LF time

 Expand the fields in terms of creation and
annihilation operators at a particular LF time

* LF momentum & Hamiltonian eigen-quation
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Brodsky, Pauli & Pinsky, Phys. Rep. 301, 1998



|LH) as Infinite-nomentumfrane
(IMP) limit of instant quantization



Infinite momentumframe (IMP) & GFT

* Fubini & Furlan, Physics, 1, 19635

Infinite momentum frame (IMF), or light-travelling
proton, introduced as a slick “math trick” to derive
useful sum rules & light-cone algebra.

« What a QFT (scalar) look like when boosted to IMF?

S. Weinberg, Dynamics at infinite momentum 8/ B
Phys. Rev. 150 (1966) 1313 N B



Wainberg's GFT rules in IMF

« All kinematic infinities (y,, -factor) can be removed
from the calculations, resulting a “new” set of rules
for Hamiltonian perturbation theory.

* Weinberg was not aware of Dirac’s work. However,
what he had showed was (formally)

QFT in IMF = Dirac’s front-form dynamics,
“provided all UV divergences are ignored.”
* The finding was very quickly confirmed by

Susskind (1968), Bardakci, and Halpern (1968)
Chang and Ma (1969), Kogut & Soper (1970): GED



IM-limt & WV divergences

* How does UV divergences affect IMF=LFQ?

* Not a problem for super-renormalizable (SR)

theories:
* All non-trivial interactions are irrelevant operators, or, all
couplings have positive mass dimensions.

* The number of counter-terms needed to render the Green
functions finite decreases as the number of loops

InCreases.
* Many interesting 1+1D QFT, but not Gross-Neveu etc
models which are not SR.



t' Hooft nodel

g, (x, P) and gj(x)

+ 141 D QCD with N, = oo

Can be solved exactly at
any finite PZ. (v. Jia PRD 2018) et al)

« Mom dis. Calculated at
various mom:

zZ
pTL' — mn, Smn, 8m7'[ nnn

pqzb — mqu 2m¢, 5m¢ -
 LFQ is recovered from instant
form as a smooth limit of p* — oo




Oitical (renommalizable) theories?

A dimensionless integral depending on P# in 3+1D QCD

Agy 1
f d*k
m )y -P-y- k) k?

* Integral is UV divergent, A, shall be larger than any
physics scales (P%)
 Alog dependence In(P?/Ayy) !

* Nalve P? — oo limit does not exist, P* = oo is singular or not
analytical.



Take the integral toLF

 LFQ is obtained by taking P* — oo under the integral
sign (after integrating k°)

* The integral becomes formally independent of P*

 The UV behavior of the integral is now different
* There is a light-cone singularity originated from
In(P?/Ayy) after taking P? — oo
 Spurious LC singularities

* Time-ordered graphs are potentially more divergent
because of Lorentz symmetry breaking

* For gauge-invariant quantities, choice of LC gauge may
lead to additional LC divergences.



VWhat 1s LH)Y?

* |t depends on how to regularize LC div.

* |f one uses regulators that respect basic symmetries
(Lorentz, gauge), there will be no spurious LC
singularities.

* Define LFQ:

 The LC divergence can be regulated with standard UV
regulators (like DIM REG).

« LFQis an EFT of the original theory, in the same sense
HQET is an EFT of heavy quark physics.



Double-log dependences

* Consider the WF renormalization of a quark in axial
gauge: nA=0.

 The WF renormalization constant Z(p) has a double
log dependence

Z =1+ aln*P? + ..
which is due to soft & collinear physics

* In LFQ, this leads to a new type of LC divergences
which can again be regulated in the standard UV
regularization, leading to double poles per loop in DR.



So, when P# — oo isnat well defined..

* We define the limit by taking P# — co under the integral
sign.

 Regularize the LC divergences with standard UV method.
And the result is defined as LFQ, and is an also EFT of the
original theory.

LFQ = EFT of large P limit

0 1/ P

 PS: All spurious LC divergences are effectively regulated without
any essential symmetry breaking.



Pz =co Isa cntical paint

* Due to Lorentz boost, the longitudinal correlation
functions in the coordinate space

C(A) ~ exp(—A/&corr)
Longitudinal correlation length: €., ~ % — 00,

» The correlation functions decay algebraically

C(A) ~ /1—1+a

» Corresponding to small-x behavior of PDFs

fx) ~x7



|LHXCDas an BT of Buclidean QCD



LFQ.for QCD

« Light-front wave-function (amplitudes)
* PDF, DA, TMDPDF, GPDs, etc...

* All of these can be obtained from large momentum
limit of time-independent correlation functions in
instant form of QCD

Large momentum effective theory or LaMET

* Time-independent correlation functions can be
computed from Euclidean formulation of QCD, such as
lattice QCD or instanton calculus.

« Many LaMET works in PDF, DA, TMDPDF, GPDs



Main steps for LPAF through LaVET

1. Defining LFWF amplitudes as gauge-invariant
matrix elements.

2. Perturbative LFQ without LF Hamiltonian

3. Using off-LC regulators and lattice QCD to finish
nonperturbative calculations (again without LF-
Hamiltonian), matching to on LC scheme.



Step 1. LPAF anplitudes as gauge-
Invarant natnx elements

* Consider a hadron state with Fock states expansion
on pert. QCD vacuum,

:Z/drnwn(xzaEzL)Haj(xuE?'L)’(D
n=1

* The LFWF amplitudes

”gb:l?kL 0|H xkl|P

we can replace the pert vacuum by QCD vacuum if
one ighores the zero modes.



Gauge-invanance

* Introduce guage-invariant LF fields

(€)= W (9)a(8) .
with light-like gauge-link W+ (¢) defined as

Too
I-'I-"’_f (&) = Pexp [—-i-g- / dAn - A(€ + /\-n.)]
0

* Gauge-invariant LFWF amplitude (covariant)

N
VE (24, b 1) = /de\iﬂu"m‘ x eTiAoTo
i=1

N
x (0|Py H(pgt(/\m.juz?u)@oi(,\on.Jrz?M)|P> .
=1

where |0) is the QCD vacuum.



Gauge-invanant LPAF anplitudes

J =t

% In singular gauges, such as the light-cone gauge A™ =
0, one has to choose the link connection at {~ = + oo,
which are related to zero modes.



Stepz Perturbative LFQwithout LF
Hamltonian

» Standard approach to get the LFWF amplitudes is
through LC-time-ordered pert. theory in light-cone
gauge.

U|®) = \/Z{I‘I’> + Zf I”l)(nllﬂint(on‘?)

n P~ — Pn, + 1€

s [n1}{n1 | Hing (0)|n2) (n2| Hint (0)| )
+an:= (P~ — Pny +1€)(p~ — pny + 1€)

ro)

where Hint IS the interactions part of P-

However, it contains a lot of divergences.
(Zhang & Harindranath, 1993)



Conmputation with gauge-invanant
anplitudes

L;I'\‘T
ir":”jj\frﬂ(ﬂ‘:i: bii.j) = / Hd/\ie”‘ixi x e iMoo
- :1

P\‘T
x (0|Py H OE(Nin+bi1 )BF (Non+boL)|P) .

* The calculation can be done in covariant gauge
and covariant perturbation theory.

* The only new divergences come from the light-cone
gauge link.

* This has been called rapidity divergence arising from
zero modes.



Regulanzation of LC rapidiity divergences

* Delta-regulator:
ptf dx~a*(x™) _ oif dx—At(x")e 9 |x |.
M.G. Echevarria, |.Scimemi, and A. Vladimirov, PRD 2016
* LF length re%ulator -
el dx~A*(x7) eifo dx~—AY(x™)
A Vladimirov, PRL 2020

* Exponential regulator
Defined through final-state cuts,
not applicable for LFWFs.

Y.Li, D.Neill, and HX.Zhu, NPB 2020



Exanple: Meson LFAF

* Leading amplitudes

d/\
2 27r

< (O[T, (An/2 + b1 )7y W (— /\?1-/2)\P>)5_

uqq N by, 07) =

vgq Dby, 07)

QSCF O:SCF
— _.-.‘_.-. . . (5 A
/y;j 57 F/ 2 [F(‘L"Lo'bl'#)]—}— + 2T (‘L ‘LO)
. —(67)2 x4 ]
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) F(z,z9.b1 . )
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Soft Functions with rapidity divergence
(zero modes)

* Define the soft functions
N
S8 (bis 1 07.67) = (0]TPy [[CE(bir.67.67)0) |
where C contains conjugating Wilson lines

CE(by,6%,67) = WEGL)|s-Wi B+

where W, is defined as

+oo
1-1-’r;,i(gl) = Pexp [—-ig/ dN'p-ANp+bL)| .
0




Renomalization of rapidity divergence

* Rapidity renormalized WF amplitudes

ﬂ}(;t,1 bi | . [, 07")

LT)_,:\I:( (.1,1 R b?’.L \ [_L = 6111110 _;
- \/5 (biy,p, 0= e2um 67)

* Rapidity evolution equation (Collins-Soper eq.)

QC—ClnaN(a, it C) = Kn (b, p) .

Kernel K is non-perturbative at large b L



Rapidity renormalized meson WF
anplitudes

* One-loop result, potentially calculable to all-order in
pQCD

?-“'{"{:j'f; (JJ by, C) ('
— QSCTF . QSCF - o
~ or [F(‘eroabls”)]Jr + o 5('1'7‘1’0)

2 2
X —5+Lb 3—|—111 " +l—ﬁ—
2 2 ++/¢C — i0 2 12

. The renormalized WF amplitude satisfies the rapidity
o Evolutlons (momentum) evolution equation

QC—Clﬂhi(i bi.p.Q)=Kq(br.p),

and the RGE:

d
ugd R LACKINING
1 2
— _Fcus C}:S lIl — — Y CI{S .



Step 3: Conputing non-pert. LFAF
through lattice QCD & matching

e Light-momentum effect theory (LaMET) allows light-
front correlations be connected to Euclidean
correlations: IR physics is independent of frames)

* Differences in UV can be matched through pert QCD.

* Rapidity divergences are related to large-Pz
divergences.

» Standard lattice QCD method can be used to compute
Euclidean correlations.



Quas LPAF amplitudes
* Euclidean WF amplitudes

L—oc

;i:f (‘L?r E?J_H Cz) = lim /d)\_ie_é’)“ixi_i)\oi‘co
<0"PN Hf\;l (I)ii(/\’in‘z + g-ij_; L)(I)S:()\Onz; L)‘P)
\/ZE(QL E’LL H)

 Gauge-invariant fields

FLEe?
O (& L) = Pexp [ig /U AANAT(E+An. )| &(€)




Regulanzing RDthrough off-light-cone
soft function

* Define two off-light-cone vectors

P py =p—ec (P+)n n—nyr=n-—e" gyr“ﬁ)z

e Soft functions

CEbLY.Y') =W, (b)W/, (bL) .
where the off-light-cone gauge-links W, and W,
Si(gil 1Y, Y’) defined as
_ {OPNT Lo CE(Bir, Y. Y)[0) Wiy (Ba) = Pexp [—e’-g / dNpy - A(Npy +5u]
0

VZe(Y)WZp(Y')

and

+oo
W=E (by) = Pexp [—ig/ dMny. - A(Any: + bl)]
0

ny;



Matching Formula

/_\g::r‘ T,
T .
Tw

T¢z—10

q:;i:f (‘Tt l_;iJ_ s s Cz)\/S'rN (Z_;i.J_: Ju) — 6111 ¢ K (biL.n)

X Hj:\i,:f' (Cz,i/.lug) Q'L)i:f'(T?. biJ_:;u': C) T






Transverse Momentum Dependent Wave Functions from Lattice QCD
(Lattice Parton Collaboration (LPC))

Min-Huan Chu,'>2 Jin-Chen He,? Jun Hua,*% * Jian Liang,*® Xiangdong Ji.®> Andreas Schiifer,® Hai-Tao Shu,%:
Yushan Su,® Wei Wang,!' 7 Ji-Hao Wang.®? Yi-Bo Yang.® 9 1% 11 Jun Zeng,! Jian-Hui Zhang,'? 13 and Qi-An Zhang!4

LINPAC, Shanghai Key Laboratory for Particle Physics and Cosmology,
Key Laboratory for Particle Astrophysics and Cosmology (MOE),

School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
2Yang Yuanging Scientific Computering Center, Tsung-Dao Lee Institute,
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We present a first lattice QCD calculation of the transverse momentum dependent wave functions
(TMDWFs) in large-momentum effective theory. Numerical simulations are based on 2+141 flavors
of highly improved staggered quarks action with lattice spacing a=0.121 fm from MILC Collabo-
ration, and another 2 +1 flavor clover fermions and tree-level Symanzik gauge action configuration
generated by CLS Collaboration with a=0.098 fm. We present the result for soft function that
incorporates the one-loop perturbative contributions and a coherent normalization. Based on the
obtained soft function, we simulate the equal-time quasi-TMDWTEF's on the lattice, and extract the
physical TMDWFs. A comparison with the phenomenological parameterization is made and con-
sistent behaviors between the two lattice ensembles and phenomenological model are found. Our
studies provide crucial ab initio theory inputs for making precise predictions for exclusive processes
under QCD factorization.



FIG. 1. Illustration of quasi-TMDWEF in coordinate space
with a staple-shaped gauge-link inside. As the green and red
double lines represent the gauge-link in 1I’+(,z, bi,p,¢*) and
&'_(Z}bj_};.b, ¢*), a corresponding staple-shaped Wilson loop
Zp(2L+2,b, , ) is constructed to cancel the linear and cusp
divergences.



TABLE I. The numerical simulation setup. On each ensemble,
we put 8/4 source slices in time direction.

sea val

Ensemble a(fm) L° x T My My Measure
al2m310 0.121 24°x 64 310 MeV 670 MeV ~ 1053x8
X650 0.098 48°x 48 333 MeV 662 MeV ~ 911x4

Re[U™ (z, by, pu, (7)].P* =2.15 GeV

1.2 1

1.0 1

0.8

0.6

0.4+

0.2

0.0 frmmm e

0.0

Im[U™ (z,b, . p, ¢7)],P* =2.15 GeV

0.6
0.5
0.4
0.3
0.2
0.11 b, =2a

(1,00 o e e et e b =38 mmm———

—0.1 1

T
0.0 0.2 0.4 0.6 0.8 1.0

FIG. 2. The real part (upper panel) and the imaginary part
(lower panel) of quasi-TMDWEF in momentum space, with
hadron momentum P* = 2.15 GeV on MILC ensemble.
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FIG. 3. The one-loop intrinsic soft function as a function of
b,. The grey band corresponds to the one-loop perturbative
result in MS scheme and the band is obtained by po = 1/b7
varying for the scale b} € [1/\/5,@ b,. The label &+ in

Slat,l loop+

represents the lattice results extracted by UE,



Lowest fock state LPFAF

Re[¥~(z,b, )] on MILC
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llf(m :U5J bJ_)
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FIG. 5. Comparison of the transverse momentum distribu-
tion in our results with {¢,u} = {(6 GeV)?,2 GeV} and
phenomenological model at = 0.5 point.



ML

* LPC (J.C.He et al, 2211.02340)

b, = 0.24fm = (0.82GeV)"! b, = 0.36fm = (0.55GeV) ™!

b, = 0.12fm = (1.64GeV)~!

xf(x, b.l.ru'{ )

FIG. 5. Our final results for isovector unpolarized TMDPDFs zf(z,b., 1, () at renormalization scale g = 2 GeV and rapidity
scale v/ = 2 GeV, extrapolated to physical pion mass 135 MeV and infinite momentum limit P* — oo, compared with PV17
[6], MAPTMD22 [9], SV19 [7] and BHLSVZ22 [8] global fits (slashed bands). The colored bands denote our results with both
statistical and systematic uncertainties, the shaded grey regions imply the endpoint regions where LaMET predictions are not

reliable.



PﬂYSIC&]l effects of zero nmode (i, 2003.04473)

* While zero modes are difficult to control in the QCD
Hamiltonian and LFWFs directly, it is possible to
calculate directly through laMET in physical
observables: Mass, scalar charge, ...

* Sivers function k)= [ f;—b; i HiE LT

< (Plo(An + b )y T Wa(An + b )w(0)|P), |

fTMD(;L,, ki1,S1)~(Sy x Ei)zfﬁﬂ(x’ ki) + ...

where W,,(An + b 1) is the staple-shaped gauge link,

Wa(€) = WHEOWT (£L)WL(0)W,,(0) . f

a zero-mode effect!

A well-defined procedure has been developed in LaMET to
calculate this.



Conclusions

* Directly solving LFQ version of 3+1 QCD is very very
nard, if not impossible. It corresponds to a critical

noint.

* |f considered as an effective theory, it can be
obtained from Euclidean QCD in the IMF limit.

* Lattice QCD can be used to calculated all the relevant
LF quantities, such as LFWF, PDF, DA, TMDPDF, & GPD
through EFT matching and running.




