

KNU PHYSICS SEMINAR

August 29 2022

Exploring the 3D structure of nucleon resonances based on transition GPD measurements at JLAB

Stefan Diehl

Justus Liebig University Giessen University of Connecticut

08/29/2022

Thomas Jefferson National Accelerator Facility (JLAB)

Thomas Jefferson National Accelerator Facility (JLAB)

- CEBAF Upgrade completed in September 2017
 - \rightarrow electron beam
 - \rightarrow E_{max} = 12 GeV, I_{max} = 90 µA, PoI_{max} ~ 90%

 4 halls running simultaneously since January 2018

CLAS / CLAS12 in Hall B at JLAB

- $\blacktriangleright \ \mathcal{L} = 1 \times 10^{35} \ \mathrm{cm}^{-2} \mathrm{s}^{-1}$
- Inclusive electron trigger (all reactions will be analyzed in parallel)

CLAS12 Experimental Setup in Hall B at JLAB

→ Data of this talk was recorded with CLAS12 during fall 2018 and spring 2019
 → 10.6 / 10.2 GeV e⁻ beam → ~87 % average polarization → liquid H₂ target
 → Analysed data ~ 35 % of the approved RG-A beam time

QCD Science Questions

How are the quarks and gluons, and their intrinsic spins distributed in space & momentum inside the nucleon?

How can we recover the well-known characterics of the nucleon from the properties of its **colored building blocks**?

Mass? Spin? Charge? .

What are the relevant **effective degrees of freedom** and **effective interaction** at large distance?

What is the role of orbital angular motion?

Classical: L ~ r x p

We need something three-dimensional!

We need to investigate the 3D nucleon structure!

3-Dimensional Imaging of Quarks and Gluons

3-Dimensional Imaging of Quarks and Gluons

Generalized Parton Distributions (GPDs)

4 chiral even GPDs 4 chiral odd GPDs

Interpretation of GPDs in the kinematic limits

in forward kinematics (
$$\xi=0, t=0$$
) : **PDF limit**

 $H^q(x,\xi=0,t=0) = q(x)$

$$\zeta \sim x_{\rm B}/(2-x_{\rm B})$$

9

first moments of GPDs : elastic form factor limit

Physics content of GPDs

• GPDs provide indirect access to mechanical properties of the nucleon (encoded in gravitational form factors of the energy-momentum tensor)

X. D. Ji, PR**D 55**, 7114-7125 (1997)

M. Polyakov, PLB 555, 57-62 (2016)

Physics content of DVMP results

			Meson	Flavor
			π^+	$\Delta u - \Delta d$
		$\mathcal{H}_{\mathcal{T}}, \overline{\mathcal{E}}_{\mathcal{T}}$	π^{0}	$2\Delta u + \Delta d$
			η	$2\Delta u - \Delta d + 2\Delta s$
			$ ho^+$	u-d
		\mathcal{H},\mathcal{E}	$ ho^{0}$	2u + d
			ω	2u-d
			ϕ	g
$egin{aligned} \kappa^u_T &= \int dx ar{E}^u_T(x,\xi,t=0) \ \kappa^d_T &= \int dx ar{E}^d_T(x,\xi,t=0) \end{aligned}$				

\overline{E}_{T} is related to the protons anomalous tensor magnetic moment

$$\delta_T^u = \int dx H_T^u(x,\xi,t=0)$$
$$\delta_T^d = \int dx H_T^d(x,\xi,t=0)$$

- \mathbf{H}_{T} is related to the protons tensor charge
- ➔ Absolute magnitude of transversly polarized valence quarks inside a transv. polarized nucleon

From the ground state nucleon to resonances

From classical GPD to transition GPDs

Past: Extensive studies of transition form factors (**2D picture** of transv. position)

But: How does the exitation affect the **3D structure** of the Nucleon?

- \rightarrow Pressure distributions, tensor charge, ... of resonances?
- → Information encoded in **transition GPDs**
 - \rightarrow More difficult theoretical description due to additional degrees of freedom

Simplest case: $N \rightarrow \Delta$ transition

➔ 16 transition GPDs

- 8 helicity non-flip transition GPDs (twist 2)
- 8 helicity flip transition GPDs

Transition GPDs in the twist-2 sector

 $N \rightarrow \Delta$ transition: 8 twist-2 helicity non-flip transition GPDs

- \rightarrow 3 of them are dominating in the large $\rm N_{C}$ limit
- \rightarrow Connection to proton-proton GPDs via symmetry considerations
- → Description of leading twist effects / longitudinal virtual photons (σ_L)
 - \rightarrow First theoretical works available

Experimental Access to Transition GPDs (twist 2)

Experimental access: Non diagonal DVCS process

$$\gamma * p \rightarrow N * \gamma \rightarrow N meson \gamma$$

factorisation for: $-t/Q^2$ small, x_B fixed

Two final states have been studied:

$$\gamma^* p \to N^* \gamma \to p \pi^0 \gamma \to p \gamma \gamma \gamma$$
$$\gamma^* p \to N^* \gamma \to n \pi^+ \gamma$$

First Theoretical Description of the Δ Region

Accessible Kinematic Region with CLAS12 (10.6 GeV)

Resonance Mass Spectrum for $N^*{\rightarrow}n\pi^+$

The Pion Longitudinal Momentum Fraction

Resonance Mass Spectrum for 0.1 < \alpha < 0.4

Resonance Mass Spectrum for $N^{*} \rightarrow p \pi^{0}$

The non-diagonal DVMP processes

$$ep \to e\Delta^{0}\pi^{+} \to e(p\pi^{-})\pi^{+}$$
$$ep \to e\Delta^{0}\pi^{+} \to e(n\pi^{0})\pi^{+}$$
$$ep \to e\Delta^{+}\pi^{0} \to e(n\pi^{+})\pi^{0}$$
$$ep \to e\Delta^{+}\pi^{0} \to e(p\pi^{0})\pi^{0}$$

$$ep \rightarrow e\Delta^{++}\pi^- \rightarrow ep\pi^+\pi^-$$

8 helicity non-flip trans. GPDs

+

8 helicity flip trans. GPDs

- \rightarrow Needed for twist-3 sector
- \rightarrow No publications so far

Hard exclusive $\pi^-\Delta^{++}$ production

 $ep \rightarrow e\Delta^{++}\pi^{-} \rightarrow ep\pi^{+}\pi^{-}$

Factorisation expected for:

 $-t / Q^2 << 1$ and $Q^2 > M_{\Delta}^2$

x_B fixed

Non-diagonal π[±] production is expected to be especially sensitive to the tensor charge of the resonance

Why is $\pi^{-}\Delta^{++}$ special?

Other non - diagonal DVMP channels, i.e. $ep \rightarrow e\Delta^0 \pi^+ \rightarrow e(p\pi^-)\pi^+$

- → The $p\pi^+$ final state can **only** be populated by **Δ-resonances**
 - → Large gap between $\Delta(1232)$ and higher resonances

Stefan Diehl, JLU + UConn

Event Selection and Kinematic Cuts

Event Selection and Background Rejection

Stefan Diehl, JLU + UConn

KNU Physics Seminar

08/29/2022

Monte Carlo Simulations

2 MC samples have been used:

a) Semi-inclusive DIS MC

- → Does not contain the π - Δ ⁺⁺ production in "forward" kinematics
- \rightarrow Contains nonres. background as well as ρ production and other potential BG channels
- → Used to estimate background shape and contaminations

b) Exclusive $\pi^-\Delta^{++}$ MC

- \rightarrow Phase space simulation with a weigth added to match experimental data
- $\rightarrow \Delta$ peak with PDG mass and FWHM
- → Both MCs are processed through the full simulation and reconstruction chain

Event Selection and Background Estimate

Event Selection and Background Estimate

Resulting Beam Spin Asymmtries (Q²-x_B integrated)

Q² - x_B Integrated Result

acceptance, bin migration, radiative effects

Multidimensional Results

Stefan Diehl, JLU + UConn

08/29/2022

Perspectives for a 24 GeV JLAB upgrade

Conclusion and Outlook

- Transition GPDs can help us to better understand the 3D structure of resonances and the exitation process itself.
- Non-diagonal DVCS and hard exclusive π - Δ ++ production can be well measured with CLAS12
- The extracted π - Δ ⁺⁺ BSA is a potential first "clean" observable sensitive to $p-\Delta$ transition GPDs
- Theory predictions are so far only available for twist-2 transition GPDs
 - → Extension of the framework to the twist-3 sector needed
 - → Connection of transition GPDs to physics properties (sum rules etc.) needed

