Studies of ϕ meson mass modification inside nuclei through K⁺K⁻ decay (J-PARC E88)

Reimei Workshop

"Polarization phenomena and Lorentz symmetry violation in dense matter"

2022/10/8

Hiroyuki Sako (JAEA) for the E88 collaboration

Contents

- 1. Introduction and goals of J-PARC E88
- 2. Detector setup and feasibility
- 3. Expected results
- 4. Possibility of ϕ polarization dependence
- 5. R&D status of detectors
- 6. Summary

J-PARC Accelerator Complex

J-PARC-E88 Collaboration

- H. Sako (Spokesperson), S. Sato (ASRC, JAEA)
- K. Aoki, Y. Morino, K. Ozawa (KEK/J-PARC)
- W. C. Chang, M. L. Chu (Academia Sinica, Taiwan)
- T. Chujo, S. Esumi, Y. Miake, T. Nonaka (Univ. of Tsukuba)
- M. Inaba (Tsukuba Univ. of Technology)
- M. Naruki (Kyoto Univ.)
- T. Sakaguchi (BNL)
- T. N. Takahashi, S. Yokkaichi (RIKEN)

J-PARC E88

Study of in-medium modification of ϕ mesons inside the nucleus with $\phi \rightarrow K^+K^-$ measurement with the E16 spectrometer

- Proposal submission and 1st review in July 2021
- 2nd review in Jan 2022
- → Approved for Stage I Status (physics importance)

Study of $\boldsymbol{\varphi}$ meson in the nucleus

• Goals

Studies of in-medium modification of $\boldsymbol{\varphi}$ mesons in nuclear matter

• The mass shift of ϕ meson is sensitive to $\langle s\bar{s} \rangle$ condensate in nuclear matter

Experimental status

- No φ mass shift has been observed for φ→e+eand K+K- in p+A and A+A at GSI, AGS, SPS, RHIC, LHC
- No difference of BR betw. → e+e- and K+K- in A+A at SPS-CERES (PRL96, 152301 (2006))
- No φ mass shift in φ→K+K- in γ+A collisions (LEPS) (Ishikawa, PLB 608 (2005) 215)
- Only in p+A (KEK-E325), low mass tail in φ→e+eobserved at βγ<1.25
 - J-PARC E16 will measure $\phi \rightarrow e+e-$ with high statistics

$\phi \rightarrow K+K-$ and $\phi \rightarrow e+e-$ in p+A

Complementary studies with $\phi \rightarrow KK$ and $\phi \rightarrow ee$ Advantage of $\phi \rightarrow KK$

- 1. Higher statistics
- 2. Branching ratio sensitive to ϕ mass shift Small Q value (32 MeV) of $\phi \rightarrow$ KK decay

However, KK invariant mass spectrum is modified by KN FSI

7

 E325 observed low mass tail at βγ<1.25 in p+Cu

E325 $\phi \rightarrow K^+K^-$ results

- No mass shift observed with limited statistics
- E325 has no KK data point at βγ<1.25

>E88 will focus on low $\beta\gamma$ <2 with high statistics

F. Sakuma, et al, PRL 98, 152302 (2007)

E325 $\phi \rightarrow K^+K^-$ Results (A-dependence of yields)

E325 collaboration, PRL 98, 152302 (2007)

 $\sigma(A) = \sigma(1)A^{\alpha}$

- σ : ϕ production cross section with target mass number A
- $\alpha\,$: index of A scaling (C, Cu)

Difference of α : Effects of ϕ mass shift and KN FSI

- α(KK)<α(ee) → KK phase space suppression (φ mass drop)
- α(KK)>α(ee) → KK phase space enhancement due to KN FSI (K mass drop)

E325

- Suggest α (KK) > α (ee)
- \rightarrow due to KN FSI?
- But, statistical significance was not enough
- No $\phi \rightarrow$ KK data point at $\beta \gamma < 1.25$ \Rightarrow E88 will clarify the difference

- 6 forward modules (detector unit) in top and bottom layers
- MRPC (Multi-gap Resistive Plate Chamber) and TSC(Track start counter) for Time-of-Flight measurement
- AC (Aerogel Cherenkov Counter) for pion rejection
- SSDs (Silicon Strip Detectors) and GTRs (GEM Trackers) for tracking

Particle identification (Simulation)

TOF with TSC-MRPC

 π/K separation (±2 σ) p<=1.2 GeV/c Flight path =1.1 m \rightarrow Required MRPC and TSC timing resolution ~80ps, 50ps

$y-p_T$ acceptance

Acceptance overlap ⇒Direct comparison of BR is possible

$\beta\gamma$ acceptance with AC rejection

Expected statistics

Beam time: 30 days with 30 GeV proton beam at 10⁹ / spill

• C (0.1% int.) + Cu (0.1% int.) + new Pb (0.1% int.) target

♦→K+K- signals				E	E325	
	С	Cu	Pb	С	Cu	
Total φ	159k	262k	662k	419	833	
φ (βγ<1.25)	72k	113k	314k			
φ (1.25<βγ<1.75)	84k	146k	340k			
φ→K+K- rate					F. Sakuma, et a	
	С	Cu	Pb		0, 10200	
φ signal rate (/spill)	2.95	5.41	12.8			
Trigger rate (/spill)	78	161	365			

Expected statistical errors

Transport model development for $\phi \rightarrow KK$

- HSD model developed for $\phi \rightarrow KK$ calculations
 - P. Gubler (JAEA), S. H. Lee (Yonsei Univ.), E. Bratkovskaya, T. Song (Frankfurt U./GSI)
 - Hadron-string cascade model in the energy range from GSI to SPS
 - KN interaction based on chiral unitary model including off-shell effects
 - K^{\pm} in-medium modified spectral function
 - At high density, K- mass peak decreases and width increases
 - K+ mass increases due to repulsive potential of 20-30 MeV, while the width remains narrow
 - Scattering and absorption of K[±] in nucleus (e.g. to $\pi\Sigma$)
 - - Mass shift of $\Delta m = -34 \text{MeV} \rho/\rho_0$ (based on KEK-E325)

Model calculations of $\phi \rightarrow K^+K^-$ in p+Cu

- φ width effectively increases with the mass shift to the lower mass side
- FSI effect is 10% level

The fraction of $\boldsymbol{\phi}$ decay inside the nucleus

(defined as $\rho > 0.5 \rho_0$)

- 35% (βγ < 1.25)
- 27% (1.25 < $\beta\gamma$ < 1.75)

Due to the small difference, the spectrum shape with the mass shift may be similar in the two $\beta\gamma$ ranges

Expected ϕ signals assuming ϕ spectra from the HSD model

1/20 statistics of the proposal

FSI included

 $1.25 < \beta\gamma < 1.75$

βγ<1.25

•

Expected S/B

p+Cu, JAM event generator + GEANT4

- S/B ~ 7.1 (integral in 1.013-1.028 GeV/c²)
 - ~ 27 (at the ϕ peak)

w/KK trigger, w/ PID cuts

Dispersion relation and ϕ mass w/ polarization

Fig. 5. Effective mass (upper plot) and width increase (lower plot) of the single peak fit, shown as a function of $|\vec{q}|$. In the upper plot, the central values of the transverse (longitudinal) masses are shown as blue (red) dashed lines for comparison.

Fig. 4. The polarization-averaged ϕ meson peak with Γ =15, 40, and 65 MeV at normal nuclear matter density. The vacuum peak is shown as a black dotted line for comparison.

H.J. Kim and P. Gubler, Phys. Lett. B 805, 135412 (2020).

Summary of ϕ meson dilepton and K^+K^- decays

Distinguishing ϕ polarization at E88

- Full acceptance in kaon decay angle

First MRPC prototype

- Developed in collaboration with RCNP, Kyoto U, Tohoku U, Tsukuba U, JAEA (RPC Collaboration)
- Structure
 - Similar structure as BGOegg RPC
 - 260 μ m \times 5 gaps \times 2 layers
 - 8 readout strips / MRPC: $25 \times 750 \text{ mm}^2$
 - 3 MRPC /module
 - Single end amplifier on both strip ends
 - Slewing correction with TOT in High Resolution TDC

(Low cost and simple readout scheme)

MRPC timing resolution at high-rate condition

TOF=(Ttop+Tbot)/2 [MRPC1] - (Ttop+Tbot)/2 [MRPC2]

MRPC installed in the backward angle at E16

Test performed at the hit rate: ~82 Hz / cm²

Expected rate at 10⁹/spill beam ~280 Hz / cm²

- Hit isolation cut (no double hit per strip)
- Slewing correction

Efficiency >=84%

MRPC1-MRPC2 TOF (distance 5.8 cm)

R&D of High-rate MRPC

Warming glass sheets →lower resistivity →shorter recovery time from discharge

26

Track Start Counter

• Segmented scintillation counters

10cmx10cm sensitive area per module at 20 cm distance from the target

- 25 slats of 4mmx4mmx100mm plastic counter (EJ-228)
- Photon detection with Si sensors (MPPC S13360-3050, 3mmx3mm, with 50mmx50mm pixels)
- Prototype test with ⁹⁰Sr source
 - Timing resolution : $55 \pm 4 \text{ ps}$
- Expected hit rate in the experiment
- ~ 100 kHz/slat

Test plan for E88 at Run0d (Early 2023)

Top layer beam **MRPC** coil AC **SC** Target SSD GEM tracker

- Tests of PID performance with GTRs, TSC, AC, and MRPC at one module in the top layer in early 2023 during E16 Commissioning Run (Run0d)
- Production and tests of MRPCs at Univ. Tsukuba
- Installation by the end of 2022

Summary

- We propose J-PARC E88 to measure φ→K⁺K⁻ decay in p+C, p+Cu and p+Pb to study modification of φ in nuclei, focusing on low φ velocity.
- In 30-day beam time, we will collect ~1M φ→K⁺K⁻ decays at βγ<2, which has higher statistics than KEK-E325 by 2-orders of magnitude.
- We analyze K⁺K⁻ spectrum with good mass resolution to search for mass modification.
- ϕ mass modification with transverse and longitudinal polarization can be studied with K decay angles.

The proposed experiment will provide much advanced understanding of ϕ in-medium modification and KN interaction.