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Introduction
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What is spin hydrodynamics?
What is the hydrodynamics for angular momentum conservation?

For spinless fluid, no additional independent hydro variables. For
spinful fluid, we can find additional independent (quasi-)hydro
variables (chosen as spin) — Spin hydrodynamics.
My talk is based on the following works:

K. Hattori, M. Hongo, X.-G. Huang, M. Matsuo, and H. Taya, arXiv: 1901.06615

M. Hongo, X.-G. Huang, M. Stephanov, M. Kaminski, and H.-U. Yee, arXiv:

2107.14231; 2201.12390

Y.-C. Liu and X.-G. Huang, arXiv: 2109.15301

Z. Cao, K. Hattori, M. Hongo, X.-G. Huang, and H. Taya, arXiv: 2205.08051

Spin hydro is interesting in theory and can be applied to describe a
number of systems.
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Spintronics in solid materials
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Spintronics in liquid materials
Spin hydrodynamic generation:

Ferromagnetic fluid:
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Spin transport in cold atomic gases
One example on optical lattice:
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Spin polarization in heavy ion collisions
Spin polarization of spin-1/2 hyperons:

Spin alignment of spin-1 mesons φ,K∗0, J/ψ:
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Construction of spin hydrodynamics
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Hydrodynamics
Long-time large-distance effective theory of conserved densities
(hydrodynamic modes).

Non-hydro modes relax at a finite time scale τ = 1/Γ.
Hydro modes relax at τhydro = 1/ωhydro(k)→∞ when k → 0.
Hydrodynamics is constructed using spatial derivative expansion.
Typical hydro modes: energy density, momentum density, baryon
charge density, · · · .

For example, hydro equations for energy and momentum densities:

Energy-momentum conservation: ∂µΘµν(x) = 0

with energy-momentum tensor Θµν expanded order by order in
derivative giving the constitutive relations,

Θµν = εuµuν + p∆µν︸ ︷︷ ︸
Ideal hydro

−ζθ∆µν − 2η∂
〈µ
⊥ u

ν〉︸ ︷︷ ︸
1st-order viscous hydro

+O(∂2)
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Can spin be a true hydro mode?
But, spin is not conserved, only total angular momentum (AM) is:

∂µJ
µνρ = 0,

Jµνρ = xνΘµρ − xρΘµν︸ ︷︷ ︸
orbital AM

+ Σµνρ︸ ︷︷ ︸
spin AM

⇒ ∂µΣµνρ(x) = Θρν −Θνρ

Thus spin is a true hydro mode (conserved quantity) only when Θµν

is symmetric.
In general, not possible. The anti-symmetric part of Θµν is a torque
acting on spin.
Such torque is spin-orbit coupling (SOC). For example, for Dirac
fermions, SOC ∝ 1/m and thus vanishes at heavy fermion limit.

The transfer of AM between spin part and orbital part is generally
dissipative.
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The spin hydro regime
When spin relaxation rate Γs � relaxation rate Γ of other micro
modes (Hongo, XGH, Kaminski, Stephanov, and Yee 2107.14231):

An extended hydro framework for pure hydro modes and slow spin
modes ⇒ Relativistic dissipative spin hydrodynamics
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Ambiguity in defining spin current

The definition of spin current Σµνρ is ambiguous.

Pseudo-gauge transformation: Transformations that preserve total
AM and the conservation laws (Becattini, Florkowski, and Speranza 1807.10994)

Σµνρ → Σµνρ − Φµνρ,

Θµν → Θµν +
1

2
∂λ
(
Φλµν − Φµλν − Φνλµ

)
Formulation of spin hydro depends on the choice of pseudo-gauge:

Non-anti-symmetric gauge, Σµνρ = uµσνρ + · · ·
(Florkowski et al. 1705.00587, Montenegro et al. 1701.08263, Hattori et al.

1901.06615, Fukushima and Pu 2010.01608, Li et al. 2011.12318, Gallegos et al.

2101.04759, Gallegos et al. 2203.05044, She et al. 2105.04060, Hu 2209.10979, · · · )
Anti-symmetric gauge Σµνρ = εµνργΣγ
(Hongo et al. 2107.14231, Bhadury et al. 2002.03937, Hongo et al. 2201.12390,

Cao et al. 2205.08051, · · · )
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Construction of spin hydro
Step 1: Identify the conservation laws (symmetries)

Energy-momentum conservation: ∂µΘµν(x) = 0

Agular momentum conservation: ∂µΣµνρ(x) = Θρν −Θνρ

Step 2: Choose a pseudo-gauge (e.g., anti-symmetric gauge)
Step 3: Identify the (quasi-)hydro modes

Seven (quasi-)hydro modes: ε, ua, σa (or σab = −εabcducσd) with
constraints u2 = −1, σaua = 0.
First law of local thermodynamics: Tds = dε− µadσa.

Conjugate variables: inverse temperature β ≡ ∂s

∂ε
, spin chemical

potential µa = −T ∂s

∂σa
(or µab = −2T

∂s

∂σab
).

Step 4: Power counting schemes

Scheme I:

{β, ua} = O(∂0) and {µa, σa, ωµν ≡ ∇[µuν]} = O(∂)

Scheme II:

{β, ua, µa, σa, ωµν ≡ ∇[µuν]} = O(∂0)
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Construction of spin hydro
Step 5: Tensor decomposition (Landau-Lifshitz frame)

Θµ
a = εuµua + p∆µ

a + uµδqa − δqµua + δΘµ
a

Σµab = εµabc(σ
c + δσuc)

sµ = suµ + δsµ

Step 7: Entropy production [O(∂) terms give Gibbs-Duhem relation]

∂µs
µ = −δΘµ

a

∣∣
(s)
∇µβa − δΘµ

a

∣∣
(a)

(∇µβa − βµ a
µ ) +O(∂3)

Step 6: Second law of thermodynamics ∂µs
µ ≥ 0

⇒ First-order constitutive relations (∆µν = gµν + uµuν):

δΘµ
a

∣∣
(s)

= −
[
η

(
(∆µν∆ab + ∆µ

b∆ν
a)− 2

3
∆µ
a∆ν

b

)
+ ζ∆µ

a∆ν
b

]
∇νub

δΘµ
a

∣∣
(a)

= −1

2
ηs(∆

µν∆ab −∆µ
b∆ν

a)(ων
b − µ b

ν )

with η ≥ 0 shear, ζ ≥ 0 bulk, and ηs ≥ 0 rotational viscosities.

The conservation-law equations turn to spin hydro equations. An
equation of state p = p(ε, σa) should be input to close the equations.
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Linearized spin hydrodynamics
Perturbation about global static thermal equilibrium

∂0δε+ ∂iδπ
i

= 0,

∂0δπi + c
2
s∂iδε− γ‖∂i∂

j
δπj − (γ⊥ + γs)(δ

j
i∇

2 − ∂i∂j
)δπj +

1

2
Γsε0ijk∂

j
δσ

k
= 0,

∂0δσi + Γsδσi + 2γsε0ijk∂
j
δπ

k
= 0

where we introduced a set of static/kinetic coefficients as

c2s ≡
∂p

∂ε
, γ‖ ≡

1

ε0 + p0

(
ζ +

4

3
η

)
, γ⊥ ≡

η

ε0 + p0
,

χsδij ≡
∂σi
∂µj

, γs ≡
ηs

2(ε0 + p0)
, Γs ≡

2ηs
χs

By diagonalizing these coupled linear equations, one obtains the dispersion
relations of (quasi-)hydro modes.
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Linearized spin hydrodynamics
Dispersion relations (Hattori et al. 1901.06615, Hongo et al. 2107.14231)
• One pair of sound modes : ωsound(k) = ±cs|k| − i

2γ‖k
2 +O(k3),

• One longitudinal spin mode : ωspin,‖(k) = −iΓs,
• Two shear modes : ωshear(k) = −iγ⊥k2 +O(k4),

• Two transverse spin modes : ωspin,⊥(k) = −iΓs − iγsk2 +O(k4).

Mode mixing between shear and transverse spin mode: One gradient
can affect two modes.
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Transport coefficients
Viscosities (Wilson coefficients) are characteristic parameters of
matter. For example, shear viscosity of QGP:

The new rotational viscosity ηs characterized local spin relaxation:
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Kubo formulas for rotational viscosity
Spin hydrodynamic retarded spin-spin correlator

G̃σ
iσj

R (ω,k) =
iχsΓs + · · ·

ω + iΓs +O(k2)
δij

Recall the scale separation condition:

δΘµ
a

∣∣
(a)

=

{
−(ηs)

µ ν
a b(∇νub − µ b

ν ) when Γs � ω � Γ,

0 when ω � Γs

The spin hydrodynamic spin-spin correlator gives:

ωG̃σ
iσj

R (ω,k = 0) =
iχsωΓs
ω + iΓs

δij
Γs�ω�Γ−−−−−−→ 2iηs

Field theoretical Kubo formula for rotational viscosity

ηs =
1

2
lim

Γs�ω�Γ
ω ImG̃σ

zσz

R (ω,0) = 2 lim
Γs�ω�Γ

1

ω
ImG̃

Θxy
(a)

Θxy
(a)

R (ω,0)

Another Kubo formula at ω → 0 can also be derived:

χ2
s

2ηs
= lim
ω→0

1

ω
ImG̃σ

zσz

R (ω,0)
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Spin relaxation rate at heavy quark limit
Using spin-spin correlator to calculate ηs is tedious, it is much easier
to use source-source correlator at Γs � ω � Γ
At heavy quark limit and leading-log approximation

Spin relaxation rate Γs for heavy quark (Hongo et al. 2201.12390)

Γs ≡
2ηs
χs

=
N2
c − 1

2Nc

g2m2
DT

6πM2
ln

1

g
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When strong vorticity is present
Rotating fluid could be at global thermal equilibrium

Power counting scheme II (Cao et al. 2205.08051):

{β, ua, µa, σa, ωµν ≡ ∇[µuν]} = O(∂0)

Anisotropy in ideal constitutive relation: Gyrohydrodynamics

Θµ
a(0) = εuµua + p⊥∆µ

a + (p‖ − p⊥)ω̂µω̂a

Similar to magnetohydrodynamics
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When strong vorticity is present
Anisotropy in dissipative constitutive relation (Cao et al. 2205.08051):

14 viscosities: 3 bulk, 4 shear, 3 rotational, and 4 cross viscosities
Among them, 7 are Hall-type viscosities.
Cross viscosites appears also in liquid crystals.

When applied to HICs, how to convert velocity, temperature, spin
chemical potential into hadron observables?
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Spin Cooper-Frye formula
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Freeze-out of particle number
Cooper-Frye type formula converts hydro outcomes to momentum
space distributions.

N(p) =

∫
dΞµ

pµ

Ep
f(T (x), uµ(x), µ(x))

We need a similar formula to connect spin hydro with obervables.

S̄µ(p) ⇐ T (x), uα(x), µ(x), µαβ(x)
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Freeze-out of spin polarization

Such a formula at local equilibrium can be obtained via e.g. kinetic
theory or local Gibbs density operator with same type of
pseudo-gauge as spin hydro

ρ̂LE =
1

ZLE
exp

{
−
∫
dΞµ(y)

[
Θ̂µν(y)βν(y)− 1

2
Σ̂µρσ(y)µρσ(y)

]}
Spin Cooper-Frye formula for Dirac fermions at local equilibrium
(Buzzegoli 2109.12084, Liu and Huang 2109.15301)

S̄µ(p) = S̄5µ(p)− 1

8
∫
dΞ · p nF

∫
dΞ · pnF (1− nF )

Ep

×
{
εµναβp

νµαβ + 2
εµνρσp

ρnσ

p · n
[
pλ(ξνλ + ∆µνλ) + ∂να

]}

Here, ξµν = ∂(µβν) is thermal shear and ∆µαβ = µαβ + ∂[µβν] is the
difference between spin chemical potential and thermal vorticity.
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Freeze-out of spin polarization
Spin Cooper-Frye formula for Dirac fermions

S̄µ(p) = S̄5µ(p)− 1

8
∫
dΞ · p nF

∫
dΞ · pnF (1− nF )

Ep

×
{
εµναβp

νµαβ + 2
εµνρσp

ρnσ

p · n

[
pλ(ξνλ + ∆µνλ) + ∂να

]}
S̄µ5 is the polarization induced by finite chirality (Liu et al. 2002.03753,

Shi et al. 2008.08618, Buzzegoli et al. 2009.13449, Gao 2105.08293)

When ∆µαβ = 0, namely, when spin chemical potential is given by
thermal vorticity. It goes to previous results (Liu and Yin 2103.09200,

Becattini et al. 2103.10917)

When global equilibrium is reached∆µαβ = 0 = ξαβ , it goes to
previous results (Becattini et al. 1303.3431, Fang et al. 1604.04036, Liu et al.

2002.03753)

It is accurate at O(∂).
nµ is a unit frame vector to specify helicity.
Out of local equilibrium, collisions induce additional contribution (Lin

and Wang 2206.12573)

With this formula, we can convert spin hydro into momentum space
spin polarization.
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Summary
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Summary
Spin polarization and spin transport are common in a number of
physical systems.
It is possible to formulate a (quasi-)hydrodynamic theory for spin
transports.
The first-order dissipative spin hydrodynamics has been constructed.
The Cooper-Frye type spin polarization formula is obtained.

Numerical spin hydrodynamics.
Spin Cooper-Frye formula for vector mesons.
Higher-order and causal spin hydrodynamics.
Anomalous spin hydrodynamics.
· · · · · ·

Thank you!
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