Strong-field physics in (low-energy) heavy-ion collisions

Hidetoshi TAYA (RIKEN iTHEMS)

Contents

<u>Purpose</u>

Low-energy HIC might be useful to study strong-(electric-)field phys.

- <u>Review</u> strong-field physics at HIC
- Not to advertise my works, but to <u>stimulate</u> discussions (hopefully...)
- Discuss (or introduce or speculate) implications to low-energy HIC

(• Comments and/or criticisms are very welcome)

1. Review of strong-field physics

• Why is strong-field physics interesting and can be relevant to hadron/QCD?

2. Strong-field physics in high-energy HIC

3. Strong-field physics in low-energy HIC

- Vacuum (dielectric) polarization
- Electric-field induced birefringence

1. Review of strong-field physics

2. Strong-field physics in high-energy HIC

3. Strong-field physics in low-energy HIC

4. Summary

Vacuum

Vacuum

Weak fields ($eF/m^2 \ll 1$)

Perturbative physics

⇒ Very well understood in both exp.& theor.

ex.) electron anomalous magnetic moment

 α^{-1} (theor.) = 137.03599914 ... [Aoyama, Kinoshta, Nio (2017)] α^{-1} (exp.) = 137.03599899 ...

high-energy processes in accelerator exp.

 $\alpha^{-1}(\exp.) = 137.03599899...$

high-energy processes in accelerator exp.

Strong-field phenomena

✓ Novel QED processes Review: [Fedotov, Ilderton, Karbstein, King, Seipt, <u>HT</u>, Torgrimsson (2022)]

ex.) Schwinger mechanism, Photon splitting, Vacuum birefringence, ... (= polarization dep. reflective index)

Strong-field phenomena

✓ Novel QED processes Review: [Fedotov, Ilderton, Karbstein, King, Seipt, HT, Torgrimsson (2022)]

ex.) Schwinger mechanism, Photon splitting, Vacuum birefringence, ... (= polarization dep. reflective index)

Impacts on hadron physics and QCD

ex. 1) Hadron properties:

 \Rightarrow masses, charge dist., decay modes, polarization, ...

See also recent review [lwasaki, Oka, Suzuki (2021)]

ex. 2) Phase diagram and transition:

 \Rightarrow (Inverse) magnetic catalysis, Inhomogeneous phase, ... See also Hattori's talk on Sat.

Confined phase

 $eB_c \simeq 18 \text{ GeV}^2?$

 $eB [GeV^2]$

ex. 3) Others: Anomalous transport phenomena, Glasma, chirality prod., ...

Many reviews, e.g., [Kharzeev, Liao, Voloshin, Wang (2016)] See Yang's talk on Sat. [Hattori, Huang (2017)] ...

Strong-field phenomena

✓ Novel QED processes Review: [Fedotov, Ilderton, Karbstein, King, Seipt, <u>HT</u>, Torgrimsson (2022)]

ex.) Schwinger mechanism, Photon splitting, Vacuum birefringence, ... (= polarization dep. reflective index)

Impacts on hadron physics and QCD

ex. 1) Hadron properties:

⇒ masses, charge dist., decay modes, polarization, ...

See also recent review [lwasaki, Oka, Suzuki (2021)]

ex. 2) Phase diagram and transition:

⇒ (Inverse) magnetic catalysis, Inhomogeneous phase, ... See also Hattori's talk on Sat.

Confined phase

[HT (2015)]

 $eB_c \simeq 18 \text{ GeV}^2?$

 $eB [GeV^2]$

ex. 3) Others: Anomalous transport phenomena, Glasma, chirality prod., ...

Many reviews, e.g., [Kharzeev, Liao, Voloshin, Wang (2016)] See Yang's talk on Sat. [Hattori, Huang (2017)] ...

Experimentally, however (almost) NONE of them has been verified

Development of intense laser

Experimental progress is mainly lead by laser physics

Development of intense laser

Experimental progress is mainly lead by laser physics

✓ However, still weaker even than QED scale

 \Rightarrow Any physical systems where strong fields are available ? \Rightarrow HIC !

1. Review of strong-field physics

2. Strong-field physics in high-energy HIC

3. Strong-field physics in low-energy HIC

4. Summary

Strong fields in high-energy HIC

Animation stolen from Internet

✓ Strong magnetic fields are created in high-energy HIC

(also strong vorticity cf. talks by Niida, Huang, Yi, Xin-Li, Liao)

Strong fields in high-energy HIC

[Deng, Huang (2012)] See also [Bzdak, Skokov (2012)] [Hattori, Huang (2016)]

✓ Strong magnetic fields are created in high-energy HIC
(also strong vorticity cf. talks by Niida, Huang, Yi, Xin-Li, Liao)
Pros: Extremely strong (strongest in the current Universe) ($eB \gg \Lambda^2_{QCD}$)
Cons: Extremely short-lived ($\tau \ll 1 \text{ fm}/c$)

⇒ Affects "non-perturbativeness" of strong-field processes

Shorter lifetime, less non-perturbative

✓ If lifetime is short, no time for multiple interactions

Shorter lifetime, less non-perturbative

✓ If lifetime is short, no time for multiple interactions

✓ "Phase diagram" (for the pair production from the vacuum by E field)

- Three dim. para. characterize the system eE, τ , m
 - \Rightarrow Two dim.-less para. control the interplay

$$\gamma = \frac{m}{eE \tau} = \frac{\text{(rest mass of particle)}}{\text{(work done by field)}} = \text{("strength" of the work)}$$
$$\nu = \frac{eE \tau}{1/\tau} = \frac{\text{(work done by field)}}{\text{(photon energy)}} = \text{(# of photons involved)}$$

• Non-perturbative for $\gamma \ll 1$, $\nu \gg 1$

• For high-energy HIC:
$$eF \sim (1 \text{ GeV})^2$$
, $\tau \sim 0.1 \text{ fm}/c \Rightarrow \gamma \sim \begin{cases} 10^{-3} (m = \Lambda_{\text{QCD}}) \\ 10^{-5} (m = m_{\text{e}}) \end{cases}$, $\nu \sim 0.1$

[HT, Fujiii, Itakura (2014)]

Shorter lifetime, less non-perturbative

✓ If lifetime is short, no time for multiple interactions

✓ "Phase diagram" (for the pair production from the vacuum by E field)

- Three dim. para. characterize the system eE, τ, m
 - \Rightarrow Two dim.-less para. control the interplay

$$\gamma = \frac{m}{eE \tau} = \frac{\text{(rest mass of particle)}}{\text{(work done by field)}} = \text{("strength" of the work)}$$
$$\nu = \frac{eE \tau}{1/\tau} = \frac{\text{(work done by field)}}{\text{(photon energy)}} = \text{(# of photons involved)}$$

[HT, Fujiii, Itakura (2014)]

• Non-perturbative for $\gamma \ll 1$, $\nu \gg 1$

• For high-energy HIC:
$$eF \sim (1 \text{ GeV})^2$$
, $\tau \sim 0.1 \text{ fm}/c \Rightarrow \gamma \sim \begin{cases} 10^{-3} (m = \Lambda_{\text{QCD}}) \\ 10^{-5} (m = m_{\text{e}}) \end{cases}$, $\nu \sim 0.1$

✓ High-energy HIC is useless for strong-field physics ?

⇒ Not necessarily useless. Still useful to study higher order QED processes

Experimental progress

✓ Strong-magnetic-field induced processes are explored

✓ First observations of higher-order QED processes

(= prior to intense laser and any other experiments !)

ex. 1) Light-by-light scattering

X

[ATLAS (2016)]

ex. 2) Breit-Wheeler process

 \sum

[STAR (2019)]

Experimental progress

[ATLAS (2016)]

[STAR (2019)]

✓ Strong-magnetic-field induced processes are explored

✓ First observations of higher-order QED processes

(= prior to intense laser and any other experiments !)

ex. 1) Light-by-light scattering

ex. 2) Breit-Wheeler process

✓ No evidence for QCD x strong B field phenomena

[STAR (2021)]

ex.) Negative result for chiral magnetic effect at isobar collisions at RHIC

Experimental progress

[ATLAS (2016)]

[STAR (2019)]

✓ Strong-magnetic-field induced processes are explored

✓ First observations of higher-order QED processes

(= prior to intense laser and any other experiments !)

ex. 1) Light-by-light scattering

ex. 2) Breit-Wheeler process

✓ No evidence for QCD x strong B field phenomena

[STAR (2021)]

ex.) Negative result for chiral magnetic effect at isobar collisions at RHIC

✓ Nice experimental progress, but our goal was to study <u>NON</u>-pert. stuffs...

⇒ Any ways to study non-perturbative QED and/or QCD x QED phenomena ?
 ⇒ LOW-energy HIC may be useful

1. Review of strong-field physics

2. Strong-field physics in high-energy HIC

3. Strong-field physics in low-energy HIC

4. Summary

Strong fields in low-energy HIC

✓ Low energy ⇒ Landau's stopping picture

- Net proton rapidity dist. dN/dy
- Time evolution at middle/low-energy HIC

 \Rightarrow Dense matter is formed for not-short-time O(10 - 1000 fm/c)

Strong fields in low-energy HIC

✓ Low energy ⇒ Landau's stopping picture

- Net proton rapidity dist. dN/dy
- Time evolution at middle/low-energy HIC

\Rightarrow Dense matter is formed for not-short-time O(10 - 1000 fm/c)

✓ Strong electric field is created via formation of "High Z atom" s.t. $Z > 1/\alpha$

- No electric current \Rightarrow Negligible magnetic fields
- Rough estimate of electric-field strength: $eE \sim \frac{Z\alpha}{r^2} \sim \Lambda_{QCD}^2 \sim (100 \text{ MeV})^2$

$$\Rightarrow \gamma = \frac{m}{eE\tau} \lesssim \begin{cases} 10^{-1} \left(m = \Lambda_{\text{QCD}} \right) \\ 10^{-4} \left(m = m_{\text{e}} \right) \end{cases} \sim 0.1, \nu = eE\tau^2 \gtrsim 10 \Rightarrow \text{Non-pert.} \begin{cases} \gamma \ll 1 \\ \nu \gg 1 \end{cases} \text{ for QED \& QCD !}$$

Possible strong-field phenomena ?

✓ Low-energy HIC might be useful to study strong-electric-field physics

✓ As example, I introduce two possible QED phenomena

(no one has ever observed those strong-field phenomena, so it is very impactful if we could observe them with HIC)

• Vacuum (dielectric) polarization

Pioneering works [Pieper, Greiner (1969)] [Gershtein, Zeldovich (1970)] Recent review [Rafelski, Kirsch, Muller, Greiner (2016)] Recent attempts [Maltsev et al. (2019)] [Popov et el. (2020)]

- An old but <u>unsolved</u> problem that is worthwhile to be re-investigated now
- Electric-field induced birefringence

(• QCD x strong E field phenomena could also occur, but I don't discuss here)

(e.g., chiral symmetry restoration, anomalous transports such as CESE, ...) [Suganuma, Tatsumi (1993)] [Huang, Liao (2013)]

Vacuum (dielectric) polarization (1/2)

✓ At high energy, B was important, but at low energy E may be important

Magnetic B field \Rightarrow System is stable \leftrightarrow Electric E field \Rightarrow UNstable

Vacuum (dielectric) polarization (1/2)

- ✓ At high energy, B was important, but at low energy E may be important Magnetic B field ⇒ System is stable ↔ Electric E field ⇒ UNstable
- ✓ Spontaneous pair production and vacuum (dielectric) polarization
 - For constant field \Rightarrow Schwinger mechanism [Schwinger (1951)]

Vacuum (dielectric) polarization (1/2)

✓ At high energy, B was important, but at low energy E may be important Magnetic B field ⇒ System is stable ↔ Electric E field ⇒ UNstable

✔ Spontaneous pair production and vacuum (dielectric) polarization

• For constant field \Rightarrow Schwinger mechanism [Schwinger (1951)]

- \Rightarrow Tunneling occurs only if there're levels at $E < -m \Leftarrow$ Satisfied for $Z > \alpha^{-1}$ [Pieper, Greiner (1969)] [Gershtein, Zeldovich (1970)]
- Tunneling \Rightarrow positron is emitted & the vacuum is (electrically) polarized

Vacuum (dielectric) polarization (2/2)

✓ Theoretical expectation:

Non-trivial positron spectrum at low energies

Vacuum (dielectric) polarization (2/2)

✓ Theoretical expectation:

Non-trivial positron spectrum at low energies

✓ Experimental status

[Wang et al. (2013)]

 Analogous phenomenon was observed with graphene

Vacuum (dielectric) polarization (2/2)

✓ Theoretical expectation:

Non-trivial positron spectrum at low energies

✓ Experimental status

[Wang et al. (2013)]

 Analogous phenomenon was observed with graphene

Should observe something similar in HIC, but ...

Low-energy HIC exp. O(10 MeV/u) were done in 80-90's but were inconclusive [Cowan et al. (EPOS coll.) (1985)]

- \Rightarrow couldn't eliminate contaminations from nuclear excitations
- $\Rightarrow \textbf{Conclusion:} \text{ more detailed exp. & theor. studies are needed}$ Theor.: Realistic EM field, realtime dynamics, ...Exp: Energy/Z/angular dependencies, precision, ...[Heinz et al. (ORANGE coll.) (2000)](Figure 1. (2019)][Popov et al. (2019)][Popov et el. (2020)]

Vacuum birefringence by E-field (1/2)

"Tilting" of the vacuum also affects the propagation of photons

⇐ Electrons in the Dirac sea has "distributions" due to quantum reflection

Vacuum birefringence by E-field (1/2)

"Tilting" of the vacuum also affects the propagation of photons

⇐ Electrons in the Dirac sea has "distributions" due to quantum reflection

✔ Interactions b/w photon and the Dirac sea modifies the prop. of photon

(1) Photon decay and refraction reflects the Dirac-sea structure

(2) E field has direction, so the refractive index have preferred direction

⇒ Birefringence

Vacuum birefringence by E-field (2/2)

✓ A very preliminary result for const E-field + electric wave

Vacuum birefringence by E-field (2/2)

✓ A very preliminary result for const E-field + electric wave

✓ Change of imaginary & real parts of electric permittivity ε [HT, Ironside, in prep]

larger prob. density \Rightarrow affects more

negative energy states

positive energy states

Oscillating behavior

⇐ Oscillating distributions of electrons in the Dirac sea

• Polarization dependent

 \Rightarrow Measure photon polarization and angular dist.

1. Review of strong-field physics

2. Strong-field physics in high-energy HIC

3. Strong-field physics in low-energy HIC

4. Summary

Summary

<u>Message</u>

Low-energy HIC might be useful to study strong-(electric-)field phys

1. Review of strong-field physics

• Interesting: Novel chance to explorer the non-pert. regime of QED & QCD

2. Strong-field physics in high-energy HIC

- Strongest magnetic field is created
 - ⇒ leading to the first observations of higher-order QED processes (e.g., Breit-Wheeler pair production, light-by-light scattering)
- But is short-lived, affecting the "non-perturbativeness" of the strong-field processes

3. Strong-field physics in low-energy HIC

- Strong electric field with relatively long lifetime would be created
- Vacuum (dielectric) polarization & electric-field induced birefringence
 ⇒ May affect the low-energy positron/photon spectrum
- Less investigated and so interesting to explorer strong QED & QCD x QED processes in low-energy HIC