Experimental study of in-medium spectral change of vector mesons at J-PARC. <u>K. Aoki</u> IPNS, KEK J-PARC Hadron Section.

> Reimei Workshop: Polarization phenomena and Lorentz symmetry violation in dense matter. (Oct 6, 2022. Yonsei Univ. Korea)

CONTENTS

- Physics motivation
- Related experiments ($\pmb{\phi}$ in cold nuclear matter)
- J-PARC E16 experiment
 - Basic idea
 - Experimental apparatus
 - Commissioning run.
 - Prospects
 - Polarization dependence of spectral change.
- Summary

Physics

- The origin of Hadron mass. A hadron, an excitation of QCD vacuum, reflects the nature of the vacuum.
 - Spontaneous breaking of the chiral symmetry.
 - An order parameter: $\langle \bar{q}q \rangle \neq 0$
 - depends on environment (temperature, <u>density</u>)
 - Partially restored even at normal nuclear density.
 - Could result in measurable change in mass.
 - $\langle \bar{q}q \rangle \sim 35\%$ reduction at ρ_0 for **u** and **d**. what about **s**?
 - $\langle \bar{q}q \rangle \leftarrow$ QCD sum rule \rightarrow mass
- J-PARC E16 experiment:
 - Use $\mathbf{p} + \mathbf{A} \rightarrow \rho / \omega / \phi \rightarrow \mathbf{e} + \mathbf{e}$ -
 - Dielectron mass spectra are obtained.
 - mixture of decay inside and outside the nuclear target.
 - Sensitive to spectral change of vector mesons in nuclear medium.
 - Similar as KEK-E325, but collecting more data and do more systematic study.

Chiral condensate in dense/hot medium

NJL model M. Lutz et al. Nucl.Phys. A542,52(1992)

Temperature dependence

Density dependence

Nuclear chiral perturbation Kaiser et al., PRC 77 (2008)

KEK-E325 results of ϕ meson

• The world's first results of ϕ modification.

- Conclusion: Mass decreases in nuclei!!-0.1
 - Under the assumption of linear $\beta \gamma = p/M$ of ϕ dependence of mass and width on density.
 - Mass: 3.4 $+0.6_{-0.7}\%$ \downarrow At normal nuclear density

2.5

1.5

QCD sum rule results Gubler and Ohtani [Phys. Rev. D90, 094002(2014)]

They provide σ_s vs mass. The σ_s is how much $\langle \bar{s}s \rangle$ reduced in nuclear matter.

Information from p- ϕ interaction

ALICE: Phys. Rev. Lett. 127, 172301(2021) f 0 : scattering length.

d_0 : effective range.

HAL QCD arXiv:2205.10544 (2022) Scattering length and effective ranges are deduced for spin 3/2 combination.

$$a_0^{(3/2)} = -1.43(23) \text{ fm}$$

 $r_0^{(3/2)} = 2.36(10) \text{ fm}$

- Mass reduction
 - ALICE: 5.8% ±
 - HAL QCD: $5.3\% \pm$
 - E325 : 3.6% +0.6 _0.7

-80MeV

- $\gamma + 12C \rightarrow \text{eta' X}$, eta' $\rightarrow 2\gamma$
- Direct measurement of eta' mass modification.
- 6% mass reduction at normal nucl. Density.

Taken from slides of Muramatsu at HEF EX WS Tomida at REIMEI WS 2021.

J-PARC (Proton Accelerator Research Complex)

10

Staging approach

- **RUN 0abc 2020,2021**-403hrs.
 - 6 (SSD) + 8 (GTR) + 6 (HBD) + 6 (LG) at last
 - C+Cu targets
 - Beam / Detector commissioning
- <u>RUN 0d 2023 -- 200 hours.</u>
 - 10(SSD) + 10 (GTR) + 8 (HBD) + 8 (LG)
 - Beam / Detector comm. + yield.
 - Upgraded Accelerator / DAQ. / Detectors.
- <u>RUN 1</u> 2024(?) -- 1280hrs (~53days)
 - 10 (SSD) + 10 (GTR) + 8 (HBD) + 8(LG)
 - Physics data taking. ϕ : 15k for Cu.
- <u>RUN 2</u> -- 2560 hrs (~107 days)
 - 26 (SSD) + 26 (GTR) + 26 (HBD) + 26 (LG)
 - + Pb/CH2 target
 - Needs additional budget.

RUN 2 (26 modules)

RUN1, Cu target (INPUT:E325-BW) Fit with BW in vacuum

- ~15k $\pmb{\phi}$ for Cu target expected in RUN1
- Left plot: significant change seen (w/o $\beta\gamma$ selection)
 - fit with [vacuum shape + exponential bkg] fails due to the excess left side of the peak
- Right plot:
 - Excluding the excess region $(0.94-1.01 \text{GeV/c}^2)$, fit succeeds

RUN1, Cu target (INPUT:E325-BW) Fit with BW (in vacuum)

• $\beta\gamma$ dependence is examined \rightarrow next

RUN1, Cu (INPUT:E325-BW) Excess ratio vs $\beta\gamma$

- All $\beta\gamma$ bins for Cu are significant in E16
- (cf) E325 only fastest bg bin is significant.

- larger excess in lower βγ (slower) bin :
- the tendency become more clear and significant

than that of E325.

Momentum dependence (Dispersion relation)

- Momentum dependence of mass can be obtained for the first time.
- Expectation of RUN1 x 2.5 is shown.
- Dispersion relation itself is an important property of pseudo particle.
- We can extrapolate mass into 0 momentum, where most of QCDSR calculation results applies.

H.Kim P. Gubler PLB805, 10 (2020) extends the validity of momentum range. Show you on later slides.

High-p Area

Photo taken in 2019 or so. Shield blocks now cover the area and hard to get this view.

Run0b/c configuration(2021)

LG (Lead glass calorimeter)

- Lead glass (TOPAZ) + PMT (Belle)
- Pion efficiency 10% (Reject 90%) while maintaining 90% efficiency for e- at 0.4GeV

Hadron Blind Detector (Cherenkov Detector)

- Based on PHENIX HBD.
- CF4 serves as radiator and amplification gas
 - Radiator 50 cm. / p.e. ~ 11
- Gas Electron Multiplier (<u>GEM</u>) for amplification
- <u>Csl</u> is evaporated on top GEM
 Photocathode (> ~6eV)
- Pion efficiency 2% (rejection 92%) while maintaining electron efficiency of 68%

300x300mm² GEM with CsI

Nuclear Instruments and Methods in Physics Research A 819 (2016) 20-24
Contents lists available at ScienceDirect

HBD

HBD is under maintenance. Will be installed in this FY.

Nuclear Instruments and Methods in Physics Research A

Development of a hadron blind detector using a finely segmented pad readout

Koki Kanno ^{a,b,*}, Kazuya Aoki ^c, Yoki Aramaki ^b, Hideto En'yo ^b, Daisuke Kawama ^b, Yusuke Komatsu ^a, Shinichi Masumoto ^a, Wataru Nakai ^{a,b}, Yuki Obara ^a, Kyoichiro Ozawa ^c, Michiko Sekimoto ^c, Takuya Shibukawa ^a, Tomonori Takahashi ^d, Yosuke Watanabe ^a, Satoshi Yokkaichi ^b

Nuclear Inst. and Methods in Physics Research, A 970 (2020) 163765

Hadron blind Cherenkov counters

L Tserruya *, K. Aoki b, C. Woody 5,7

⁸ Weinmann Insähner of Science, Roberto 76100, Iorael ^b KOK, High Energy Acodemies Research Organization, Taskaba, Iberaki 305-0807, Jepan ^c Brockhaum Rational Laboratory, Jopan, NY 11972, USA

GTR (GEM Tracker)

- Ionization electrons in the drift gap are collected and amplified by GEMs.
- Charge collected on to 2D strip readout.
 - X: 350um pitch -- σ ~100um
 - Sensitive to bending direction.
 - 100 um resolution required.
 - Y: 1400um pitch -- σ ~300um

23

GTR (GEM Tracker)

- A module consists of
 - GTR100, GTR200, GTR300
- Half of the setup installed Aug. 2022

OLD SSD and target chamber

NEW SSD (STS)

- Under construction in collaboration with CBM-STS group at GSI (Germany)
- DAQ migration is ongoing by E16 Group.
- 10 sensors are prepared for Run0d and 1.

Sensitive area	60 x 60mm2
Thickness	300um
Strip pitch	58um
Strip direction	X, U(7.5deg)

Run0 a/b/c beam line and detector commissioning.

- Beam tuning / improvement.
 - Intensity / position adjustment
 - Reduction of radiation / background by adjusting optics, collimators.
 - Beam profile measured.
 - Bulk Time structure improvement.
 - Anomalous beam suppressed. (10 times intense beam etc..)
- Beam micro-structure remains.
 - Highly time-concentrated beam comes every ~5msec, and 5.2usec.
 - Resulted in very low live rate ~15% (75% expected)
 - Enhance fake trigger due to overlapping events.
 - Improvement in the next run (Run0d) is expected by
 - Improvement of power supply of accelerator magnets. (5msec)
 - New optics with no dispersion at Lambertson magnet(5.2usec)
 - DAQ upgrade. (less dead time)
- Performance of detectors

Electron ID performance

- Semi-online analysis
 - Left: HBD response for e and pi candidate determined by LG.
 - Right: Vice versa.

Satomi Nakasusa 1811, Kazawa Aoki 7, Yoki Aramaki 4, Daichi Arimiza 7, Sakiko Ashikasa Kengo Ebata *, Ryotaro Honda *, Masaya Ichikawa ****, Shunsuke Kajikawa *, Koki Kanno * Yuta Kimura⁺, Takehito Kondo^h, Shono Kyan⁺, Yuhei Morino⁺, Hikari Murakami Toenoki Marakami^{1,4}, Wataru Nakai⁴, Megumi Naraki^{4,3}, Toshihiro Nonaka Hiroyuki Noumi 14, Naoki Ogata 4, Kyoichiro Ozawa 44, Hiroyuki Sako 5, Susumu Sato 5 Michiko Sekimoto", Kotoro Shirutori *, Tomonori Takahashi *, Yuchi Takaura*, Rychri Tatsumi[#], Kosuke Tsukei[†], Kanta Yahiro[#], Satushi Yokkaich

Commissioning of the electron identification system for Dilepton

measurement in pA collisions at J-PARC

Nuclear Inst. and Methods in Physics Research, A

-

Tracking performance

- Track reconstructed using 4-layers: SSD, GTR100/200/300
 - Currently position resolutions are \sim 2 times worse than expectation.
 - Ks $(K_s \rightarrow \pi^+\pi^-)$ is seen and consistent with simulation.

Invariant mass in single arm (event-mixing)

BG subtracted

Current status

- After Run0c (2021), all detectors (except for LG) are uninstalled for maintenance.
- Preparing for Run0d in 2023
 - Nov. 2021, two additional LG modules installation completed.
 - Aug. 2022, half of GTR installed. Half in preparation.
 - HBD/SSD preparation for install by Mar. 2023.
 - DAQ improvement on-going.
- Based on the outcome of run0d, we request for RUN1.

Expected in RUN2

- RUN2 stat (320shifts)
- Pb target
- INPUT: E325-BW
- $\beta\gamma < 0.5$

Play with Kim-Gubler model

- PLB 805, 10 (2020)
 - Trans: Transverse / Long: Longitudinal
 - Trans: Long = 2:1
- I replaced the shift by E325 value

• KG param

- KG + E325 param
 - a=0.034
 - b : same as KG param.

I.W. Park, P.Gubler, S.H.Lee, H.Sako, KA

Internal Radiative Correction (IRC)

- Momentum distribution took from JAM.
- Mass : Breit-Wigner distribution.
- IRC done using software package PHOTOS
- IRC makes tail on lower side.

E325 MODEL mass distribution

- E325 model assumption
 - Density assumed to be WS potential shape.
 - Phi production probability proportional to density.
 - According to mass-number dependence of X-sec (sigma(pA) ~ A)
 - # of entry is arbitrary. Run1 exp: ~1.7k Run2 exp: 12k for bg<1.25

Experimentally distinguishing polarization

• GEANT4 as an acceptance filter.

- Notes on the plot
 - # of entry is arbitrary.
 - Transverse pol fraction is overlayed.
- Results
 - Smaller acceptance for $\cos \theta = \pm 1$
 - Minimum energy requirement (0.4GeV at the trigger level) further cut those region.

In the acceptance & phi mom<1.25 & e+- momentum cut

Summary

- J-PARC E16 will measure dielectron in pA collisions at 30GeV to study the origin of hadron mass through spectral change of vector mesons in nuclear medium.
- Many related experiment and theory outcome. Getting interesting.
- We gradually increased our acceptance and reached an intermediate goal (RUN1), which is 1/3 of the design configuration(RUN2).
- Commissioning runs (Run0abc)
 - Beam condition improved but microstructure that caused low live rate remains. Expected to be improved in the next run.
 - Detectors work.
- We are preparing for Run0d planned in 2023.
 - Get PAC approval for RUN1 (1st physics runs).
- Briefly discussed the possibility of measuring polarization dependent mass modification.