Activities of the EIC-Japan Group

APCTP Workshop on the Physics of Electron Ion Collider November 2nd, 2022 Yuji Goto (RIKEN)

Outline of this talk

- Physics at Electron-Ion Collider (EIC)
 - Origin of nucleon mass and spin
 - 3D structure of the nucleon and nucleus
 - Gluon saturation (Color Glass Condensate)
 - Hadronization
- EIC-Japan activities
 - Interest in contributing to ZDC (Zero-Degree Calorimeter)
 - Interest in contributing to (AC-)LGAD (Low-Gain Avalanche Detector) Barrel
- Collaboration opportunities

Electron-Ion Collider (EIC)

- 2020.1.9: U.S. Department of Energy selected Brookhaven National Laboratory to host major new nuclear physics facility, the Electron-Ion Collider
- World's first polarized electron + proton / light-ion / heavy-ion collider

November 2, 2022

Physics at EIC

- How does the mass of the nucleon arise?
 - The Higgs mechanism accounts for only ${\sim}1\%$ of the mass of the proton.
- How does the spin of the nucleon arise?
 - The spin of the quarks accounts for only one-third of the spin of the proton.
- What are the emergent properties of dense system of gluons?
 - The gluon saturation describes a new state of matter at extreme high density.

Quark-gluon structure

10

10

10

- Deep inelastic scattering (DIS) of lepton (electron)
 - Large $Q^2 (Q^2 = -q^2)$ provides a hard scale to resolve quarks and gluons in the proton
- Parton distribution function (PDF) of quarks and gluons
 - 1D longitudinal motion of partons
 - x: momentum fraction of quarks and gluons
 - Significant improvement of precision of the polarized PDF at EIC

10

10-2

10

3D structure of the nucleon

- Conclusive understanding of the nucleon spin
 - Orbital motion inside the nucleon and orbital angular momenta of quarks and gluons
- TMD (Transverse-Momentum Dependent) distribution function
 - Correlation between the (orbital) motion, spin of partons, and spin of the nucleon

GPD (Generalized Parton Distribution)
Spatial distribution or tomography

Gluon saturation in e+A collisions

000000

- pQCD and DGLAP & BFKL evolution works with high precision
- Issues with linear DGLAP/BFKL at low-x
 - Gluon PDF rapid rise violates unitary bound
- New approach: non-linear evolution
 - Gluon emission
 - Divergence at small x
 - Gluon recombination
 - 000000 Restriction of divergence
 - n Q • At very high energy, recombination compensates gluon emission
- BK/JIMWLK non-linear effects
 - Saturation characterized by $Q_s(x)$
 - Describe physics at low-x and lowmoderate Q

Gluon saturation in e+A collisions

- Color Glass Condensate (CGC)
 - Non-linear evolution
 - Saturation of gluon densities characterized by scale $Q_s(x)$
- Enhancement of Q_s with A
 - Saturation regime reached at significantly lower energy in nuclei

- First observation of a quantum collective gluonic system
 - Precision comparison of experiment and CGC as a theoretical model of the gluon saturation
- Precision understanding of nucleus with the quark-gluon picture necessary as the initial state of the QGP for understanding its production mechanism

EIC-Japan activities

- 2015.4: EIC Letter of Interest from Asian countries
 - 20 participants from Japan: RIKEN, Yamagata, Tokyo Tech, Juntendo, KEK, Kyorin, Kyoto, Niigata, Tohoku, Tokyo Science
 - 7 from China, 3 from India, 4 from Korea
 - To support EIC for NSAC Long Range Plan 2015
- 2019: Science Council of Japan Master Plan 2020 proposal of EIC
 - Collaboration including nuclear-physics community and highenergy community
 - Core institutions: Yamagata and RIKEN
 - Participating institutions: Kobe, Nihon, KEK, etc.
- 2020: Yellow Report
- 2020.5: eRD27 "developing a high resolution ZDC for the EIC"
- 2020.11: Expression of Interest (EOI) from EIC-Japan
- 2021.3-12: Call for detector proposal from the EIC project
 - EIC-Japan group participates in the ECCE detector consortium
- 2022: Science Council of Japan "Medium- and Long-term Research Strategy for Science"
 - EIC project proposal to be submitted as a part of the High-Energy QCD Frontier Initiative

Interest in contributing to ZDC

- ECCE/EPIC ZDC (Zero-Degree Calorimeter) design
 - Simulation
 - Performance evaluation
- ALICE-FoCal-E technology: Tungsten/Silicon
 - Test beam studies ongoing
- Radiation tolerance test by neutron irradiation
- RIKEN, Tsukuba, Tsukuba Tech, Kobe, Shinshu, Yamagata, JAEA, Nihon, Kyushu, KEK, Nagoya, Tokyo ICRR

Neutron irradiation at RIKEN RANS

ECCE/EPIC ZDC

November 2, 2022

ALICE FoCal-E R&D

EIC Interaction Region (IP6)

• Extensive integration of forward and backward detector elements into the accelerator lattice

• EIC far-forward region

Far-forward physics at EIC

- Spectator tagging in e+d/³He collisions
 - Neutron structure
 - Neutron spin structure, S & D waves
- e+A collisions at zero degree e+A
 - Breakup determination of the excited nucleus
 - Veto with evaporated neutrons and photons from de-excitation
 - Geometry tagging in e+A collisions
 - Event-by-event characterization of collision geometry
 - Study of nuclear medium effects
 - Short-range correlation (SRC) and EMC effect
 - Nuclear PDF significantly modified by SRC pairs

High-energy process

Forward spectator detected **Roman pot**

Intra-nuclear cascading increases with d (forward particle production)

Leads to evaporation of nucleons from excited nucleus (very forward)

Nucleon Momentum Distribution

Hauenstein 1 09/24/2019

8

Far-forward physics at EIC

- Mass of the proton, pion, kaon
 - Light quarks: its mass emerges from quark-gluon interactions, Higgs mechanism hardly plays a role
 - Strange quark is at the boundary: both emergent-mass and Higgs-mass generation mechanism are important
- Proton
 - Determination of an important term contributing to the proton mass, the socalled "QCD trace anomaly"
 - Through dedicated measurements of exclusive production of J/ψ and Y close to the production threshold
- Pion and kaon
 - Determination of the quark and gluon contribution to mass with the Sullivan process

Sullivan process Detect scattered electron

Interest in contributing to (AC-)LGAD Barrel

- Construction of (AC-)LGAD (Low-Gain Avalanche Detector) Barrel based on our past experience of PHENIX VTX silicon detector construction and present experience of sPHENIX INTT silicon detector construction
- HPK LGAD development by KEK group
 - To be combined with some readout ASIC
- RIKEN, Hiroshima, Nara Women's, Tokyo CNS, Kyushu, KEK

sPHENIX INTT construction November 2, 2022

HPK LGAD development

Charged particle ID

AC-LGAD TOF (~30 ps)

- Need to separate:
 - Electrons from photons
 - Electrons from charged hadrons
 - Calorimeter
 - Charged pions, kaons and protons from each other
 - TOF and Cherenkov
- AC-LGAD based TOF system
 - Hadron PID in momentum range below the thresholds of the Cherenkov detectors

Collaboration opportunities

- EPIC ZDC
 - Soft photon detection
 - Crystal calorimeter (PWO, LYSO, …) prototype
 - Readout device (APD, PMT, …)
 - EM+hadron calorimeter
 - ALICE-FoCal-E technology
 - Pad detector led by Univ. of Tsukuba group and Indian group
 - Pixel detector led by European group
 - Test beam activities ongoing
 - Pad detector at ELPH, Tohoku U.
 - Total system at CERN PS/SPS
 - EM calorimeter optimization
 - Sensor, readout (HGCROC), aggregator
 - Hadron calorimeter design (light collection, readout)

ECCE/EPIC ZDC

EPIC ZDC

- Measurement of the radiation hardness of the ALICE-FoCal-E Pad sensors
 - To determine if the sensor is sufficiently radiation hard to radiation dose/fluence at zero degree of EIC
- Options: p-type or n-type
 - Type inversion from n-type to p-type at 10¹² neutron/cm²

Neutron irradiation at RIKEN RANS

EPIC ZDC

- At ALICE-FoCal, 1-MeV neutron equivalent fluence $<10^{13}$ n_{eq}/cm^2 , or Total ionizasation dose (TID) of 1.5 kGy
- At EPIC ZDC, more than 2 x 10^{13} neutron/cm² in one year at EIC-ZDC
- More than 10 times higher radiation than ALICE-FoCal

Electron-Proton collisions. IP6, p(275)+e(10). Si lifetime in ZDC.

Collaboration opportunities

- EPIC ZDC
 - Cooling, support structure
 - Simulation, software development
 - Construction, QA
- EPIC (AC-)LGAD Barrel
 - Yano's talk: Nov. 3 (Thu) afternoon

Summary of this talk

- Physics at EIC
 - Origin of nucleon mass and spin
 - 3D structure of the nucleon and nucleus
 - Gluon saturation (CGC)
 - Hadronization
 - Ultra-precise electron microscope, revealing the origin of mass and spin in three dimensions.
 - Discovery of emergent high-density gluon state (gluon condensation)
- EIC-Japan activities
 - Interest in contributing to ZDC
 - Far-forward physics at EIC
 - Interest in contributing to (AC-)LGAD Barrel
 - Charged particle ID
 - EIC-Japan Group is developing steadily