DE LA RECHERCHE À L'INDUSTRIE

EIC, the Ultimate Machine for Hadron Physics. A CEA's Perspective

CEA/Irfu activities on EIC

F. Bossù

CEA/Irfu (aka CEA-Saclay)

APCTP Workshop on the Physics of Electron Ion Collider Nov 3rd 2022

www.cea.fr

CEA/IRFU,

SHORT PRESENTATION

www.cea.fr

IRFU: Research Institute on the Fundamental laws of the Univers

What are the ultimate constituents of matter?

- LHC (ATLAS, CMS)
- Neutrinos (accelerator, reactor, source)

Infinitely small

What is the energy content of the Universe ?

- Dark matter & energy (CTA, DESI, EUCLID))
- Antimatter (GBAR)

Infinitely large

What are the origins of particles and nuclei ?

- Exotic nuclei (Riken, Ganil)
- QGP (ALICE, LHCb)
- Structure (Compass, CLAS12, EIC)

F Bossù

What are the origin and structure of the Universe ?

- Star and galaxies (Artemis, JWST, ELT))
- Planets (Solar Orbiter, Plato))
- Violent phenomena (SVOM, ATHENA))

Accelerator and superconducting magnets

- Intense ion sources, RFQ, Cryomodules:
- · Superconducting magnets for accelerators and detectors
- Beam dynamics

Detecting

- Gaseous detectors (Micromegas)
- Solid detectors (bolometers)
- Electronics (ASICs)

Simulating

- HPC
- Grid

Observing : space devices

- Camera, spectroimaging,..
 From X-ray to sub-mm
- cryomecanisms

<u>cea</u> Irfu – facilities

DETECTORS

Large migromegas detectors integration and tests (LHC UPGRADES)

Clean room - 130m²

SPACE

Clean rooms for space instruments integration and tests

Magnets and accelerators

Synergium - 25 000m²

Integration halls, clean rooms cryostats

Computing

HPC cluster

Node of Grid@LHC

cea Irfu structure

F Bossù

(SOME) HIGHLIGHTS IN HADRON PHYSICS

www.cea.fr

Cea Nucleon at different scales

Valence region: 0.1<x_B<0.7 Fixed target electron scattering

See region: 0.01<x_B<0.1 Fixed target muon scattering

Gluons: 10⁻⁴<x_B<0.2

The EIC to explore the nucleon down to gluon saturation regime

Luminosities 100 – 1000 times that of HERA

Cea DVCS at COMPASS

N.d'Hose

- A dedicated recoil proton detector (CAMERA)
- Leadership in the DVCS analysis
- Data taking: μ^{\pm} beams of E=160GeV on a LH2 target
 - Test run in 2012
 - 2016 and 2017, 2x6 months

Cea DVCS at COMPASS

N.d'Hose

$$\left< b_{\perp}^2(x) \right> \approx 2 B\left(\xi\right)$$

 3σ difference between 2012 and 2016 data

- more advanced analysis with 2016 data
- $\succ \pi^0$ contamination with different thresholds
- > binning with 3 variables (t,Q^2,v) or 4 variables (t,ϕ,Q^2,v)

2012 statistics = Ref 2016 analysed statistics = $2.3 \times \text{Ref}$

2016+2017 expected statistics = $10 \times \text{Ref}$

cea DVCS at JLab – 6GeV

0.005

-0.005

-0.01

At 6GeV:

⁴0.04

0.03

0.02

0.0

-0.01

-0.02

-0.03

-0.04

NLO-DVCS² HT-DVCS²

100

NLO-Interference

HT-Interference

200

300

Φ (dea)

100

n

M. Defurne et al., Hall A collaboration, Nat. comms.8, 1408 (2017)

200

300

 Φ (deg)

- Hall A DVCS experiment for high statistics on unpolarized target
- Fixed kinematics but multiple beam energies

 $-t = 0.17 \text{ GeV}^2$

Need for gluons to explain the data, NLO or ٠ higher twist contributions

 $-t = 0.28 \text{ GeV}^2$

Cea DVCS at JLab – 12GeV

Involvement in CLAS12

- Run Group A proponent leadership
- Spokepersons of DVCS experiments

Contributions to CLAS12

- Micromegas Vertex Tracker
- Forward Tagger Tracker
- LH2 target upgrade

- DVCS Beam spin asymmetries from RGA experiment
- Results will be published soon (in collaboration review)
- Extend the kinematic reach at higher Q²
- The large statistics allow the reduction of GPD extraction uncertainties

G. Christiaens et al., CLAS collaboration, soon on arXiv

Cea Cylindrical MicroMegas for CLAS12

- 4 m² of curved Micromegas detectors
- DREAM based Front-End Electronics ~ 20k ch.
- Low momentum particles => Light Detectors ~0.4% of X0
- Limited space of ~10 cm for 6 layers (small radius ~12 cm)
- High magnetic field (5T)
- 6 Layers with different R (18 detectors total), 1D readout
- Up to 10 MHz of signal rate
- Taking data since 2017

Dedicated ASIC developped

Dream : Dead-timeless Read-out Electronics ASIC for Micromegas

<u>Cea</u> Theory/Phenomenology

Open source

- Recent interface with Apfel++ for GPD evolution
- A PARTONS based event generator (EpIC) for DVCS and TCS developed during the EIC YR

A PDF evolution library in C++

Eur.Phys.J.C 82 (2022) 10, 888

Eur.Phys.J.C 82 (2022) 9, 819

Eur.Phys.J.C 78 (2018) 6, 478

Cea DVCS and TCS at EIC

F Bossù

Cea TPOT – sPhenix

- Infor

TPOT: TPC Outer Tracker

- Provide a measurement point outside the sPhenix TPC
- Useful for space charge distortion corrections
- 10 modules: 2x1D MicroMegas per module
- Resistive technology for spark protection
- Readout same as TPC: SAMPA FEE
- Production started beginning 2022
- Installation at BNL in Sep 2022

F Bossù

Ceea TPOT – sPhenix

Printing resistive strips at Saclay

Production in Saclay

Resistive foil pressed on PCB

First test process

3D printed frame

Frist carbon drift

Frist carbon drift

"Bulked" micromegas

61 -

17/33

<u>cea</u> TPOT – sPhenix

Sep 2022

- Four people from CEA
- Tests after shipping at SBU
- Assembly of the modules on the support mechanics in BNL

CURRENT ACTIVITIES IN EIC AND ASPIRATIONS

www.cea.fr

Cea Road to EIC

Pre-Yellow Report

- 2010: INT report on the joint BNL/INT/Jlab program on the science case for an EIC
- 2012: EIC White Paper, F. Sabatié as writing committee member
- 2015: Organization (with CPhT Ecole Polytechnique) of POETIC VI in Palaiseau
- 2019: Co-organization (with IJCLab-Orsay) of EICUG meeting in Paris
- 2020: Expression of Interest submission

Cea Road to EIC

Yellow Report:

- Co-convener of the DAQ/Electronics WG (D.Neyret)
- Active contributions in the exclusive and SIDIS physics WG
- Development of an event generator for DVCS/DVMP studies
- Participation in the Tracking WG studies on hybrid trackers

Detector proposal:

- Contribution to the ATHENA proposal.
- F. Sabatié as member of ATHENA Executive Board
- ATHENA Tracking WG co-convener (F.Bossù)
- ATHENA Exclusive physics co-convener (D. Sokhan)

SCIENCE REQUIREMENTS AND DETECTOR CONCEPTS FOR THE ELECTRON-ION COLLIDER EIC Yellow Report

ATHENA Detector Proposal

A Totally Hermetic Electron Nucleus Apparatus proposed for IP6 at the Electron-Ion Collider

EIC: current involvement

EIC User Group:

- F. Sabatié co-chair of the Charter Committee
- D. Sokhan EU representative on the Steering Committee
- Currently, 18 registered users ePIC Detector:
- Design of a new superconducting solenoid magnet in collaboration with JLab
- F. Sabatié co-chair of the IB and member of the Charter Committee
- F. Bossù co-convener of the Tracking WG
- D. Sokhan co-convener of the Exclusive Processes WG EIC R&D program:
- Participation in eRD108 on cylindrical MPGD tracking detectors and eRD109 on FEE
- Submission on two proposals for the generic R&D call: 1) development of a PLL IP block for FEE ASICs; 2) Development of DMAPS for ToF applications

Cea Design of a solenoid for ePIC

New solenoidal magnet @ 1.5 T (minimum), possibly 2.0 T

Design collaboration between CEA/Irfu and Jlab

Design of a solenoid for ePIC

About the cable:

- Aluminum would be the best option to minimize the interaction length
- No existing extrusion line in the world
- Workshop on Superconducting Detector Magnets @ CERN, 12/14 Sept 2022 : Aluminum stabilized conductors won't be available for a long time
- Copper must be used instead

RIC: **R**utherford cable In **C**opper Channel

RIC conductor for *Iseult* (MRI magnet)

- Designed at CEA Saclay
- Cable insertion by Luvata at Waterbury still exist

Winding on the large side reduce the thickness of the coil

Copper

Brass G10

Fiber-glass

Design of a solenoid for ePIC

Value	1.5 T	1.7 T	2.0 T	Units	Criterion
Current	2900	3296	3924	А	
B _o	1.500	1.704	2.023	Т	2.0
Uniformity	12.3	12.3	12.3	%	< 12.5%
Projectivity	1.806	2.047	2.408	T/Amm²	< 10

MARCO respects the criteria on

- The magnetic field at center
- The uniformity
- The projectivity

MARCO is mature to start the detailed phase design, to be achieved by the end of 2023.

Cea Cylindrical MicroMegas R&D

MicroPattern Gaseous Detectors (MPGDs) are a cost effective solution for large area tracking detectors

Two MPGD applications in ePIC:

- Barrel tracking:
 - Cylindrical layer(s) to complement the silicon tracker
 - Required to be low mass
 - Spatial resolution ~100μm
- Support for PID detectors:
 - Complement hpDIRC
 - Space point after the PID detector to constrain the track direction determination
 - Spatial resolution $\sim 100 \mu m$

MicroMegas and/or μRWELL can fulfill these requirements

MPGD layers in ePIC

MPGDs for ePIC is the focus of eRD108

Motivation

- Suild a full (no acceptance gaps) light-weight modular Micromegas barrel tracker to complement the silicon vertex detector
- Take the existing 1D MM technology from CLAS12 and upgrade it to be 2D readout

Objectives

- Optimization of the 2D readout to reach resolutions of ~100–150 μm with the fewest possible number of channels
- Full size prototype module in 2023 50x70cm²
- Find industrial partner for 50x100cm² (or bigger)

Activities

- Finite difference element simulation of the resistive layer coupled with Garfield++ output
- This tool will be calibrated with prototype results

Example of the charge density on the resistive surface 2µs after injection

Readout pattern design: Several design 2D patterns:

- Orthogonal strips
- ASACUSA like readout

Cylindrical MicroMegas R&D

Prototype design and R&D

Amplification Kapton (AK): a Kapton foil with resistive paste stretched on a carbon

fiber frame and then bulk with a micromesh

- AKs with different resistivity will be glued together with Kapton foils with 2D readout patterns
- First tests of assembly of AK are promising: holding up to 900V between the resistive layer and the mesh in air.

Cea Cylindrical MicroMegas R&D

- Isfu

- First CAD design of the whole Micromegas tracker for the ATHENA proposal
- Being used also as starting point for ePIC

Ceal SALSA: ASIC for MPGDs

- Success story of 64-channel ASICs based on CSA and SCA memory 2007
 - → Flexible Charge Sensitive Amplifier
 - Programmable dynamic ranges and shaping times
 - \rightarrow 512-cell deep Switched Capacitor Array analog memory
 - Long drift length TPC and high rate tracker research applications \rightarrow
 - Applications in archeology, medicine, security \rightarrow
 - → ASICs, frontends and turn-key systems in experiments and R&D projects in Africa, Americas, Asia, Europe
 - e.g. T2K (Japan), Clas12 (Jefferson Lab, USA), ScanPyramids (Egypt), PandaX-III (China), etc...

2022: Development of future SALSA chip

- → With Sao-Paolo University consortium Sampa !
- \rightarrow 64-channel versatile ASIC
- Streaming and triggered readout \rightarrow
- → Flexible programmable **front-end**
 - 50-500 ns peaking times
 - 0-50 fC to 0-5 pC dynamic range
 - 50-200 pF input cap but still efficient up to 1 nF
- 12-bit 50 (100) MHz ADC per channel \rightarrow
- DSP: pedestals, common mode noise, ZS, peak finding (?) \rightarrow
- Radiation hard design in 65 nm technology \rightarrow

NewChip RD51workshop 20210617.pdf

Picosec: MicroMegas for timing detectors

- Use light (Cerenkov radiation) instead of ionization: fast detectors
- Cheap and modular design
- Time resolution ~25 ps for MIPs

ASIC for AC-LGAD

- Consortium: IJCLab, Omega, Irfu
- Goal: 4D tracking with ultrafast silicon detectors
- Irfu contribution on high performance TDC

(SOME OF THE) ELECTRONICS AND DETECTOR FACILITIES

Wire-bonding machines

Robotized test bench for ASIC

Large area clean rooms

CICLAD clean room: ~150 m2

MPGD workshop

- Overview of CEA/Irfu structure and activities on hadron and EIC physics
- Irfu is strongly involved in ePIC
- Irfu is leading the design of the new magnet for ePIC
- Active R&D on 2D low-mass cylindrical MircoMegas for tracking
- A new ASIC for MPGD readout is being developed
- Participating in the development of the ASIC for AC-LGAD readout
- R&D ongoing on MicroMegas based timing detectors