# **Dihadrons and Lambdas at the EIC**



APCTP Workshop on the Physics of the EIC

November 2022

Research supported by the





### Outline

- SIDIS Dihadron Kinematics and Cross Section
- TMD PDFs and EIC Impact
- Dihadron Fragmentation Functions and Partial Waves
- Lambdas and TMD Fragmentation



# Outline

### SIDIS Dihadron Kinematics and Cross Section

- ♦ TMD PDFs and EIC Impact
- Dihadron Fragmentation Functions and Partial Waves
- Lambdas and TMD Fragmentation



# **Dihadrons in SIDIS**

$$eN \to e + h_1(P_1) + h_2(P_2) + X$$





# **Dihadron Kinematics**

 $eN \to e + h_1(P_1) + h_2(P_2) + X$ 

### **Dihadrons:**

momentum:  $P_h = P_1 + P_2$ kinematics:  $M_h$ , z,  $p_T$ angles:  $\phi_h$ ,  $\phi_R$ ,  $\phi_S$ ,  $\theta$ 





### **Inclusive:**

$$x_B = \frac{Q^2}{2P \cdot q}, \quad y = \frac{P \cdot q}{P \cdot l}$$
$$\gamma = \frac{2Mx_B}{Q}$$





### Online 3D View:

https://c-dilks.github.io/dihadronAngleDefs/dihadronAngleDefs.html



$$d\sigma_{UL} = \frac{\alpha^2}{4\pi x y Q^2} \left( 1 + \frac{\gamma^2}{2x} \right) S_L$$

$$\times \left\{ A(x,y) \sum_{\ell=1}^{\ell} \sum_{m=1}^{\ell} P_{\ell,m} \sin(-m\phi_h + m\phi_{R_\perp}) F_{UL}^{P_{\ell,m}} \sin(-m\phi_h + m\phi_{R_\perp}) \right.$$

$$+ B(x,y) \sum_{\ell=0}^{\ell} \sum_{m=-\ell}^{\ell} P_{\ell,m} \sin((2-m)\phi_h + m\phi_{R_\perp}) F_{UL}^{P_{\ell,m}} \sin((2-m)\phi_h + m\phi_{R_\perp}) \\ \left. + V(x,y) \sum_{\ell=0}^{\ell} \sum_{m=-\ell}^{\ell} P_{\ell,m} \sin((1-m)\phi_h + m\phi_{R_\perp}) F_{UL}^{P_{\ell,m}} \sin((1-m)\phi_h + m\phi_{R_\perp}) \right\}.$$

$$d\sigma_{LT} = \frac{\alpha^2}{4\pi x y Q^2} \left( 1 + \frac{\gamma^2}{2x} \right) \lambda_e |\mathbf{S}_{\perp}| \sum_{\ell=0}^{\ell_{\max}} \sum_{m=-\ell}^{\ell} \left\{ C(x, y) \, 2 \, P_{\ell,m} \cos((1-m)\phi_h + m\phi_{R_{\perp}} - \phi_S)) F_{LT}^{P_{\ell,m}} \cos((1-m)\phi_h + m\phi_{R_{\perp}} - \phi_S)) + W(x, y) \left[ P_{\ell,m} \cos((-m\phi_h + m\phi_{R_{\perp}} + \phi_S) F_{LT}^{P_{\ell,m}} \cos((-m\phi_h + m\phi_{R_{\perp}} + \phi_S) + P_{\ell,m} \cos((2-m)\phi_h + m\phi_{R_{\perp}} - \phi_S) F_{LT}^{P_{\ell,m}} \cos((2-m)\phi_h + m\phi_{R_{\perp}} - \phi_S) \right] \right\}.$$

Phys.Rev.D 90 (2014) 11, 114027

### **Dihadrons and Lambdas**

General form of each term:

$$d\sigma_{XY} \propto D(x, y, Q^2) \cdot S(\phi_h, \phi_R, \phi_S, \theta) \cdot F_{XY}^{S(\phi, \dots)} + \dots$$
Depolarization

Sinusoidal modulation
Structure Function

Several of these terms per polarization configuration 'XY'

• X = electron polarization, Y = proton polarization  $X, Y \in \{U, L, T\}$ 

Separate terms at twist-2 and twist-3

Twist-3 asymmetries ~1/Q

General form of each term:

Ratio of longitudinal and  
transverse photon flux  
$$= \frac{1 - y - \frac{1}{4}\gamma^2 y^2}{1 - y + \frac{1}{2}y^2 + \frac{1}{4}\gamma^2 y^2}$$
$$Depolarization factors at twist-2$$
$$B(\epsilon, y) = \frac{y^2}{2(1 - \epsilon)}\epsilon$$
$$B(\epsilon, y) = \frac{y^2}{2(1 - \epsilon)}\epsilon$$
$$W(\epsilon, y) = \frac{y^2}{2(1 - \epsilon)}\sqrt{2\epsilon(1 + \epsilon)}$$
$$W(\epsilon, y) = \frac{y^2}{2(1 - \epsilon)}\sqrt{2\epsilon(1 - \epsilon)}$$

 $\epsilon =$ 

General form of each term:

$$d\sigma_{XY} \propto D(x, y, Q^2) \cdot S(\phi_h, \phi_R, \phi_S, \theta) \cdot F_{XY}^{S(\phi, \dots)} + \dots$$
Depolarization
Sinusoidal modulation
Structure Function

Legendre Polynomial x Sine (Cosine) azimuthal modulation







General form of each term:

$$d\sigma_{XY} \propto D(x, y, Q^{2}) \cdot S(\phi_{h}, \phi_{R}, \phi_{S}, \theta) \cdot \begin{bmatrix} F_{XY}^{S(\phi, \dots)} + \dots \\ \bullet \\ \end{bmatrix}$$
Depolarization Sinusoidal modulation Structure Function
$$f_{XY} = \mathcal{I} \begin{bmatrix} w(\mathbf{k}_{T}, \mathbf{p}_{T}, x, z, M_{h}, \dots) \cdot f(x, k_{T}) \cdot D(z, M_{h}, pT) + \dots \\ \bullet \\ \mathcal{I} \begin{bmatrix} wfD \end{bmatrix} \\ \text{quark transverse} \\ \text{momentum convolution} \end{bmatrix}$$

$$\lim_{k \to \infty} \int f_{k}(x, k_{R}) \cdot D(z, M_{h}, pT) + \dots \\ f_{k}(x, k_{R}) \cdot D(z, M_{h}, pT) + \dots \\ f_{k}(x, k_{R}) \cdot D(z, M_{h}, pT) + \dots \\ f_{k}(x, k_{R}) \cdot D(z, M_{h}, pT) + \dots \\ f_{k}(x, k_{R}) \cdot D(z, M_{h}, pT) + \dots \\ f_{k}(x, k_{R}) \cdot D(z, M_{h}, pT) + \dots \\ f_{k}(x, k_{R}) \cdot D(z, M_{h}, pT) + \dots \\ f_{k}(x, k_{R}) \cdot D(z, M_{h}, pT) + \dots \\ f_{k}(x, k_{R}) \cdot D(z, M_{h}, pT) + \dots \\ f_{k}(x, k_{R}) \cdot D(z, M_{h}, pT) + \dots \\ f_{k}(x, k_{R}) \cdot D(z, M_{h}, pT) + \dots \\ f_{k}(x, k_{R}) \cdot D(z, M_{h}, pT) + \dots \\ f_{k}(x, k_{R}) \cdot D(z, M_{h}, pT) + \dots \\ f_{k}(x, k_{R}) \cdot D(z, M_{h}, pT) + \dots \\ f_{k}(x, k_{R}) \cdot D(z, M_{h}, pT) + \dots \\ f_{k}(x, k_{R}) \cdot D(z, M_{h}, pT) + \dots \\ f_{k}(x, k_{R}) \cdot D(z, M_{h}, pT) + \dots \\ f_{k}(x, k_{R}) \cdot D(z, M_{h}, pT) + \dots \\ f_{k}(x, k_{R}) \cdot D(z, M_{h}, pT) + \dots \\ f_{k}(x, k_{R}) \cdot D(z, M_{h}, pT) + \dots \\ f_{k}(x, k_{R}) \cdot D(z, M_{h}, pT) + \dots \\ f_{k}(x, k_{R}) \cdot D(z, M_{h}, pT) + \dots \\ f_{k}(x, k_{R}) \cdot D(z, M_{h}, pT) + \dots$$

### **Dihadron Access to PDFs x DiFFs**

### Twist 2



**Nucleon Polarization** 

### **Nucleon Polarization**

|                |   | U                                                       | L                                                            | Т                                                                                         |
|----------------|---|---------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------------------------------------|
| on Polarizatio | U | $\begin{array}{c} f_1 D_1 \\ h_1^\perp H_1 \end{array}$ | $\begin{array}{c} h_{1L}^{\perp}H_1\\ g_{1L}G_1 \end{array}$ | $\begin{array}{c} f_{1T}^{\perp}D_1\\ g_{1T}G_1\\ h_1H_1\\ h_{1T}^{\perp}H_1 \end{array}$ |
| Electi         | L | $f_1G_1$                                                | $g_{1L}D_1$                                                  | $g_{1T}D_1$ $f_{1T}^{\perp}G_1$                                                           |

# **Electron Polarization**

|      |   | U                                                                                             | $\mathbf{L}$                                                                                              | Т                                                                                                                                            |
|------|---|-----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| auon | U | $ \begin{array}{c c} hH_1 & f_1\tilde{D} \\ f^{\perp}D_1 & h_1^{\perp}\tilde{H} \end{array} $ | $\begin{array}{ccc} h_L H_1 & g_{1L} \tilde{G} \\ f_L^{\perp} D_1 & h_{1L}^{\perp} \tilde{H} \end{array}$ | $ \begin{aligned} f_T D_1 & h_1 \tilde{H} \\ h_T H_1 & g_{1T} \tilde{G} \end{aligned} $                                                      |
|      |   |                                                                                               |                                                                                                           | $\begin{array}{ccc} h_T^{\perp} H_1 & f_{1T}^{\perp} \tilde{D} \\ \\ f_T^{\perp} D_1 & h_{1T}^{\perp} \tilde{H} \end{array}$                 |
|      | L | $eH_1  f_1 \tilde{G}$<br>$g^\perp D_1  h_1^\perp \tilde{E}$                                   | $e_L H_1  g_{1L} \tilde{D}$<br>$g_L^{\perp} D_1  h_{1L}^{\perp} \tilde{E}$                                | $g_T D_1  h_1 \tilde{E}$ $e_T H_1  g_{1T} \tilde{D}$ $e_T^{\perp} H_1  f_{1T}^{\perp} \tilde{G}$ $g_T^{\perp} D_1  h_{1T}^{\perp} \tilde{E}$ |

# Outline

### ♦ SIDIS Dihadron Kinematics and Cross Section

### TMD PDFs and EIC Impact

- Dihadron Fragmentation Functions and Partial Waves
- Lambdas and TMD Fragmentation



### Transverse Momentum Dependent (TMD) PDFs [twist 2]



C. Dilks

**Dihadrons and Lambdas** 

# Dihadrons → Spin-Orbit Correlations in Hadronization

### **Unpolarized SIDIS:**

- Cahn Effect: quark transverse momentum leads to azimuthal modulations of SIDIS cross section
- Boer-Mulders Effect: Non-collinear quarks in an unpolarized proton can have transverse polarization, also contributing azimuthal modulations



Boer-Mulders and Cahn effects are comparable in single hadron production

• HERMES and COMPASS data, e.g. Phys.Rev.D 81 (2010) 114026

### Dihadrons can help decouple BM from Cahn

- Extra degree of freedom in dihadrons
  - Cahn effect impacts dihadron total momentum direction P<sub>h</sub>
  - Utilize azimuthal angle about  $P_{h}$ , in addition to the azimuth about the virtual photon

### Advantages from a broader and higher Q<sup>2</sup> range at an EIC

- Broader Q<sup>2</sup> range probes evolution effects
- Higher Q<sup>2</sup> suppresses Cahn effect in single-hadron asymmetries (Cahn is twist-4)
- Lower Q<sup>2</sup> for overlap with other SIDIS experiments

# **Transversely Polarized Nucleons**

### **Transversely polarized SIDIS:**

Access to several additional TMDs:

**Transversity** → Tensor Charge ٠

$$\delta q = \int_{-1}^{1} dx h(x) = \int_{0}^{1} dx \left[ h(x) - \bar{h}(x) \right]$$

- Quark EDM contribution to nucleon EDM ٠
- Comparisons with lattice QCD calculation ٠
- Sivers Function ٠
- Kotzinian-Mulders (wormgear) Function •
- Pretzelocity •
- **Twist-3 TMDs** ٠



0

### Dilks

# **Dihadron Impact on Transversity**

- Complementary to single-hadron SIDIS and hadrons in jets
- Complementarity reduces systematic uncertainties overall
- Additional advantages from dihadrons:
  - Expect little contribution from twist-3 FFs
  - Acceptance effects tend to "average out" between the two hadrons, which is especially good for F<sub>UU</sub> measurements (Boer-Mulders function)



# **Collinear Twist-3 PDFs**



■ Pion-nucleon σ term:  $m_{q} \rightarrow m_{N}$ 

"Boer-Mulders Force": Transverse force exerted by color field on q↑ after scattering, in an unpolarized nucleon
Phys.Rev.D 88 (2013) 114502

# **g<sub>т</sub>(х)**

**e(x)** 

"Average transverse force that acts on an unpolarized quark in a transversely polarized nucleon"
Phys.Rev.D 94 (2016) 9, 094040

# h<sub>L</sub>(x)

"Average longitudinal gradient of the transverse force that acts on transversely polarized [struck] quarks in longitudinally polarized nucleons"

 $\begin{aligned} \mathcal{L}^q_{\rm JM} - L^q_{\rm Ji} &= \Delta L^q_{\rm FSI} \\ \text{Expressible in terms of the} \\ \text{change in quark OAM as it} \\ \text{leaves the target} \end{aligned}$ 

- Phys.Rev.D 94 (2016) 9, 094040
- Phys.Rev.D 66 (2002) 114005
- Nucl.Phys.B 461 (1996) 197-237

### C. Dilks

### **Dihadrons and Lambdas**

Semi-classical interpretation via x-moments

# **EIC Impact on Collinear Twist-3 PDFs: e(x)**



C. Dilks

**Dihadrons and Lambdas** 

# **EIC Impact on Collinear Twist-3 PDFs:** $g_{\tau}(x)$



• Caveat: depolarization for A<sub>1T</sub> favors high y...

# **EIC Impact on Collinear Twist-3 PDFs: h<sub>L</sub>(x)**

# Any impact studies for the EIC?



Spectator Model

Jakob, Mulders, and Rodrigues, Nucl.Phys. A626 (1997) 937-965

Figures from JLab Proposal E12-06-112B/E12-09-008B

- $\clubsuit$  Accessible in target spin asymmetry A<sub>11</sub>
  - Depolarization for <u>allows</u> broad coverage
  - Ongoing experiment at CLAS (RG-C)



### <u>Bag Model</u>

See also:

- Chiral Quark Soliton Model
- Light Front Constituent Quark Model

Cebulla et al., Acta Phys.Polon. B39 (2008) 609-640 Lorcé , Pasquini, Schweitzer, JHEP 1501 (2015) 103

### C. Dilks

### **Dihadrons and Lambdas**

20

# Outline

- SIDIS Dihadron Kinematics and Cross Section
- ♦ TMD PDFs and EIC Impact

### Dihadron Fragmentation Functions and Partial Waves

Lambdas and TMD Fragmentation



# **Dihadron Fragmentation Functions**





Thought to be small... see, for example:

PoS DIS2014 (2014) 231

Phys.Rev.D 99 (2019) 5, 054003

arXiv: 1405.7659 [hep-ph]











$$D_{1} = \sum_{\ell=0}^{\ell_{\max}} \sum_{m=-\ell}^{\ell} P_{\ell,m}(\cos\vartheta) \cos\left(m\left(\phi_{R_{\perp}} - \phi_{p}\right)\right) D_{1}^{|\ell,m\rangle}(z, M_{h}, |\boldsymbol{p}_{T}|),$$

$$G_{1} = \sum_{\ell=1}^{\ell_{\max}} \sum_{m=-\ell}^{\ell} P_{\ell,m}(\cos\vartheta) \sin\left(m\left(\phi_{R_{\perp}} - \phi_{p}\right)\right) G_{1}^{|\ell,m\rangle}(z, M_{h}, |\boldsymbol{p}_{T}|),$$

$$H_{1}^{\perp} = \sum_{\ell=0}^{\ell_{\max}} \sum_{m=-\ell}^{\ell} P_{\ell,m}(\cos\vartheta) e^{im\left(\phi_{R_{\perp}} - \phi_{p}\right)} H_{1}^{\perp|\ell,m\rangle}(z, M_{h}, |\boldsymbol{p}_{T}|),$$



- $\Rightarrow$  Expand DiFFs into spherical harmonics (Legendre Polynomials ' $P_{lm}$ ')
- $\rightarrow$  Angular Momentum (AM) eigenvalues | $\ell$ ,m>
- Correlations of dihadron AM with fragmenting quark AM

$$e = 0$$
  $|0,0\rangle$   
ss  $UU$   
 $m = 0$ 













C. Dilks



| $h_1h_2/q$             | U                 | L                  | Т                                                                                                              |  |
|------------------------|-------------------|--------------------|----------------------------------------------------------------------------------------------------------------|--|
| UU                     | D <sub>1,00</sub> |                    | $H_{1,OO}^{\perp}$                                                                                             |  |
| LU                     | $D_{1,OL}$        |                    | $H_{1,OL}^{\perp}$                                                                                             |  |
| $\mathbf{L}\mathbf{L}$ | $D_{1,LL}$        |                    | $H_{1,LL}^{\perp}$                                                                                             |  |
| $\mathbf{TU}$          | $D_{1,OT}$        | $G_{1,OT}^{\perp}$ | $\begin{cases} H_{1,OT}^{\perp} & \text{if } m < 0 \\ H_{1,OT}^{\triangleleft} & \text{if } m > 0 \end{cases}$ |  |
| $\mathbf{TL}$          | $D_{1,LT}$        | $G_{1,LT}^{\perp}$ | $\begin{cases} H_{1,LT}^{\perp} & \text{if } m < 0 \\ H_{1,LT}^{\triangleleft} & \text{if } m > 0 \end{cases}$ |  |
| тт                     | $D_{1,TT}$        | $G_{1,TT}^{\perp}$ | $\begin{cases} H_{1,TT}^{\perp} & \text{if } m < 0 \\ H_{1,TT}^{\triangleleft} & \text{if } m > 0 \end{cases}$ |  |



# **Dihadron Partial Waves at CLAS**



Twist-2  $A_{LU}$  Amplitudes

 $\blacklozenge$  Sign change near  $\rho$  mass in  $G_{_{1,OT}}$ 

 $\clubsuit$  Enhancement at  $\rho$  mass in  $G_{1,TT}$ 

### C. Dilks

### **Dihadron Partial Waves at CLAS**

Twist-3  $A_{LU}$  Amplitudes





**Dihadrons and Lambdas** 

# **Partial Wave Projections**



Significant impact on **DiFF** partial waves

Relative differences in uncertainties comes partial wave correlations and phase space limitations

33

 $10~{\rm fb}^{-1}$ 

# **Even more from Dihadrons...**

# Vector Mesons: a significant fraction of dihadrons

 $\rho \to \pi \pi$  $K^* \to \pi K$  $\phi \to K K$ 



# Flavor-dependence of twist-3 PDFs U **Proton Target** (u) **(**u) (u) **Deuteron Target** (u) (d)Channel dependence of DiFFs $D_{1}^{q/\pi^{\pm}\pi^{0}} \\ G_{1}^{q/\pi^{\pm}\pi^{0}} \\ H_{1}^{q/\pi^{\pm}\pi^{0}}$ $D_{1}^{q/\pi^{+}\pi^{-}}$ $G_{1}^{q/\pi^{+}\pi^{-}}$ $H_{1}^{q/\pi^{+}\pi^{-}}$

### C. Dilks

# **Dihadrons for Gluon Saturation**



 $\clubsuit$  Away-side peak in  $\Delta \phi$  de-correlates when non-linear QCD effects set in

### Sensitive to gluon TMDs

- $\clubsuit$  Measure suppression  $J_{eAu}$ , the relative e+Au to e+p back-to-back dihadron yields
  - Scaled by A<sup>1/3</sup>
  - $J_{eAu}$ ~1 if no collective nuclear effects

# Outline

- SIDIS Dihadron Kinematics and Cross Section
- ♦ TMD PDFs and EIC Impact
- Dihadron Fragmentation Functions and Partial Waves
- Lambdas and TMD Fragmentation



### $\Lambda$ Decays $\rightarrow N\pi$ "Dihadrons"

| A DECAY MODES | Fraction (Γ <sub>i</sub> /Γ) |
|---------------|------------------------------|
| $p\pi^{-}$    | (63.9 $\pm 0.5$ ) %          |
| $n\pi^0$      | (35.8 $\pm 0.5$ ) %          |



**Dihadrons and Lambdas** 

 $P_{\pi}$ -

Χ

# **TMD Fragmentation Functions**

◆ Needs knowledge of final state hadron polarization  $\rightarrow$  "self-analyzing"  $\land$  decay

TMD and spin-dependent fragmentation  $\rightarrow$  Analogous to TMD PDFs

- TMD Polarizing Fragmentation Function (TMD PFF):  $D_{1T}^{\perp\Lambda/q}$
- Transversity TMD FF:  $H_1^{\Lambda/q}$
- Spin transfer  $S_A$  and spontaneous polarization  $P_A$  from structure function ratios

| Parton polarization $\rightarrow$ | Spin averaged                                                                 | longitudinal                                                                                            | transverse                                                                                                                                                                                                                           |
|-----------------------------------|-------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Hadron Polarization 🗸             |                                                                               |                                                                                                         |                                                                                                                                                                                                                                      |
| spin averaged                     | $D_1^{h/q}(z,p_T) = \left( \bullet \rightarrow \bigcirc \right)$              |                                                                                                         | $H_1^{\perp h/q}(z, p_T) = \left( \stackrel{\bullet}{\bullet} \longrightarrow \bigcirc \right) - \left( \stackrel{\bullet}{\bullet} \longrightarrow \bigcirc \right)$                                                                |
| longitudinal                      |                                                                               | $G_1^{\Lambda/q}(z, p_T) = ( \bullet \bullet \to ) - ( \bullet \bullet \to ) $                          | $H_{1L}^{h/q}(z,p_T)  \left[ \stackrel{\bullet}{\bullet} \rightarrow \stackrel{\bullet}{\bullet} \right] - \left[ \stackrel{\bullet}{\bullet} \rightarrow \stackrel{\bullet}{\bullet} \right]$                                       |
| Transverse (here $\Lambda$ )      | $D_{1T}^{\perp\Lambda/q}(z,p_T) = \left[ \bullet \rightarrow \bullet \right]$ |                                                                                                         | $H_1^{\Lambda/\mathbf{q}}(z, p_T) = \left[ \begin{smallmatrix} \bullet & \bullet \\ \bullet & \bullet \\ \end{smallmatrix} \right] - \left[ \begin{smallmatrix} \bullet & \bullet \\ \bullet & \bullet \\ \end{smallmatrix} \right]$ |
|                                   |                                                                               | $G_{1T}^{h/q}(z,p_T) = \left( \bullet \bullet \to \bullet \right) - \left( \bullet \to \bullet \right)$ | $H_{1T}^{\perp\Lambda/q}(z,p_T) = \left( \bullet \rightarrow \bigcirc \right) - \left( \bullet \rightarrow \bigcirc \right)$                                                                                                         |
|                                   |                                                                               |                                                                                                         |                                                                                                                                                                                                                                      |

Table from A. Vossen, INT-18-3

### C. Dilks

### **Transverse Lambdas**

Spontaneous Polarization:  $P_{\Lambda} = \frac{F_{UT}^{\sin(\phi_S - \phi_{\Lambda})}}{F_{UU}}$ 

Spin Transfer: 
$$S_{\Lambda} = D(y) \frac{F_{TT}^{\cos(\varphi_S - \phi_S)}}{F_{UU}}$$

 $F_{XY}$  X = proton polarization Y =  $\Lambda$  polarization

Accessible via cos $\theta$  distribution of protons in  $\Lambda \rightarrow p\pi$  $\frac{dN_{p(\bar{p})}}{d\cos\theta} \propto 1 + \alpha_{\Lambda(\bar{\Lambda})}P_{\Lambda(\bar{\Lambda})}\cos\theta$ 



# Impact on TMD PFF

### Extracted TMD PFF moment



### Theoretical Uncertainty Impact



Larger bands: from Belle [Phys.Rev.D 102 (2020) 9, 096007]

Smaller bands: Belle + EIC pseudodata

### C. Dilks

# Impact on Spin Transfer





### C. Dilks

# Spontaneous Polarization Impact from As in Jets

- Measuring As in jets provides another probe for TMD FFs
- Distribution of hadrons relative to jet axis allows for decorrelation of TMD FFs and PDFs
- Impact on spontaneous polarization:
  - Bands: theoretical uncertainty
  - Error bars: projection from 100 fb<sup>-1</sup>



### C. Dilks

# Spin Transfer Impact from ∧s in Jets

- Impact on spin transfer:
  - Bands: theoretical uncertainty
  - Error bars: projection from 100 fb<sup>-1</sup>





### Summary

### Dihadrons

- TMD parton distribution functions
- Collinear Twist-3 PDFs
- Dihadron Fragmentation Functions
- Partial waves  $\rightarrow$  spin/orbit correlations in hadronization
- Vector meson decay
- Gluon saturation

### Lambdas

- TMD fragmentation
- Lambda polarization and spin transfer

Many analysis opportunities will be available, for both experiment and theory!









### Impact on Spontaneous Polarization



C. Dilks

**Dihadrons and Lambdas** 

### **Dihadron Access to PDFs x DiFFs**

### Twist 2



### **Target Polarization**

|                |   | U                                                       | $\mathbf{L}$                                                 | Т                                                                                       |
|----------------|---|---------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| m Polarization | U | $\begin{array}{c} f_1 D_1 \\ h_1^\perp H_1 \end{array}$ | $\begin{array}{c} h_{1L}^{\perp}H_1\\ g_{1L}G_1 \end{array}$ | $egin{array}{c} f_{1T}^{\perp}D_1 \ g_{1T}G_1 \ h_1H_1 \ h_{1T}^{\perp}H_1 \end{array}$ |
| Беа            | L | $f_1G_1$                                                | $g_{1L}D_1$                                                  | $g_{1T}D_1$ $f_{1T}^{\perp}G_1$                                                         |

# **Beam Polarization**

|              |   | lč                                                                                          | arget Polarizatio                                                                                         |                                                                                                                                                                                      |
|--------------|---|---------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|              |   | U                                                                                           | L                                                                                                         | Т                                                                                                                                                                                    |
| PUIALIZAUUII | U | $\begin{array}{c c} hH_1 & f_1\tilde{D} \\ f^{\perp}D_1 & h_1^{\perp}\tilde{H} \end{array}$ | $\begin{array}{ccc} h_L H_1 & g_{1L} \tilde{G} \\ f_L^{\perp} D_1 & h_{1L}^{\perp} \tilde{H} \end{array}$ | $ \begin{array}{ccc} f_T D_1 & h_1 \tilde{H} \\ h_T H_1 & g_{1T} \tilde{G} \\ h_T^{\perp} H_1 & f_{1T}^{\perp} \tilde{D} \\ f_T^{\perp} D_1 & h_{1T}^{\perp} \tilde{H} \end{array} $ |
| Dealli       | L | $eH_1  f_1\tilde{G}$ $g^{\perp}D_1  h_1^{\perp}\tilde{E}$                                   | $\begin{array}{ccc} e_L H_1 & g_{1L} \tilde{D} \\ g_L^{\perp} D_1 & h_{1L}^{\perp} \tilde{E} \end{array}$ | $\begin{array}{ccc} g_T D_1 & h_1 \tilde{E} \\ e_T H_1 & g_{1T} \tilde{D} \\ e_T^{\perp} H_1 & f_{1T}^{\perp} \tilde{G} \\ g_T^{\perp} D_1 & h_{1T}^{\perp} \tilde{E} \end{array}$   |

# **Dihadron Access to PDFs x DiFFs**

### Twist 2



**Target Polarization** 

### **Target Polarization**

| •              |   |                                                                                   |                                                             |                                                                                                                                                                        |  |
|----------------|---|-----------------------------------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                |   | U                                                                                 | $\mathbf{L}$                                                | Т                                                                                                                                                                      |  |
| m Polarization | U | $\begin{array}{c} \textbf{A}  f_1 D_1 \\ \textbf{B}  h_1^{\perp} H_1 \end{array}$ | $  B h_{1L}^{\perp} H_1                                   $ | $\begin{array}{c} \textbf{A} \ \ f_{1T}^{\perp} D_{1} \\ \textbf{A} \ \ g_{1T} G_{1} \\ \textbf{B} \ \ h_{1} H_{1} \\ \textbf{B} \ \ h_{1T}^{\perp} H_{1} \end{array}$ |  |
| Bea            | L | $\mathbf{C} f_1 G_1$                                                              | $C g_{1L}D_1$                                               | $\begin{array}{c} \mathbf{C} \ g_{1T}D_1 \\ f_{1T}^{\perp}G_1 \end{array}$                                                                                             |  |

### **Depolarization Factors**

|      |              |                                       | -                                           |                                          |
|------|--------------|---------------------------------------|---------------------------------------------|------------------------------------------|
|      |              | U                                     | $\mathbf{L}$                                | Т                                        |
| _    | $\mathbf{U}$ | $\bigvee hH_1 f_1\tilde{D}$           | $h_L H_1 g_{1L} \tilde{G}$                  | $\int f_T D_1 h_1 \tilde{H}$             |
| tion |              | $f^{\perp}D_1  h_1^{\perp}\tilde{H}$  | $f_L^{\perp} D_1  h_{1L}^{\perp} \tilde{H}$ | $h_T H_1  g_{1T} \tilde{G}$              |
| riza |              |                                       |                                             | $h_T^\perp H_1  f_{1T}^\perp D$          |
| Pola |              |                                       |                                             | $f_T^\perp D_1 \ h_{1T}^\perp \tilde{H}$ |
| am   | L            | $\swarrow eH_1 f_1\tilde{G}$          | $Ve_LH_1  g_{1L}\tilde{D}$                  | $\int g_T D_1 h_1 \tilde{E}$             |
| Be   |              | $g^{\perp}D_1 \ h_1^{\perp}\tilde{E}$ | $g_L^\perp D_1 \ h_{1L}^\perp \tilde{E}$    | $e_T H_1  g_{1T} \tilde{D}$              |
|      |              |                                       |                                             | $e_T^\perp H_1 \ f_{1T}^\perp \tilde{G}$ |
|      |              |                                       |                                             | $g_T^\perp D_1 \ h_{1T}^\perp \tilde{E}$ |

### C. Dilks

# **Depolarization Factors**

| - Developing tight for the very (and a)                                                                                  |                                                                 |                                                           |                |  |
|--------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------|----------------|--|
| Depotarization factors (and ε)<br>depend on (x.v.O <sup>2</sup> )                                                        |                                                                 | Twist 2                                                   | Twist 3        |  |
| Asymmetry denominator:                                                                                                   | Unpolarized<br>Beam                                             | A, B                                                      | V              |  |
| ∫dσ <sub>υυ</sub> ~ Α                                                                                                    | Longitudinal<br>Beam                                            | С                                                         | W              |  |
| Asymmetry, for<br>modulation $D \in \{A, B, M(\theta, \phi_h, \phi_R, \phi_S) $<br>$A_{XY}^M \propto \frac{D_{XY}^M}{A}$ | $ C, V, W \} $ $ \cdot \frac{F_2}{F_{UU,T}^{\text{const}} + } $ | Struct<br>M<br>KY<br>$- \epsilon F_{UU,L}^{\text{CONST}}$ | ture Functions |  |

**Depolarization Factors** 

### C. Dilks

# **Depolarization Factors**

|                |                            | Polarization | Depolarization |
|----------------|----------------------------|--------------|----------------|
| <u>Twist 2</u> | Boer-Mulders               | UU           | В              |
|                | Sivers                     | UT           | 1              |
|                | Transversity               | UT           | B/A            |
|                | Kotzinian-Mulders          | UL           | B/A            |
|                | Wormgear (LT)              | LT           | C/A            |
|                | Helicity DIFE C $^{\perp}$ | LU           | C/A            |
|                |                            | UL           | 1              |
| <u>Twist 3</u> | e(x)                       | LU           | W/A            |
|                | h <sub>L</sub> (x)         | UL           | V/A            |
|                | g <sub>T</sub> (x)         | LT           | W/A            |



### **Kinematic Coverage**





### **Depolarization Factors**



C. Dilks

### **Depolarization Factors**



C. Dilks

# **Depolarization at CLAS**



# **CLAS Dihadron A<sub>LU</sub> Measurements for e(x)**

