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Timing detector in the EPIC collaboration

* The EPIC detector is designed compactly with ~1.7 T magnetic field

— Time-of-Flight (ToF) measurement is the main technique for particle identification (PID)

— Excellent timing resolution is necessary for PID over a wide pt and rapidity region

» Barrel (hadron end-cap) ToF requires a spatial resolution of 30 um (30 um) and a timing
resolution of 30 ps (25 ps), which covers 10.9 m2 (2.22 m?2)

— Very high spatial resolution is not necessary for EIC due to not high multiplicity environment @ R ~80 cm

» Expected radiation is 1010 neg/cm2 at top luminosity ~1034 cm-2s-1

— This is very small compared to HL-LHC environment with 1015~16 neg/cm2 @ luminosity ~103° cm-2s-1
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* The EPIC detector is designed compactly with ~1.7 T magnetic field

— Time-of-Flight (ToF) measurement is the main technique for particle identification (PID)

— Excellent timing resolution is necessary for PID over a wide pt and rapidity region

» Barrel (hadron end-cap) ToF requires a spatial resolution of 30 um (30 um) and a timing
resolution of 30 ps (25 ps), which covers 10.9 m2 (2.22 m?2)

— Very high spatial resolution is not necessary for EIC due to not high multiplicity environment @ R ~80 cm

» Expected radiation is 1010 neg/cm2 at top luminosity ~1034 cm-2s-1

— This is very small compared to HL-LHC environment with 1015~16 neq/cm2 @ luminosity ~103° cm-2s-1

LGAD technology is the first candidate to fulfill the requirements



Low Gain Avalanche Diode (LGAD)

LGAD detector

 DC-LGAD (standard LGAD) Charged Particle |\ v Fiel

— n**+-in-p type sensor with pt gain layer under nt+
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— 30 ps timing resolution

— Individual gain layer for each electrode — nonnegligible inactive area
with not achieving O(10) ps time resolution

K. Nakamura et al.,
JPS Conf. Proc. 34, 010016 (2021)




Low Gain Avalanche Diode (LGAD)

LGAD detector

 DC-LGAD (standard LGAD) Charged Particle |\ v Fiel

— n**+-in-p type sensor with pt gain layer under nt+

I \/
WII/ANE<

— 30 ps timing resolution

— Individual gain layer for each electrode — nonnegligible inactive area
with not achieving O(10) ps time resolution

DC-LGAD :.I éSiOZ
i m m K{% el

aw

p+

K. Nakamura et al.,
JPS Conf. Proc. 34, 010016 (2021)




Low Gain Avalanche Diode (LGAD)

LGAD detector

 DC-LGAD (Standard LGAD) Charged Partic

— n**+-in-p type sensor with pt gain layer under nt+

N EIectrig Field

I \/
WII/ANE<

— 30 ps timing resolution

— Individual gain layer for each electrode — nonnegligible inactive area
with not achieving O(10) ps time resolution

DC—LGAD ‘ | é 702
i m m Z{% i

- AC-LGAD ]
— n*-in-p type sensor with p+ gain layer under n+ (lower doped n layer) AC-LpGAD T e s
— Oxide layer between n+ layer and electrode (AC-coupling) "-ELAL' im!
. . (b
— 30 ps timing resolution o

— One large gain layer for electrodes — 100% of fill factor

K. Nakamura et al.,
JPS Conf. Proc. 34, 010016 (2021)




Low Gain Avalanche Diode (LGAD)

LGAD detector

° DC‘LGAD (Standard LGAD) Charged Partic

— n**+-in-p type sensor with pt gain layer under nt+

| EIectrig Field

I \/
WII/ANE<

— 30 ps timing resolution

— Individual gain layer for each electrode — nonnegligible inactive area
with not achieving O(10) ps time resolution

DC—LGAD ‘ | é 702
i m m Z{% i

« AC-LGAD ]
— n*-in-p type sensor with pt gain layer under n* (lower doped n layer) AC-LpGAD T e s
— Oxide layer between n+* layer and electrode (AC-coupling) ”"EL&H im :
. . . Zf
— 30 ps timing resolution o

— One large gain layer for electrodes — 100% of fill factor

K. Nakamura et al.,
JPS Conf. Proc. 34, 010016 (2021)




Low Gain Avalanche Diode (LGAD)

LGAD detector

° DC‘LGAD (Standard LGAD) Charged Partic

— n**+-in-p type sensor with pt gain layer under nt+

| EIectrig Field

I \/
WI/ANE<

— 30 ps timing resolution

— Individual gain layer for each electrode — nonnegligible inactive area
with not achieving O(10) ps time resolution

DC—LGAD ‘ | é 702
i m m Z}% i

J1¢x

« AC-LGAD
— n*-in-p type sensor with pt gain layer under n* (lower doped n layer)

p+

AC'LGAD_- - -i ;s|02 /oly-Si

— Oxide layer between nt* layer and electrode (AC-coupling) m
— 30 ps timing resolution f;
p* Ko

— One large gain layer for electrodes — 100% of fill factor

K. Nakamura et al.,
JPS Conf. Proc. 34, 010016 (2021)

10




Low Gain Avalanche Diode (LGAD)

LGAD detector

° DC‘LGAD (Standard LGAD) Charged Partic

— n**+-in-p type sensor with pt gain layer under nt+

| EIectrig Field

I \/
WI/ANE<

— 30 ps timing resolution

— Individual gain layer for each electrode — nonnegligible inactive area
with not achieving O(10) ps time resolution

DC—LGAD ‘ | é 702
i m m Z{% i

J1¢x

- AC-LGAD
— n*-in-p type sensor with pt gain layer under n* (lower doped n layer)

p+

AC'LGAD__ - -i ;s|02 /oly-Si

— Oxide layer between nt* layer and electrode (AC-coupling) m
— 30 ps timing resolution f;
p* Ko

— One large gain layer for electrodes — 100% of fill factor

K. Nakamura et al.,
JPS Conf. Proc. 34, 010016 (2021)

11
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EIC-Japan has high hopes for AC-LGAD
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R&D elements for AC-LGAD

* |ssues of AC-LGAD

— Crosstalk in nt layer

— Small sighal due to AC-coupling Oxide

« Signal size Q
ZRimp

— QO
ZRl-mp T ZCCP Cbqu

Signal e wm w= =

* Two important parameters Crosstalk (charge sharing) e e= == «=p

. K. Nak t al., JPS Conf. Proc. 34, 010016 (2021
— Rimp — larger is better akamura et a ont. Froc (2021)

* nt+ doping concentration
— Ccp — larger is better

 Smaller electrode size — smaller Ccp

* Thinner oxide — larger Ccp
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» Smaller electrode size — smaller Cc : : : :
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* Thinner oxide — larger Ccp




AC-LGAD development in Japan

» KEK and the University of Tsukuba have been developing AC-LGAD sensors in
collaboration with Hamamatsu Photonics (HPK) for use in the future ATLAS experiment

— Several pads, pixels, and strips types with changing electrode shape sizes and oxide properties

* BNL also has been developing AC-LGADs with collaborating with the ATLAS
— ATLAS Japan has played an important role as a bridge between HPK and BNL

» Performance requirements from HL-LHC are more demanding than EIC

— Time resolution 30ps, spatial resolution O(10)um, and radiation tolerance O(10'2)neq/cm?
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» KEK and the University of Tsukuba have been developing AC-LGAD sensors in
collaboration with Hamamatsu Photonics (HPK) for use in the future ATLAS experiment

— Several pads, pixels, and strips types with changing electrode shape sizes and oxide properties

* BNL also has been developing AC-LGADs with collaborating with the ATLAS
— ATLAS Japan has played an important role as a bridge between HPK and BNL

» Performance requirements from HL-LHC are more demanding than EIC

— Time resolution 30ps, spatial resolution O(10)um, and radiation tolerance O(10'2)neq/cm?

Japan has one of the state-of-art technology of AC-LGAD



Performance of AC-LGAD at BNL/HPK

« Performance of AC-LGAD at BNL and HPK has been published (link)
— R. Heller et al., JINST 17 PO5001, 2022
« Strip types and pad types have been fabricated by BNL and HPK, respectively

— Electrode gap and size effects have been tested with BNL products

n+ doping concentration (resistivity) effects have been tested with HPK product



https://iopscience.iop.org/article/10.1088/1748-0221/17/05/P05001
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Performance of AC-LGAD at BNL and HPK has been published (link)
— R. Heller et al., JINST 17 PO5001, 2022
Strip types and pad types have been fabricated by BNL and HPK, respectively

— Electrode gap and size effects have been tested with BNL products

— nt* doping concentration (resistivity) effects have been tested with HPK production

Name Pitch | Primary signal amp. | Position res. | Time res.
Unit um mV um pS
BNL 2020 100 101 = 10 <6 29 + 1
BNL 2021 Narrow 100 104 + 10 <9 32 £ 1
BNL 2021 Medium | 150 136 + 13 <11 30 £ 1
BNL 2021 Wide 200 144 + 14 <9 33 +£1
HPK C-2 500 128 + 12 22 + 1 30 £ 1
HPK B-2 500 95 + 1 24 + 1 27+ 1
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» Performance of AC-LGAD at BNL and HPK has been published (link)
— R. Heller et al., JINST 17 PO5001, 2022
« Strip types and pad types have been fabricated by BNL and HPK, respectively

— Electrode gap and size effects have been tested with BNL products

— nt* doping concentration (resistivity) effects have been tested with HPK production

Name Pitch | Primary signal amp. | Position res. | Time res. Strip type by BNL  Pad type by HPK

Unit um mV um ps i S

BNL 2020 100 101 £ 10 <6 29 £ 1

BNL 2021 Narrow 100 104 £ 10 <9 32+ 1

BNL 2021 Medium | 150 136 £ 13 <11 30+ 1

BNL 2021 Wide 200 144 + 14 <9 33+1

HPK C-2 500 128 £ 12 22 + 1 30+ 1

HPK B-2 500 95 + | 24 + | 27 + 1 T 343 mmz 3%3 mm?
Sensor size Sensor size

~30 ps time and <30 um spatial resolution have been achieved!

R. Heller et al., JINST 17 PO5001, 2022
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S. Kita et al., at VERTEX 2022

* The latest results were presented at the VERTEX2022

— S. Kita et al., presentation link — here

* New Pixel-type and larger strip-type products were shown

* 100um pitch pixel sensor has good performance on crosstalk
— Next step: 2x2 cm2 sensor size

* New characteristic is found in the large stripe-type sensors

— Unexpected smaller signal height is found than pixel type

— It is due to inter-electrode capacitance
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The latest results were presented at the VERTEX2022

— S. Kita et al., presentation link — here
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Plan of the EIC-Japan for ToF detector

» EIC-Japan wants to lead the development of the ToF detector @ EPIC in a responsible
position the same as INTT detector @ sPHEINX

— All components of the detector will be manufactured in Japan

» We will join the R&D of AC-LGAD soon and finalize the sensor design for EIC

— The first step is several tests with prototypes produced by BNL this winter
— AC-LGAD has been designed for HL-LHC and already fulfilled our requirements in EIC

* Main R&D will be increasing the sensor size

— EIC-Japan will be a bridge between eRD112 and HPK

» EIC-Japan will take care of components other than sensor design

— e.g. FPC, cables, support material, etc
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Capabillity of the team Japan

 We have the ability and experience to create the INTT detector in sPHENIX with Japanese
technology

« The environments for R&D, mass production, and QA will be available, the same as INTT

SPHENIX INTT Japan

Bas extender
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Silicon sensor
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HAMAMATSU

PHOTON IS OUR BUSINESS

ASUKA Co., Ltd.




Capabillity of the team Japan

« We have the ability and experience to create the INTT detector in sSPHENIX with Japanese
technology

« The environments for R&D, mass production, and QA will be available, the same as INTT
+ Hiroshima University (experienced ALICE forward silicon tracker development)

SPHENIX INTT Japan
+ Hiroshima Univ.
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Summary

* The EPIC experiment must have ToF detectors with reasonable spatial and excellent
timing resolution

* AC-LGAD technology is the strongest candidate
» EIC-Japan wants to lead the development of the ToF detector at EPIC

*  We will start several tests with sensors produced by BNL as the first step this winter

* Hiroshima University has joined the EIC ToF development
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