Advanced Si Sensors, What Has Been Done and Can Be Done By Korea

Y. Kwon Dept. of Physics

Contents

PHENIX MPC-Ex & PIN-structured Si sensor ALICE ITS2 upgrade & ALPIDE from the CIS technology Prospect & Korean Potential

Advanced Si Sensors

PHENIX MPC-Ex & PIN-structured Si sensor

PHENIX MPC-Ex

South

Pre-shower detector with W/Si sandwich geometry *Pattern segmentation* optimized to separate γ 's from the forward high energy π^0 up to 80 (GeV/c) for a prompt γ measurement.

PIN-structured Si sensor

- Traditional sensor
- Medium scale production (~ 400 6 (*cm*) × 6 (*cm*) units)
- Design/Fabrication process understood
- Readout ASIC has to match the ever-developing back end. Involvement in HGCROC R&D (CMS, High Granularity Calorimeter Read Out Chip) under exploration.

PIN-structured Si sensor (Korean involvement)

Good products ~400 ea to PHENIX MPC-Ex

Past(~ 10 years ago) Ewha Womans Univ., Hanyang Univ. Jeonbuk National Univ., Myongji Univ., SKKU, Yonsei Univ., (Order in ABC)

Sensor Packaging

PIN-structured Si sensor

ETRI SEMICONDUCTOR PROCESS SHEET	ETRI	SEMICO	NDUCT	FOR P	ROCESS	SHEET
----------------------------------	------	--------	-------	-------	--------	-------

JOB : MiniPAD Sensor 1차											PAGE
DIV.: 연세대산학협력단 ENG.: 하지만/이준성			d TEL: 5209/5516		START: END :		RUN#			1/	
CONT. PRIOR RUN #		F.SEQ #		APP.					6		
SE Q	PROCESS	P.0	ODE	WAF	ER	TARGET	r & RE	DA TE	1/0	OPER	RE- MARK
1	Wafer Scribe (Laser Mark) N-type, (100), YS01-07 : 5000Ω.cm / 650±25µm YS08-10 : 5000Ω.cm / 425µm YS11-15 : 3500Ω.cm / 650-700µm	LMO	1-1.001	YS01-Y YS08-Y YS11-Y	/\$07 /\$10 /\$15						

Advanced Si Sensors

ALICE ITS2 upgrade & ALPIDE from the CIS technology

ALICE ITS2 upgrade

ALICE ITS2 upgrade

7 pixel layers Total Area: 10 m² Distance to IP: 21 mm Material budget: 0.3% X₀ (Water Cooling!) Tolerance to Radiation: 2.7 Mrad, 1.7 x 10¹³ 1 MeV n_{eq}/cm⁻² Readout: Pb+Pb at 100 kHz

ALPIDE from the CIS technology

ALPIDE 0.18 μm CMOS technology, TowerJazz

Size: 1.5 x 3 cm², 50/100 μ m thick Pixel size: 29 x 27 (μ m)² Efficiency: > 99% Fake hit rate: $\ll 10^{-5}$ Integration time: 10 μ s Power density: 35 mW/cm² Hit density: 18/cm²

NWELL NMOS PMOS DIODE TRANSISTOR TRANSISTOR 0.006

ALICE ITS2 upgrade & ALPIDE from the CIS technology

ALPIDE from the CIS technology

Pixel

UNIV

ALPIDE from the CIS technology

Front end

UNIV

ALPIDE from the CIS technology

Real time zero suppression (priority encoder)

Korean involvement

Limited involvement in the circuit design (FEE & peripheral circuit of the chip) Participation in the sensor characterization

Main involvement in **post-processing**

Thinning & Dicing (All sensors processed by the Korean company FUREX) Mass production test (All key components produced by Korean companies)

- Probe-card, NOTICE/EQENG
- Automatic Test Equipment, C-On

Module Assembly

• Wire-bonding by the Korean company Sejung

Korean involvement

Korean involvement

ALICE Industry Award 2020 to Korean Comp

ALICE Industry Award 2020 - C-ON Tech

Advanced Si Sensors

Prospect & Korean Potential

Prospect & Korean Potential

Prospect: Monolithic Stitched Sensor (ITS3)

Prospect & Korean Potential

Prospect: Monolithic Stitched Sensor (ITS3) A Ph.D in E.E. is participating in the design team.

Post-processing technology for ITS3 is not main stream industry, and there's limited involvements.

Summary

There's a strong background in Korea for the Si sensors.

- We have also seen the Korean strength in the post-processing of the Si sensors.
- Involvement in the stitched sensor R&D, the ITS3 upgrade of the ALICE experiment.