

5 July - pp 13.6 TeV

Physics for ALICE 3

Systematic measurements of (multi-)heavy-flavoured hadrone ide

- Transport properties in the QGP down to thermal scale
- Mechanisms of hadronisation from the QGP

Hadron interaction and fluctuation measurements

- Existence and nature of heavy-quark exotic bound states and interaction
- Search for super-nuclei (light nuclei with c)
- Search for critical behaviour in event-by-event fluctuations of conservations

Qualitative steps needed in detector perform

Precision differential measurements of dilentonseavy-ion exc

- ALICE 3 April 27th, 2022 Jochen Klein
 Evolution of the quark-gluon plasma
- Mechanisms of chiral symmetry restoration in the QGP

Many more...

Physics for ALICE 3

Systematic measurements of (multi-)heavy-flavoured hadron Mechanisms of hadronisation from the QGP

Hadron interaction and fluctuation measurements

- Existence and nature of heavy-quark exotic bound states and interpreteration
- Search for super-nuclei (light nuclei with c)
- Search for critical behaviour in event-by-event fluctuations of constant

Qualitative steps needed in detector perform

Precision differential measurements generation heavy-ion exp ALICE 3 April 27th, 2022 Jochen Klein
Evolution of the quark-gluon plasma

Mechanisms of chiral symmetry restoration in the QGP

Many more...

PC.TRD.TOF.PHS.EMC.MFT.MCH.MI

MinJung Kweon, Inha University

(i.e. gluon radiation) In low momentum region APCTP Workshop on the Physics of Electron Ion Collider

Determining transport properties with precision

MinJung Kweon, Inha University

APCTP Workshop on the Physics of Electron Ion Collider

I	
14	

Physics for ALICE 3

Systematic measurements of (multi-)heavy-flavoured hadron

Transport properties in the QGP down to thermal scale · Genzerrag razig ronizzation

Hadron interaction and fluctuation measurements

- Existence and nature of heavy-quark exotic bound states and interpreteration
- Search for super-nuclei (light nuclei with c)
- Search for critical behaviour in event-by-event fluctuations of constant

Qualitative steps needed in detector perform

Precision differential measurements generation feavy-ion exp ALICE 3 April 27th, 2022 Jochen Klein
Evolution of the quark-gluon plasma

Mechanisms of chiral symmetry restoration in the QGP

Many more...

PC.TRD.TOF.PHS.EMC.MFT.MCH.MI

Charm hadronization $\Sigma^{0,++}$

 $Get p_{a}$ ancement at low p_T w.r.t to e+e-, ep collisions

Heavy flavor hadronization

Baryon formation - coalescence

JL1	ICE

ACORDE | ALICE Cosmic Rays Detector

gnetic Calorimeter

mentum Particle tion Detector

ing System - Inner Barre

king System - Outer Barre

cing Chambers

ird Tracker

noton Spectromete

on Chamber

diation Detector

Calorimeter

APCTP Workshop on the Physics of Electron Ion Collider

ha ring i	s an o	outer Barrel
acking C	h mbers	er

Physics for ALICE 3

Systematic measurements of (multi-)heavy-flavoured hadron

- Transport properties in the QGP down to thermal scale
- Mechanisms of hadronisation from the QGP

Hadron interaction and fluctuation measurements

- Search for super-nuclei (light nuclei with c)
- Search for critical behaviour in event-by-event fluctuations of constant

Qualitative steps needed in detector perform

- Precision differential measurements generation feavy-ion exp ALICE 3 April 27th, 2022 Jochen Klein
 Evolution of the quark-gluon plasma
 - Mechanisms of chiral symmetry restoration in the QGP

Many more...

PC.TRD.TOF.PHS.EMC.MFT.MCH.MI

Final State interaction

 \mathbf{D}^0

 D^{+}

D^0D^{*+}

APCTP Workshop on the Physics of Electron Ion Collider

300

ALICE 3 detector

MinJung Kweon, Inha University

APCTP Workshop on the Physics of Electron Ion Collider

ALICE 3 schematic R-z view

MinJung Kweon, Inha University

APCTP Workshop on the Physics of Electron Ion Collider

	Layer	Material	Intrinsic	Barrel	layers	Forward	d disc
		thickness $(\%X_0)$	resolution (µm)	Length $(\pm z)$ (cm)	Radius (<i>r</i>) (cm)	Position (z (cm)	z)
	0	0.1	2.5	50	0.50	26	(
		0.1	2.5	50	1.20	30	(
	2	0.1	2.5	50	2.50	34	(
	3	1	10	124	3.75	77	(
	4	1	10	124	7	100	
	5		10	124	12	122	(
		.o [(m) ₁	10 10	124	20 0.	180	(
•		1	10	124 c 264	30 .45 1	. 220	(
new c	of the full trac	ker ₁ (to	p) and	of the V_{264}	ertex de	tector s	sep
esent 1	the tracking ¹⁰ la	yers.	Гhe [®] FC	Γ dásks	are ⁸⁰ marl	ked349	gre
uum v	esser of the ver	nex de	lector ar	e snown	in grey.	13 T0+/	A Tzero +
				L		14 T0+0	C Tzero +
						15 TPC	Time Proje
ic	Barrel 1	ayers		Fo	rward d		Vzero + D
on	Length $(\pm z)$	Radi	US (r)	Positio	on $(-1\rangle$	<i>R</i> _{in}	
	(cm)	(c	<u>m)</u>	(C)	m	(cm))
	50	0	.50		26	0.00	5
	50		.20		30	0.00	5
	50	2	.50	Absorb	34	0.00	5
	124	3	.75 ^{Muon}	-	77	0.05	
0	124 Vert Detect	ex 7	IIAIIIDEIS	1()0	0.05	
ECal	124	12	1	12	22	0.05	
he Phys	ics of Electron Ion Co	llider 20		14	50	0.05	

	Layer	Material	Intrinsic	Barrel	layers	Forwar	d disc
		thickness	resolution	Length $(\pm z)$	Radius (r)	Position (Z)
		$(\% X_0)$	(µm)	(cm)	(cm)	(cm)	
	0	0.1	2.5	50	0.50	26	(
_	1	0.1	2.5	50	1.20	30	(
		0.1	2.5	50	2.50	34	
	3		10	124	3.75	77	(
	4		10	124	12	100	(
0	6 0	.0 1	10 (124	$\frac{12}{20}$ 0.	4 150	
		$(m)_{1}^{1}$	10	124	30	180	(
view c	of the full track	ker ¹ (top	$(10)^{10}_{10}$ and $(10)^{10}_{10}$	of the v	ertex de	tector	sep
esent	the tracking ¹⁰ lay	yets. T	The [®] FC7	C daseks a	are®0marl	xed 340 400	gre
uum v	vessel of the ver	tex det	ector ar	e shown	in grey.	12 101 13 T0+	A Tzero +
B. The relieve the street						14 TO+	C Tzero +
			1 + 4			15 TPC	Time Proje
ic	Barrel 1	ayers	and the second second	Fo	rward d		Vzero + D
on	Length (+7)	Reading and	IS (R)	Positio	n(-)	– <i>R</i> .	
		Raun	15 (1)	TUSICI		T _{1n}	
	(cm)	(CI	<u>n)</u>	(CI	m	(cm)
-	50	0.	.50		26	0.00	5
_	50	T.	.20		30 Anglinger	0.00	5
	50	2.	.50	Absorb		0.00	5
	124	3	7 <mark>∯</mark> uon	~	77	0.05	
	Vert	ex Čŕ	nambers	4 7			
	I24 Detect			1(0.05	
ECal	124	12		12	22	0.05	
he Phys	ics of Electron Ion Co	llider 20		15	50	0.05	

•	C
/	D

Large acceptance tracker

60 m² silicon pixel detector based on CMOS Active Pixel Sensor technology 8 + 2 x 9 tracking layers (barrel + disks)

- Compact: $r_{out} \approx 80$ cm, $z_{out} \approx \pm 4$ m
- Large coverage: ±4η
- High-spatial resolution: $\sigma_{pos} \approx 5 \ \mu m$ (req. < 10 μm)

<u>Timing recolution</u> ~ 100 ns

ıdget

overall $\rightarrow X/X_0(\text{total}) \leq 10 \%$

W/cm²

cm

C_{in} ≈ 5 fF

Build o

10 m² -

riali

ollider

- Wafer-sized, bent MAPS
- R_{out} ~ 80 cm L ~ 4 m
 - magnetic field integral ~ 1 Tm
- Timing resolution ~ 100 ns

Artistic view of a SEM picture of ALPIDE cross section

ALPIDE SHIEL

Tracker

Tracker sensor requirement

The ALICE 3 tracker has two sets of requirement

- Vertex detector: high hit rate, high radiation load
- Outer tracker: low power, large surface (yield, fill factor)

A common sensor might be possible, but is not n

Main benefit would be synergies, possibly cost savings

\rightarrow Naturally follows the ITS 3 developments

Key R&D topics

Radiation hardness

- 5 x 10¹⁵ 1 MeV n_{eq}/cm² is demonstrated for HVMAPS
- At least 5 x 10¹⁵ 1 MeV n_{eq}/cm² seem feasible in 65 n (preliminary results)

Power consumption

- Several contributors: in-pixel front ends, on-chip data aggregation, high-speed links
- Scales with time resolution and pixel pitch
- Optimisation process to be carried through

Integration

- The modularization for the other tracker needs to be co-developed with the chip design (e.g. chip dimensions)

MinJung Kweon, Inha University

	Parameter	Vertex detector	Outer t
needed)	Spatial resolution	2.5 µm	10
17 15 5 12 16	Time resolution	100 ns (RMS)	100 ns
3 11	Hit rate capability	35 x 10 ⁶ / (s cm ²)	5 x 10 ³ /
at -25°C	Power consumption	70 mW / cm²	20 mW
m at room temperature	Radiation hardness	1.5 10 ¹⁵ 1 MeV n _{eq} / cm² / year	

MinJung Kweon, Inha University

article identification with Time Of Flight

detector. To be as close as possible to the interaction pointsensor nodes lary valuation of the second part of the second FINITIAN TOTAL

p on the Physics of Electron Ion Collider

Extend PID reach of outer TOF to higher p_T

- \rightarrow refractive index n = 1.03 \rightarrow refractive index n = 1.006

 10^{1}

More on particle identification

Large acceptance Electromagnetic calorimeter (2π coverage)

- Pb-scintillator sampling calorimeter + at $\eta_{\pi} \approx 0$ crystal calorimeter
- Photons + high p electrons identification
- Critical for measuring P-wave quarkonia and thermal radiation via real photons

Muon Identifier

- Absorber + 2 layers of muon detectors
- Muons down to $p_T \ge 1.5$ GeV/c
- Scintillator bars with SiPM read-out
- Possibility to use RPCs as muon chambers $\eta \times \varphi$

Forward conversion tracker

- Thin tracking disks in $3 < \eta < 5$ in its own dipole field
- Very low p_{T} photons ($\leq 10 \text{ MeV/c}$)

$$J/\psi$$

MinJung Kweon, Inha University

R&D activities

Silicon pixel sensors

Thinning and bending of silicon sensors

- Expand on experience with ITS3
- Exploration of new CMOS processes
 - First in-beam test with 65 nm process
- Modularization and industrialization

Silicon timing sensors

- Characterization of SPADs/SiPMs
 - First test in beam
- Monolithic timing sensors
 - Implement gain layers

n-epi	Sensor pad Gain layer deep pwell	nwell	wel
High R	esistivity Si		

MinJung Kweon, Inha University

APCTP Workshop on the Physics of Electron Ion Collider

18 2

- Monolithic SiPMs
- Integrated read-out

Detector mechanics and cooling

- Mechanics for operation in beam pipe
- Establish compatible with LHC beam
- Minimization of material in the active volume
- Micro-channel cooling

VU+ | Vzero + Detector 18 ZDC Zero Degree Calorimeter

Summary and outlook

ALICE 3 will provide access to fundamental properties of QCD matter at extreme energy density

- Thermalization of heavy quarks
- Hadronisation and nature of hadronic states
- Partonic equation of state and its temperature dependence
- Deconfinement and chiral symmetry restorations, …

Novel detector concept based on innovative technologies

- Building on experience with cutting-edge technologies pioneered in ALICE
- Requiring R&D activities in several strategic areas

Planning

- 2023-25: selection of technologies, small-scale proof of concept prototypes
- \Rightarrow 2026-27: large-scale engineered prototypes \rightarrow Technical Design Reports
- 2028-31: construction and testing
- **2032**: contingency
- 2033-34: installation and commissioning

	s Detector
	rimeter
	ticle
	- Inner Barrel
	- Outer Barrel
에 보기가 보기다 - 이번의 이번의	ers
	ometer
	ctor
- Har Har	

1	
2	AD ALICE Diffra
3	DCal Di-jet Ca
4	EMCal Electro
5	HMPID High I Identii
6	ITS-IB Inner Tr
7	ITS-OB Inner
8	MCH Muon Tr
9	MFT Muon For
10	MID Muon Ide
11	PHOS / CPV
12	TOF Time Of Fl
13	T0+A Tzero +
14	T0+C Tzero +
15	TPC Time Proje
16	TRD Transition
17	V0+ Vzero + D
18	ZDC Zero Degr

APCTP Workshop on the Physics of Electron Ion Collider

ICE Cosmic Rays Detector

ractive Detector

alorimeter

omagnetic Calorimeter

Momentum Particle ification Detector

racking System - Inner Barrel

Tracking System - Outer Barrel

racking Chambers

rward Tracker

ntifier

Photon Spectrometer

light

- A

ection Chamber

Radiation Detector

Detector

Degree Calorimeter

Heavy quark energy loss

Hint of a higher *R*_{AA} of **D**⁰-jets compared to inclusive jets in Pb-Pb

- Quark vs. gluon energy loss
- Mass effects (dead cone)

Run 1+2

Determining transport coefficients: heavy flavour

Final state interaction

2 AD ALICE Diffr B DCal Di-jet Cal EMCal Electro 5 HMPID High First measurement of correlation junctions involving charm hadro 7 ITS-OB Inner 1 allows access to the streng interaction be en a proton and and and 9 MFT Muon For charm meson 8 MID Muon Ide 11 PHOS / CPV | p-D⁻: genuine pD⁻ correlation function the pattern TO+A Tzero + overall attractive interaction 14 T0+C | Tzero + C 15 TPC Time Project degree of consistency more when consistency more and the second s state-of-the-art models that predict an attractive strong No zDC | Zero Degree Calorimeter interaction with or without a bound state Paves the way for precision 5 July - pp 13.6 TeV involving charm hadron for Model $^{\iota}\sigma$ Coulomb -1.5) Haidenba $-g_{\sigma}^2/4\pi$ -1.5) $-g_{\sigma}^2/4\pi$ -1.3 Hofmann d Lutz 22 Yamagucl Fontoura -1.5

TPC.TRD.TOF.PHS.EMC.MFT.MCH.MI

ALICE
CE Cosmic Rays Detector
active Detector
orimeter
magnetic Calorimeter
Momentum Particle fication Detector
ck s t Inner Barrel
racking System - Outer Barrel
acking Chambers
ward Tracker
ntifier
Photon Spectrometer
ight
A
c
ction Chamber
Radiation Detector

Final state interaction

APCTP Workshop on the Physics of Electron Ion Collider

EMCal Electromagnetic Calorimeter

6 ITS-IB Inner Tracking System - Inner Barrel

7 ITS-OB Inner Tracking System - Outer Barrel

Electromagnetic radiation


```
35
```


APCTP Workshop on the Physics of Electron Ion Collider

		_
		_
	_	
		_
		-
		_
	_	
		_
		_
Ψ		
		_
	_	

Chiral symmetry restoration

tion) [132]

ider

APCTP Workshop on the Physics of Electron Ion Collider

Search for charmed hyper nuclei "c-deuteron"

anti-deuteron

- c-deuteron $d_{\Lambda c}$
 - bound state of neutron- Λ_c
 - lightest possible hyper-nucleus with charm
- $-C\tau \sim C\tau(\Lambda_c) \sim 60 \ \mu m$
- Large uncertainty from branching ratio (0.18~0.6 %) and also from production model
- $mass = 3.226. GeV/c^2$
- decay channel: $d + K^{-} + \pi^{+}$

APCTP Workshop on the Physics of Electron Ion Collider

EMCal Electromagnetic Calorimeter

ALICE ITS upgrades in Run 3 and 4

- 6 layers:
- 2 layers of Silicon Pixel Detector (SPD)
- 2 layers of Silicon Drift Detector (SDD)
- 2 layers of Silicon Strip Detector (SSD)

7 layers of ALPIDE Monolitic Active Pixel Sensors

- 10 m² active silicon area
- 12.6 x 10⁹ pixels

	ITS 1	ITS 2	ITS3	
Distance to interaction point (mm)	39	22	18	
X_0 (innermost layer) (%)	~1.14	~0.35	0.05	
Pixel pitch (μ m ²)	50×425	27×29	0(15×15)	
Readout rate (kHz)	1	100		
Spatial resolution ($r\varphi \times z$) (μ m ²)	11×100	5 × 5		

- ultra-thin wafer-sized curved sensors

10³

- no external connections air-flow cooling

APCTP Workshop on the Physics of Electron Ion Collider

	ĊE
7.21	

1 ACOF DI ALIC CLARIC AVS Detector

2 AD ALICE Diffractive Detector

DCal Di-jet Calorimeter

4 EMCal Electromagnetic Calorimeter

HMPID High Momentum Particle Identification Detector

6 ITS-IB Inner Tracking System - Inner Barrel

7 ITS-OB Inner Tracking System - Outer Barrel

8 MCH Muon Tracking Chambers

9 MFT | Muon Forward Tracker

10 MID Muon Identifier

11 PHOS / CPV | Photon Spectrometer

12 TOF Time Of Flight

13 T0+A | Tzero + A

14 T0+C | Tzero + C

TPC | Time Projection Chamber

16 TRD Transition Radiation Detector

17 V0+ Vzero + Detector

18 ZDC Zero Degree Calorimeter

