Nucleon structure: Knowns, known unknowns and unknown unknowns Gerald A. Miller UW

- Known- proton radius -0.84 fm. Small radius
- Known unknown- why does Bloom Gilman duality occur?
- Known unknown- confinement mechanism how does QCD yield confinement
- Known unknowns- GPDs, TMDs
- Unknown unknowns- not known, but maybe stuff needed to understand confinement
- Known unknown cause of EMC effect- nucleon structure in the nucleus THIS TALK

Recent thoughts on the EMC effect

Gerald A. Miller, with D N Kim U. of Washington

In deep inelastic scattering from nuclei

 $\frac{2}{A}\frac{\sigma_A}{\sigma_D} \neq 1$

Effect is small, for x between 0.3 and 0.7 linear2 decrease with x

Higinbotham, Miller, Hen, Rith CERN Courier 53N4('13)24

Ideas: ~1000 papers 3 ideas

- Proper treatment of known effects: binding, Fermi motion, pionic- NO nuclear modification of internal nucleon/pion quark structure
- Quark based- high momentum suppression implies larger confinement volume
- bound nucleon is larger than free one- a a mean field effect- $p^2 - M^2$ virtuality small
- multi-nucleon clusters beyond the mean • field $p^2 - M^2$ virtuality large

Ideas: ~1000 papers 3 ideas

- Proper treatment of known effects: binding, Fermi motion, pionic- NO nuclear modification of internal nucleon/pion quark structure
- Quark based- high momentum suppression implies larger confinement volume
- bound nucleon is larger than free one- a a mean field effect- $p^2 - M^2$ virtuality small
- multi-nucleon clusters beyond the mean • field $p^2 - M^2$ virtuality large

EMC – "Everyone's Model is Cool (1985)" 3/11

Ideas: ~1000 papers 3 ideas

- Proper treatment of known effects: binding, Fermi motion, pionic- NO nuclear modification of internal nucleon/pion quark structure
- Quark based- high momentum suppression implies larger confinement volume
- bound nucleon is larger than free one- a mean field effect- $p^2 M^2$ virtuality small
- multi-nucleon clusters beyond the mean • field $p^2 - M^2$ virtuality large

EMC – "Everyone's Model is Cool (1985)" 3/11

Free nucleon

Bound nucleon

Suppression of Point Like Configurations

Frankfurt Strikman

Schematic two-component nucleon model

Blob-like config:BLC Point-like config: PLC

PLC smaller, fewer quarks high x Medium interacts with BLC energy denominator increases PLC Suppressed

 $|\epsilon_M| < |\epsilon|$

	Ir	<u>e of</u>	nucleon	Frankfurt-			
			Schematic	Strikman			
\dots	۲L	С	two-compor	nent			
			nucleon mo	del:			
0.4 0.5 0.6 0.7 <i>x</i>			Blob-like co	nfig:BLC			
	5	high x	Point-like co	onfig: PLC			
		F	PLC doesn't intera	act with nucleus			
	Free space $H_0 = \begin{bmatrix} E_B & V \\ V & E_P \end{bmatrix}$, N	$\langle N \rangle = \frac{1}{\sqrt{1+e^2}}$	$\overline{\overline{\epsilon^2}}(B\rangle + \epsilon P\rangle)$				
Medium (M) $H = \begin{bmatrix} E_B - U & V \\ V & E_P \end{bmatrix}, N\rangle_M = \frac{1}{\sqrt{1 + \epsilon_M^2}} (B\rangle + \epsilon_M P\rangle),$							
$\epsilon_M = \epsilon \left(1 - U /(2\sqrt{(E_P - E_B)^2 + 4V^2}) \right)$							
$q_M = q + 1/2(\epsilon_M - \epsilon)q_B(\frac{q_P}{q_B} - 1) = q + 1/2q_B(\epsilon_M - \epsilon)(\frac{f(x)}{f(x)} - 1)$							
$\epsilon_M < \epsilon, \frac{df}{dx} > 0, \frac{q_M}{q} = 1 + \text{function that decreases with x}$							
$\epsilon_M - \epsilon \propto U \propto \frac{p^2 - M^2}{2M}$ virtuality what is $f(x)_6$							

Previous model not complete: Needs specific x-dependence for BLC & PLC

ELSEVIER	Contents lists available at ScienceDirect Physics Reports journal homepage: www.elsevier.com/locate/physrep				
Light-front holographic QCD and emerging confinement Stanley J. Brodsky ^{a,*} , Guy F. de Téramond ^b , Hans Günter Dosch ^c , Joshua Erlich ^d		CrossMark	LFQCD -good description of much data		
Universality of Generalized Parton Distributions in Light-Front Holographic QCD					

Guy F. de Téramond,¹ Tianbo Liu,^{2,3} Raza Sabbir Sufian,² Hans Günter Dosch,⁴ Stanley J. Brodsky,⁵ and Alexandre Deur² PHYSICAL REVIEW LETTERS **120**, 182001 (2018)

- 4 dimensional QFT equivalent to 5 dim. gravitational theory- space time is bent (Maldecena conjecture), holographic dual
- Bottom up procedure: construct four dimensional light front wave equation that has holographic dual
- Use holographic dual to compute electromagnetic form factors for systems of arbitrary spins, arbitrary number of particles
- Form factor is a Beta function, reparametrization invariance gives $F_{\tau}(t) = \int H_{\tau}(x, t) dx$ in a flexible form amenable to fitting data, τ is parton number 7/11

Nucleon pdfs $u_v(x) = 3/2q_3(x) + 1/2q_4(x), d_v(x) = q_4(x)$ $u_V(x) + d_V(x) = 3/2q_3(x) + 3/2q_4(x)$

Preliminary results

 δ is large $|U| \sim 150 \,\text{MeV}$

10

Summary

- Basic model is suppression of point like configurations, PLC
- Light front holographic QCD, based duality with a gravitational theory in 5 dimensions provides distribution functions (x) for PLC and BLC components
- x dependence accounts for EMC effect
- Values of parameter δ need to describe data indicate large virtuality is needed, so SRC explanation seems favored over mean field

Dmitriy (Dima) Kim

Spares follow

Implication of model

The two state model has a ground state $|N\rangle$ and an excited state $|N^*\rangle$ $|N\rangle_M = |N\rangle + (\epsilon_M - \epsilon)|N^*\rangle$

The nucleus contains excited states of the nucleon

These configurations are the origin of high x EMC ratios

next topic Deep Inelastic Scattering from nuclei

$$x = \frac{Q^2}{2P \cdot q} = \frac{k^0 + k^3}{P^0 + P^3} = \frac{k^+}{P^+}$$

The 1982 EMC effect involves deep inelastic scattering from nuclei

EMC= European Muon Collaboration

One thing I learned since '85

Nucleon/pion model is not cool

Deep Inelastic scattering from nuclei-nucleons only free structure function

 Hugenholz van Hove theorem nuclear stability implies (in rest frame) P+=P-=M_A

average nucleon k⁺
 k⁺=M_N-8 MeV, Not much spread

F_{2A}/A~F_{2N} no EMC effect

Momentum sum rulematrix element of energy momentum tensor