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Motivation

The traditional motivation for the Parton Distribution approach to the study of hadronic structure is based on the
ideas of factorization and scaling. These ideas have worked well in DIS, where the PDFs are determined, which are
Lorentz scalars.

For large enough Q, scaling is seen as a weak dependence of the PDFs on Q as illustrated by the compilation by

the Particle Data Group.
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Deeply-virtual Compton scattering (DVCS) has been proposed to determine the generalized-parton distributions
(GPDs) of hadrons.

A hard, virtual photon with momentum q, q2 = −Q2, with Q much larger than the characteristic hadronic scales,
probes the quark content of the hadronic target. The detection of the outgoing, real photon provides information
not contained in DIS.
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Handbag diagram for VCS, including the leptonic part
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It is usually assumed that to allow for the extraction of the GPDs, the experiments should be set-up in
(approximately) collinear kinematics. Such kinematics may not always be realized in concrete experiments.

We propose to first analyze the experimental data in terms of Lorentz-invariant amplitudes, Compton form
factors (CFFs).

By definition, the CFFs can be determined in any suitable kinematics. Once they are measured, theorists may use
them to extract the GPDs.

Here, we present our work on VCS off the 4He nucleus, motivated by a considerable numbers of experiments about
VCS on 4He, one of the most recent examples is the work of R. Dupré et al., CLAS collaboration at Jefferson Lab.1

We shall work in the target rest frame (TRF) with the z-axis along the three momentum q of the virtual photon.
The amplitudes can be expressed in terms of three invariants and the azimuthal angle φ, which is the angle
between the leptonic plane, defined by the momenta k and k′ and the hadronic plane defined by q′ and p′. The
momentum P = p′ + p as well as the momentum ∆ = p′ − p are in the hadronic plane, while q defines the
intersection line of the two planes.
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1
R. Dupré et al., Phys. Rev. C 104, 025203 (2021))
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Formal Framework
In Compton scattering the physical amplitudes can be written in terms of a leptonic and a hadronic part.
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For the VCS amplitude this form is

MVCS (λ′, λ, h′) =
∑
h

L
ρ
VCS

(λ′, λ)ε∗ρ(q, h)
1

q2
ε
∗
µ(q′, h′)Tµνεν (q, h).

The tensor Tµν is the Compton tensor. It must be transverse to q′µ and qν . Tµν depends linearly on the CFFs.

In order not to introduce unwarranted restrictions, it is important to use the most general form of that tensor
operator consistent with EM gauge invariance.

The leptonic part of the VCS amplitude is given by the current

L
ρ
VCS

(λ′, λ) = ū(k′, λ′)γρu(k, λ).
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The Bethe-Heitler amplitude is given by

MBH(λ′, h′, λ) =
∑
h

ABH(λ′, h′, λ, h),

where

ABH(λ′, h′, λ, h) =
F (t)

t
P̄µε

µ(∆, h)ε∗ν (∆, h)Lν (λ, λ′, h′).

where we use the notation ∆2 = (p − p′)2 = t . F (t) is the EM form factor of the scalar target.
The leptonic current is given by (s` and u` are the leptonic Mandelstam variables):

Lν (λ′, λ, h′) = ū(k′, λ′)

[
γ
µ 6k− 6∆

s`
γ
ν + γ

ν 6k
′+ 6∆
u`

γ
µ

]
u(k, λ) ε∗µ(q′, h′). (1)

The hadronic part of the BH amplitude is given by the current

L
ρ
BH

(h) = P̄ρ, P̄ = p′ + p.
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The EM form factor of the 4He nucleus is the only phenomenological element. We use the parameterized form
R.F. Frosch, J.S. McCarthy, R.E. Rand, and M.R. Yearian, Phys. Rev. 180, 874 (1967).
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Note the node in the 4He form factor at Q = 0.624 GeV/c. This node is important, because it marks the point
where the contribution of the BH process changes sign. At this point both the BH amplitude and its interference
with the hadronic amplitude vanish.
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Because the Bethe-Heitler and the coherent VCS processes are coherent, their amplitudes must be added when the
cross section for the process e + 4He→ e′ + 4He + γ is calculated. Then the complete squared amplitudes can be
split into a Bethe-Heitler part, a VCS part and a part that is obtained by the interference of the two amplitudes:

|Atot|2 = |ABH|
2 + |AVCS|

2 + A∗BHAVCS + ABHA∗VCS.

These amplitudes can be written as the convolution of the leptonic (QED) amplitude and a hadronic amplitude,

which involves the electro-magnetic form factor of the 4He nucleus.

The Bethe-Heitler amplitudes follow directly from QED. We shall see that in the hadronic target rest frame
kinematics, only the amplitude where the virtual photon has helicty h = 0 contributes,

Our main point, however, is the question what is the most general form of the Compton tensor Tµν and the
importance of including the fully general form of this tensor.

The second point is the relative importance of the contribution of the different CFFs to the amplitudes.
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Hadronic Compton tensor

In order for the hadronic Compton tensor Tµν to be acceptable, it must be transverse to the photon momenta to
guarantee charge conservation. We have proposed a method2 that we dubbed the DNA method. The back bone of
the Compton tensor is

dµναβ = gµνgαβ − gµβgνα.

We note that dµναβ is symmetric under the simultaneous interchange µ↔ ν, α↔ β and changes sign by the
interchanges µ↔ α, and ν ↔ β.
Using this back bone we construct pieces of “DNA” by adding “base pairs”, i.e. contracting it with three basis four
vectors, q, q′, and P̄. With an obvious notation we write them as follows:

Gµν (q′q) = q′αdµναβqβ = q′ · q gµν − qµq′ν ,

Gµν (qq) = qαdµναβqβ = q2 gµν − qµqν ,

Gµν (q′q′) = q′αdµναβq′β = q′2 gµν − q′µq′ν ,

Gµν (Pq) = Pαdµναβqβ = P · q gµν − qµP
ν
,

Gµν (q′P) = q′αdµναβPβ = P · q′ gµν − P
µ
q′ν .

The momentum P is the sum of the hadron momenta: P = p′ + p.

2
B.L.G. Bakker and C.-R. Ji, Few-Body Syst., 58, 1 (2017)
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Given these building blocks we write the transverse tensor as

T
µν
DNA

:=
5∑

i=1

Si C̄
µν
i

= S1G
µν (q′, q) + S2G

µλ(q′, q′)G νλ (q, q) + S3G
µλ(q′, P̄)G νλ (P̄, q)

+ S4

(
Gµλ(q′, P̄)G ν

λ (q, q) + Gµλ(q′, q′))G ν
λ (P̄, q)

)
+S5G

µλ(q′, q′)P̄λP̄λ′G
λ′ν (q, q).

The Si are the CFFs in the DNA construction.

Note that for the case q′2 = 0, the CFFs S2 and S5 do not contribute to the hadronic amplitude, because

Gµν (q′, q′) annihilates the polarization vectors εµ(q′, h′) and Gµν (q, q) annihilates the polarization vectors

εν (q, h).
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Kinematics

k

k'
q

q'

p'

It is relevant to discuss the kinematics, because it is important for an answer to the question whether or not the
conditions needed for an interpretation of DVCS in terms of GPDs can be realized in practice.

We shall work in the target rest frame (TRF) with the z-axis along the three momentum q of the virtual photon.
The amplitudes can be expressed in terms of three invariants and the azimuthal angle φ, which is the angle
between the leptonic plane, defined by the momenta k and k′ and the hadronic plane defined by p, q, and p′. The
momentum P = p′ + p as well as the momentum ∆ = p′ − p, which plays a role in the BH proces, are in the
hadronic plane, while q defines the intersection line of the two planes.
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The relevant invariants are the mass M of the hadronic target and

Q2 = −q2
, xBj =

Q2

2p · q
, y =

p · q
p · k

=
Q2

2EbMxBj

,

shad = (p + q)2 = M2 +
1− xBj

xBj

Q2
,

thad = (p − p′)2
, uhad = (p − q′)2

.

Eb is the energy of the incoming electron; it determines the overall energy and momentum scales. The invariants
thad and uhad depend on the azimuthal angle φ. We shall use the notation t for thad where it does not lead to
confusion.

The invariants xBj and y are both limited to the interval [0, 1].
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The kinematical domain for fixed M and Eb is parametrized by the scattering angle θe of the electron.

The plots below are for M = 3.7373 GeV/c2 and Eb = 6.064 GeV/c2. Q2 in GeV2/c2.
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It is interesting to consider the asymptotic behaviour of t = thad for large Q.

lim
Q→∞

t = −M2 x2
Bj

1− xBj

, for ϑ = 0, (2)

= −Q2 1− cosϑ

2xBj

, for ϑ 6= 0.

The quantity ϑ is the photon scattering angle in the hadronic CMF, where q defines the z-axis. For small values of
ϑ, which are relevant here, it is close to the scattering angle in the TRF.

If ϑ 6= 0, thad ∝ −Q2 independent of the angle ϑ. In fact, thad/Q
2 → −1 for Q → 0.

Because the Mandelstam variable t plays a special role, we consider its behaviour at large Q2 in more detail. Its
expression in terms of the other invariants is

t = −Q2
Q2(1− xBj) + 2M2x2

Bj − Q(1− xBj)
√

Q2 + 4M2x2
Bj

cosϑ

2xBj(Q
2(1− xBj) + M2xBj)

.
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For a value of xBj = 1/2 and the photon scattering angle ϑ = π/16 we find the behaviour:
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The truly asymptotic regime where t/Q2 is much smaller than 1 is only reached for Q � M. In the kinematical
domain mentioned, where M ≈ 4 and Q < 6, we find that for ϑ above a minimal value of π/16, the minimal

value of |t/Q2| can be as large as 13% for xBj = 0.3 increasing to 30% for xBj = 0.5 for Q = M.
For xBj = 1 this ratio is 1.
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Rosenbluth form of the squared VCS amplitude

To calculate the cross sections, one needs the squares of the amplitudes. We write them in the Rosenbluth form.

AVCS (λ, λ′, h, h′) =
∑

i=1,3,4

Si
q2

H
µ
i (q′, h′)εµ(q, h)ε∗ν (q, h)LνVCS (λ, λ′)

with
H
µ
i (q′, h′) = C

µν
i ε
∗
ν (q′, h′), LνVCS (λ, λ′) = ū(k′, λ′)γνu(k, λ).

and the CFFs Si as defined in the Compton tensor:

Tµν =
5∑

i=1

Si C̄
(i)µν

.

The squared amplitude is then

∣∣∣∣∣∣
∑
h

AVCS(λ′, λ, h′, h)

∣∣∣∣∣∣
2

=
∑
h

∑
h̃

SiS∗j
(q2)2

H
µ
i (q′, h′)H∗jµ̃(q′, h′)

× Πµµ̃(q, q, h̃, h)Π∗νν̃ (q, q, h̃, h)L∗νVCS(λ′, λ)L∗νVCS(λ′, λ)

with
Πµµ̃(q, q, h̃, h) = εµ(q, h)ε∗µ̃(q, h̃)
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Rosenbluth form of the squared BH amplitude

ABH(λ, λ′, h′) =
F (t)

t

∑
h

P̄µε
µ(∆, h)ε∗ν (∆, h)Lν (λ′, λ, h′)

as written before. The leptonic current is given by

Lν (λ′, λ, h′) = ū(k′, λ′)

[
γ
µ 6k− 6∆

s`
γ
ν + γ

ν 6k
′+ 6∆
u`

γ
µ

]
u(k, λ) ε∗µ(q′, h′).

Then the squared amplitude has the form

|A|2 =
∑
h

∑
h̃

∣∣∣∣ F (t)

t

∣∣∣∣2 P̄µP̄µ̃ε
µ(∆, h)ε∗µ̃(∆, h̃)εν (∆, h)ε∗ν̃ (∆, h̃)Lν (λ′, λ, h′)L∗ν̃ (λ′, λ, h′)

We notice two structures, the leptonic and hadronic densitiy matrices:

ρL(h, h̃) = ε
ν (∆, h)ε∗ν̃ (∆, h̃)LνL

∗
ν̃ ,

and

ρH(h, h̃) =

∣∣∣∣ F (t)

t

∣∣∣∣2 P̄µP̄µ̃ε
µ(∆, h)ε∗µ̃(∆, h̃).
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In the hadronic target restframe (TRF) where ∆ = P̄ = p′ and in the gauge we use where ε0(∆,±) = 0, the
hadronic polarization tensor reduces to the simple form

ρH(h, h̃) = ρH(0, 0)δh,0δh̃,0.

with

ρH(0, 0) =

∣∣∣∣ F (t)

t

∣∣∣∣2 (P̄ · ε0(∆, 0))2 =

∣∣∣∣ F (t)

t

∣∣∣∣2 (t − 4M2).

This result implies, incidentally, that all BH amplitudes calculated in the TRF are proportional to P̄ · ε0(∆, 0).

Owing to this simplification, the spin sum of the squared BH amplitudes is simplified to:

∑
λ′,h′,λ

|ABH(λ, λ′, h′)|2 = 16
t`

t

4M2 − t

s` − t
.

(Note that the polarization vector with with h = 0 is proportional to 1/
√
t and thus both the hadronic and the

leptonic density matrices are negative. Their product is positive as it must be.)
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Benchmark Calculation

As a benchmark model one may consider the tree-level case, which of course describes completely structureless
particles.

The tree-level DVCS amplitude corresponds to the CFFs

Stree
1 = −

(
1

shad − M2
+

1

uhad − M2

)
, Stree

3 =
2

(shad − M2)(uhad − M2)
.

Thus, only 2 out of 5 CFFs contribute. We note that at large Q, S3 is of relative order 1/Q2 compared to S1.

This suppression by the factor 1/Q2 is in line with the hierarchy predicted by the operator-product expansion.

Because we study the relative importance of the CFFs, we do not include the factors −e and 2e for the charges of

the elektron and the 4He nucleus, respectively.
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Mass dimensions and large-Q behaviour

The relative importance of the CCFs not only depend on their Q-scaling, but also on the scaling of the Compton
tensor.

The mass dimension of AVCS can be found as follows. [AVCS] = [Lν ][εν ][C̄
µν
i Si ][q

−2] . The polarization

vectors εµ are dimensionless. We know the dimensions [Lν ] = [M] and [q−2] = [M−2]. Finally the mass
dimensions [C̄

µν
i Si ] must be identical with the mass dimension of this product in the case i = 1.

[C̄
µν
1 ] = [M2] and [STree

1 ] = [M−2]. Thus the Compton tensor in our definition is dimensionless. The final result

is thus that the amplitude has mass dimension [AVCS] = [M−1], and obviously its square has mass dimension

[M−2].
Similarly, we find that ABH has the same mass dimension.

The CFFs have different mass dimensions, related on the mass dimensions of the effective tensors C̄
µν
i .

The mass dimensions for the complete coefficient functions thus produces a homogeneous value for the mass
dimension of the Compton tensor

Mass and Q dimensions of C̄i and Si
S1 S3 C̄1 C̄3 S1 × C̄1 S3 × C̄3

m−2 m−4 m2 m4 m0 m0

Q−2 Q−4 Q4/M2 Q6/M2 Q2/M2 Q2/M2

We see that although the CFF Stree
3 is of order Q−2 suppressed compared to Stree

1 , the large-Q behaviour of the

tensors C̄1 and C̄3 compensate the factor Q−2.
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Large-Q behaviour of the tensors: details

The two parts of the Compton tensor at tree level turn out to be remarkably similar for large Q:

S1 × C̄1 = Q2 (1 + cos(ϑ))

8M2(1− xBj))


1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1


and

S3 × C̄3 = Q2 (2− xBj) sin(ϑ])2

8M2(1− xBj)xBj


1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1


Consequently, at very large Q, one cannot distinguish between a situation where the scalar target has only a single
CFF or has more than one.

The big question is for which values of Q one may rely on the
asymptotic form of the hadronic Compton tensor in the analysis of
the data.
The fact that the target mass M = M(4He) may not be small in an actual experiment compared to Q, is a point

of concern.
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Large-Q behaviour of the CFFs: details
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Large-Q behaviour of the basis tensors
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Large-Q behaviour of the partial tensors

T1 = S1C̄
µν
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Very large-Q behaviour of the partial tensor T3
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Comparisons of partial amplitudes

For larger scattering angles, ϑ, the behaviour of the two parts is spectacularly different.
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Crucial test: Beam spin asymmetry

It is clear from these results that, when extracting the CFFs from the data, it is dangerous to rely on what has been
considered the dominant CFF, in this case S1.

The two CFFs we have included are not realistic. To begin with, they are both real, while there is no reason for the
CFFs to be real. For a 4He nucleus, one cam be sure that the CFFs are complex.

When the CFFs are complex, a beam spin asymmetry may show up in the VCS cross section. The common
understanding is that the beam spin asymmetry is due to the interference part of the cross section proportional to:

A∗BHAVCS + ABHA∗VCS.

However, since ABH is proportional to the 4He form factor, which has a node at Q = 0.624 GeV/c (in the low-Q
part of the kinematic domain), one may perform a crucial experiment by measuring the beam spin asymmetry
checking the minimum number of CFFs.

If no beam spin asymmetry is measured, the minimal number of CFFs may be 1. If the beam spin asymmetry
does not vanish, it is proof that at least two CFFs are involved and one of them must be complex.
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Kinematics for the node in the 4He form factor

The nodal position can be reached for small values of xBj and Q2, as in the CLAS experiment.
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The nodal position is ∆2 = 0.389941GeV2/c2; the angle ϑ is the polar angle of the emitted photon in the CMF.
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Beam Spin Asymmetry
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xBj = 0.132, xBj = 0.170. (For xBj = 0.255 the node cannot be reached).

For the two kinematics from the CLAS experiment the BSA is tiny. Remarkably, the form of the BSA is not a pure
sine, because the coefficient of sinφ depends cosφ and cos2φ.
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Summary and conclusions

I Our treatment of Virtual Compton Scattering is entirely phenomenological.

I We have discussed the number of Compton Form factors for a scalar target. This number is three if the
emitted photon is real.

I We used a benchmark form of the Compton tensor, containing two CFFs.

I We have demonstrated that the partial tensors C̄
µν
i , (i = 1, 3) have different asymptotic behaviour as

functions of Q2. This behaviour compensates for the behaviour of the CFFs for large Q2.

I At very large values of Q2, the tensors C̄1 and C̄3 become proportional. The Q-values at which this
phenomenon occurs is very large. For our benchmark the ratio of the partial tensors is

S3C̄3

S1C̄1

→
(2− xBj) sin2

(
ϑC

2

)
xBj

I We found that for the kinematics in the CLAS experiment at Eb = 6 GeV, the relative magnitude of the
contribution of the two parts, T1 = S1C̄

µν
1 and T3 = S3C̄

µν
3 depends strongly on the kinematics. For

the values of xBj and Q that characterise the CLAS experiment, T3 dominates.

I Even without interference of the Bethe-Heitler process, there may occur a single-spin symmetry in VCS.
This result is obtained because the VCS amplitude is the coherent sum of two parts, one related to the
CFF S1, the other to S3.
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