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 →  Relationship between Minkowski and Euclidean QFTs 

 →  CPT is a symmetry of any QFT

 →  Connection between spin & particle statistics 

 →  Existence of dispersion relations

Local QFT beyond the vacuum

 “Local QFT” →  Define QFTs using a core set of physically-motivated  
                         assumptions, e.g. causality, Poincaré invariance,        
                         positive energy, etc. 

● This approach has led to numerous fundamental non-perturbative insights:
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Local QFT beyond the vacuumLocal QFT beyond the vacuum

● But... local QFT only describes particle dynamics in the vacuum state

→  What about “extreme environments” where a system is in a state     
     that is either hot, dense, or both?     

● Understanding local QFT in such environments is essential, and yet has 
received relatively little attention. Some important progress was made by 
J. Bros and D. Buchholz for temperatures T > 0

 

[Brookhaven National Lab] [Skyworks Digital Inc.] 

→  See: [Z. Phys. C 55 (1992), Ann. Inst. H.Poincare Phys.Theor. 64 (1996),  
              Nucl. Phys. B 429 (1994), Nucl. Phys. B 627 (2002)] 
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Non-perturbative implications

● By demanding fields to be local ([Φ(x),Φ(y)]=0 for (x-y)2< 0) this imposes 
significant constraints on the structure of correlation functions 

→  For T=1/β > 0, the thermal commutator has the representation:  

    Note: this is a non-perturbative representation!

● In the limit of vanishing temperature one recovers the well-known 
Källén-Lehmann spectral representation: 
 

             

“Thermal spectral density” 

e.g. ρ(s)=δ(s-m2) for 
a massive free theory  

Important question: what does the thermal spectral density Dβ(u,s) look like?~
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● A natural decomposition [Bros, Buchholz, NPB 627 (2002)] is:
 

 

             
“Damping factor” Continuous component 

Causes T= 0 mass 
pole m to be screened 

by thermal effects 

Fixes T-dependence 
of continuous spectral 

contributions   

→ Damping factors hold the key to understanding in-medium effects!

m

Peak broadening 
controlled by Dm,β(u) ~

Non-perturbative implications
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In-medium observables from Euclidean data

● In many instances, T > 0 Euclidean data is used to calculate observables, 
e.g. spectral functions ρΓ( ,ω p) from                                where OΓ is 
some particle-creating operator                  

● Another quantity of interest in lattice studies is the spatial correlator 

 

             

→  Determine ρΓ( ,ω p) given CΓ(τ,p): problem is ill-conditioned, need more information!

● Large-x3 behaviour CΓ (x3) ~ exp(-mscr|x3|)  
used to extract “screening masses” mscr(T ) [HotQCD collaboration, 

Phys. Rev. D 100 (2019)]
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● Locality implies a general connection between the spatial correlator and 
thermal spectral density [P.L., PRD 106 (2022); P.L, O. Philipsen, 2207.14718]

● Once the damping factors of the dominant states are known, one can then 
use these to compute their contribution to ρ( ,ω p)  

● In QCD, perhaps the simplest spatial correlator example is that of the light 
quark pseudo-scalar meson operator

  

             

→  The lightest T=0 states dominate:

Spectral functions from lattice data

Goal:  Use the additional constraints imposed by locality to improve the 
         extraction of spectral functions from Euclidean data

n particle states 
with masses mi
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Spectral functions from lattice data

➢ Step 1: Perform fits to the spatial correlator data CPS(x3) to obtain the       
           functional dependence at different temperatures (T=220–960 MeV) 
       

➢ Step 2: Calculate the π and π* damping factors from CPS(x3)

➢ Step 3: Use Dm,β(x) and the spectral representation to compute ρPS( ,ω p) 

● In [P.L, O. Philipsen, 2207.14718] the pseudo-scalar correlator lattice data from          
[Rohrhofer et al. PRD 100 (2019)]  was used to compute the spectral function ρPS( ,ω p) 

Contribution of 2 lowest-lying 
states, π and π*  

→  The ansatz A exp(-Bx3)+C exp(-Dx3) describes the data well 

→ Exponential contribution to CPS(x3) implies: 

→ Implies form:



 9

● Using the T-dependence of the lattice fit parameters one obtains:

→  π and π* dominate the spectral function at these temperatures 

→  The π has a pronounced peak at T=220 MeV, non-perturbative effects 
     are still important! 

● The π and π* states gradually “melt away” as T increases due to the more 
frequent interactions with the thermal medium     

Spectral functions from lattice data

π

π*
π

π*
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A non-perturbative test

● Given the full analytic structure of ρPS(ω,p), one can use this to predict the 
form of the corresponding temporal correlator CPS(τ,p=0)

● CPS(τ,p=0) has a very different ρPS(ω,p) dependence → non-trivial test!
● Using the T=220 MeV temporal data from [Rohrhofer et al. PLB 802 (2020)] one 

obtains the following result:

● The prediction matches the data well for large ,τ  and then begins to 
undershoot → missing contributions from higher excited states (π** etc.) 

~

~
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● Local QFT can be extended to systems with T > 0, and this has important 
implications, including:

      

● Applying this framework to lattice QCD data enables one to calculate spectral 
functions in a new way → evidence for distinct pion states, even at high T   

● So far only real scalar fields Φ(x) with T > 0 considered, but this approach 
can be generalised (higher spin, non-vanishing density). Work in progress!

   

Summary & outlook

 →  This framework provides a way of obtaining            
       non-perturbative insights into the phase structure  
       of QFTs, and the resulting in-medium phenomena 

[Brookhaven National Lab] 

→  Spectral representations for thermal correlation functions

→  Ability to extract real-time observables from Euclidean data

→  Dynamical interpretation of in-medium effects
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● In the 1960s, A. Wightman and R. Haag pioneered an approach which 
set out to answer the fundamental question “what is a QFT?”

● The resulting approach, Local QFT, defines a QFT using a core set of 
physically motivated axioms

A. Wightman

R. Haag

[R. F. Streater and A. S. Wightman, PCT, 
Spin and Statistics, and all that (1964).]

 [R. Haag, Local Quantum 
Physics, Springer-Verlag (1992).]

Backup: Local QFT
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  ● Idea: Look for a generalisation of the standard axioms that is 
compatible with T > 0, and approaches the vacuum case for T → 0

 

             

→

→

→

H
β
 is defined for fixed β=1/T

Replaced by the KMS condition

Instead, thermal background state |Ω
β
>

Fields are still distributions  

Locality is unaffected by the 
properties of the background state. 

This is important!  

 ✓

→

 ✓

Backup: Local QFT beyond the vacuum

The fields no longer transform 
under general unitary Lorentz 

transformations  
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Backup: Damping factors from Euclidean FRG data

● Locality constraints imply that particle damping factors Dm,β(x) can also be 
calculated from Euclidean momentum space data [P.L., PRD 106 (2022)]

● In [P.L., R.-A. Tripolt, PRD 106 (2022)] pion propagator data from the quark-
meson model (FRG calculation) was used to compute the damping factor 
at different values of T via the analytic relation above

● Fits to the resulting data were consistent with the form:
● Dm,β(x) can then be used as input for                                    

calculations, e.g. shear viscosity      

   

 

             

p-space Euclidean 
propagator

Holds for large separation |x|

mπ=106 MeV

Similar qualitative features to results 
from chiral perturbation theory
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● Since all observable quantities are computed using correlation functions, 
which are characterised by damping factors, one can use these to gain 
new insights into the properties of QFTs when T>0 

● It has been proposed [Bros, Buchholz, NPB 627 (2002)] that these quantities 
are controlled by the large-time x0 dynamics of the theory

 

             x0 

 

∞-∞

   →  Need to take this into account in definition of scattering states!

Important: Interactions with the thermal background persist, even for large x0 

Backup: Damping factors from asymptotic dynamics
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● Idea: thermal scattering states are defined by imposing an asymptotic field 
condition [Bros, Buchholz, NPB 627 (2002)]:

    

● Given that the thermal spectral density has the decomposition

it follows that:  1. The continuous contribution to                        is suppressed    
                           for large x0 

                       2. The particle damping factor Dm,β(u) is uniquely fixed by the        
                           asymptotic field equation

● This means that the non-perturbative thermal effects experienced by particle 
states are entirely controlled by the asymptotic dynamics!   

  

            

●  

Asymptotic fields Φ0 are assumed to satisfy 
dynamical equations, but only at large x0

In Φ4 theory
“Asymptotic coupling”

“Asymptotic mass”

~

Backup: Damping factors from asymptotic dynamics
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● Applying the asymptotic field condition for Φ4 theory, the resulting damping 
factors have the form [Bros, Buchholz, NPB 627 (2002)]:

where  κ is defined with r =m/T:

● Now that one has the exact dependence of Dm,β(x) on the external physical 
parameters, in this case T, m and λ, one can use this to calculate observables 
analytically                

 

→  For λ < 0: →  For λ > 0:

Backup: Φ4 theory for T > 0

    →  The parameter  has the interpretation of a thermal             κ
         width: κ→0 for T→0, or equivalently κ-1 is mean-free path    
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● Of particular interest is the shear viscosity η, which measures the resistance of 
a medium to sheared flow

→ This quantity can be determined from the spectral function of the            
    spatial traceless energy-momentum tensor 

     ... and η is recovered via the Kubo relation

● Using Dm,β(x) for  λ < 0, the EMT spectral function ρ  ππ has the form: 

● The presence of interactions causes resonant 
peaks to appear → peaked when p0 ~ =κ 1/   ℓ

● For λ→0 the free-field result is recovered, as 
expected

● The dimensionless ratio m/T controls the 
magnitude of the peaks    

Backup: Φ4 theory for T > 0
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● Applying Kubo’s relation, the shear viscosity η0 arising from the asymptotic 
states can be written [P.L., R.-A. Tripolt, J. M. Pawlowski, D. H. Rischke, PRD 104 (2021)] 

      

Dominant component 
for small |λ| For large |λ|, η0 ~ |λ|

Global minima

Magnitude of large |λ| 
growth controlled by m/T  

→  For fixed coupling, η0/T 
3 is entirely controlled by functions of m/T 

Backup: Φ4 theory for T > 0
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● What about the case λ > 0?  →  η0 diverges!

● This characteristic is related to the “bad” UV behaviour of the quartic 
interaction, i.e. the triviality of Φ4 appears to have an impact beyond T=0!

● In [PRD 104, 065010 (2021)] it was shown more generally that the finiteness of η0 
is related to the existence of thermal equilibrium  

● This procedure demonstrates that asymptotic dynamics can be used to 
explore the non-perturbative properties of QFTs when T>0 

          →  Can also calculate other observables, e.g. transport                    
               coefficients, entropy density, pressure, etc.

 Why?  – The particle damping factor Dm,β(u) does not decay rapidly      
              enough at large momenta 

If the KMS condition holds   ⟹  η0 is finite 

Backup: Φ4 theory for T > 0
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Backup: spectral representations

● For thermal asymptotic states, the spectral function ρππ  has the form   

... which after applying the generalised KL representation, together with the 
Kubo relation, implies

● The model dependence of η0 factorises, and is controlled by the 
thermal spectral density Dβ(u,s)
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● One can use the assumptions of local QFT at finite T to put constraints on 
the the structure of Euclidean correlation functions

       

● The Fourier coefficients of the Euclidean two-point function are then related 
to the thermal damping factors as follows [P.L., PRD 106 (2022)]:   

● ωN= 2 NT π are the Matsubara frequencies. For N=0 this leads to: 

 

→ The continuous component Dc(x,s) is exponentially suppressed!

Backup: Euclidean spectral relations

→  From the KMS condition and locality:
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