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On the light cone the full symmetry is conformal symmetry not just Lorentz symmetry.
Spontaneously breaking conformal symmetry gives masses to particles and takes them off
the light cone. Canonical quantization specifies equal time commutators on the light cone.
Instant time and light-front commutators are very different, but can be shown to be equiv-
alent by looking at unequal time commutators. We discuss the connection of the light-front
approach to the infinite momentum frame approach, and show that vacuum graphs are out-
side this framework. We show that there is a light-front structure to both AdS/CFT and
the eikonal approximation.
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1 MINKOWSKI SIGNATURE PREDATES SPECIAL RELATIVITY

Minkowski signature originated in the 19th century and predates 20th century special relativity. Consider the

two-dimensional Gauss-Bolyai-Lobachevski geometry with line element

ds2 =
a2dr2

a2 + r2
+ r2dθ2. (1.1)

To construct it we introduce a flat three-dimensional space with a line element

ds2 = dx2 + dy2 − dt2 (1.2)

as constrained by the hyperbola

t2 − x2 − y2 = a2. (1.3)

Eliminating t gives

ds2 = dx2 + dy2 − (xdx + ydy)2

a2 + x2 + y2
. (1.4)

On introducing polar coordinates x = r cos θ, y = r sin θ we recover (1.1):

ds2 = dr2 + r2dθ2 − r2dr2

a2 + r2
=

a2dr2

a2 + r2
+ r2dθ2. (1.5)

The significance of the Gauss-Bolyai-Lobachevski geometry is that it did not obey all of Euclid’s axioms, to
thus open the door to non-Euclidean Riemannian geometry and eventually to General Relativity. It took 2000
years to find it because it does not embed in a Euclidean geometry with line element ds2 = dx2 + dy2 + dt2

but in a geometry with Minkowski signature instead. Technically, the Gauss-Bolyai-Lobachevski geometry is
known as a two-dimensional space of constant negative curvature. Current cosmological studies indicate that
we live in a four-dimensional space of constant curvature. We will discuss embedding issues again in AdS/CFT.
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2 SPECIAL RELATIVITY

The line element

ds2 = dt2 − dx2 − dy2 − dz2 = ηµνdx
µdxν (2.1)

is Lorentz invariant. It breaks spacetime up into separate timelike (ds2 > 0),
lightlike (ds2 = 0) and spacelike (ds2 < 0) regions. Because ds2 is not equal
to the Euclidean-signatured −dt2−dx2−dy2−dz2, one can have nontrivial
solutions to ds2 = 0, with this region being known as the light cone.

Particles that propagate on the light cone are massless. Particles that prop-
agate off the lightcone are massive. To understand the origin of mass we
thus need to understand how to get off the light cone.

To address the origin of mass we need to identify the full symmetry of the
light cone.
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3 CONFORMAL SYMMETRY - THE FULL SYMMETRY OF THE LIGHT CONE

While the timelike and spacelike regions are Lorentz invariant, the light cone itself has a
higher symmetry. Its scale symmetry is immediate since if ηµνdx

µdxν = 0 then on scaling
xµ → λxµ we see that λ2ηµνdx

µdxν is zero too.

With 10 constant Poincare parameters εµ and Λµ
ν, and 5 constant conformal parameters λ

and cµ the 15 conformal generators transform xµ and x2 according to

xµ → xµ + εµ, xµ → Λµ
νx

ν,

xµ → λxµ, xµ → xµ + cµx2

1 + 2c · x + c2x2
,

x2 → λ2x2, x2 → x2

1 + 2c · x + x2
. (3.1)

The 10 Poincare generators preserve any x2, while the 5 conformal generators also preserve
x2 = 0.
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4 THE CONFORMAL GROUP

The 15 infinitesimal generators act on the coordinates xµ according to

P µ = i∂µ, Mµν = i(xµ∂ν − xν∂µ), D = ixµ∂µ,

Cµ = i(x2ηµν − 2xµxν)∂ν, (4.1)

and together they form the 15-parameter SO(4, 2) conformal group:

[Mµν,Mρσ] = i(−ηµρMνσ + ηνρMµσ − ηµσMρν + ηνσMρµ),

[Mµν, Pσ] = i(ηνσPµ − ηµσPν), [Pµ, Pν] = 0,

[Mµν, D] = 0, [D,Pµ] = −iPµ,

[Cµ, Pν] = 2i(ηµνD −Mµν),

[Mµν, Cσ] = i(ηνσCµ − ηµσCν),
[Cµ, Cν] = 0, [D,Cµ] = iCµ. (4.2)
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5 SPINORS AND CONFORMAL SYMMETRY

The fundamental representation of the conformal group is a 4-dimensional spinor represen-
tation since the 15 Dirac matrices γ5, γµ, γµγ5, [γµ, γν] also close on the SO(4, 2) algebra
according to:

Mµν =
i

4
[γµ, γν], Cµ + Pµ = γµ, Cµ − Pµ = γµγ5, D =

i

2
γ5. (5.1)

The group SU(2, 2) is the covering group of SO(4, 2) with the 4-dimensional spinor being
its fundamental representation.

4-component Dirac spinors are reducible under the Lorentz group. They reduce to ir-
reducible left-handed and right-handed Weyl spinors, viz. the Dirac spinor behaves as the
D(1/2, 0)⊕D(0, 1/2) representation. This is puzzling: why should the fundamental building
blocks of matter (viz. fermions) be reducible under the fundamental group (viz. the Lorentz
group). Solution: let a bigger group be the fundamental group, one that contains the Lorentz
group as a subgroup and under which 4-component Dirac fermions are irreducible.

This is the case for the conformal group, since under it all four Dirac fermion components

are irreducible, with the complex conformal transformations mixing the left-handed and

right-handed spinors, doing so via transformations that are continuous.
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6 IMPLICATIONS OF CONFORMAL SYMMETRY

Since conformal symmetry has to hold for all spinors no matter what their in-
ternal quantum numbers might be, in a conformal invariant theory neutrinos
would have to have four components too, with right-handed neutrinos
being needed to accompany the observed left-handed ones. The weak inter-
action has to be left-right symmetric: SU(2)L × SU(2)R × U(1).

Can generalize to the 3-family SU(6)L× SU(6)R× U(1). This is Quantum
Flavordynamics, in which ALL of the global chiral symmetry of Quantum
Chromodynamics is gauged. Why only gauge its SU(2)L × U(1) subgoup –
too lopsided.

If the conformal symmetry is exact then all particles are massless. Thus we
need to generate mass spontaneously. Thus to get off the light cone we need
spontaneous symmetry breaking. And since the double well potential
V (φ) = λφ4 − µ2φ2 is not conformal invariant, the breaking must be done
by radiative loops, to hence be dynamical.
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We must generate masses dynamically for all massive particles, but espe-
cially for right-handed neutrinos since their lack of detection to date means
that their masses are much larger than those of the left-handed ones. Thus
they must acquire Majorana masses not Dirac masses (i.e., 〈Ω|ψψ|Ω〉, not
〈Ω|ψ̄ψ|Ω〉 – see Mannheim, Phys. Rev. D 22, 1729 (1980)). This will break
parity and reduce SU(2)L × SU(2)R × U(1) to SU(2)L × U(1) by making
right-handed W and Z bosons heavier than the left-handed ones.

So parity must be broken spontaneously. This resolves a puzzle: If time
translations and space reflections commute how could the [H,P ] commutator
not be zero. Answer: it is zero, but parity is broken in the vacuum, i.e., in
the states not in the operators.
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If we now make the conformal symmetry local we are led to conformal gravity with action

IW = −αg
∫
dx(−g)1/2CλµντC

λµντ ,

where Cλµντ is the Weyl tensor, and not led to Einstein gravity with action

IEH = (1/16πG)

∫
d4x(−g)1/2Rα

α.

With conformal gravity (like Einstein gravity a pure metric theory of gravity that also
contains the Schwarzschild solution needed for the solar system) we solve [Mannheim, Prog.
Part. Nucl. Phys. 94, 125 (2017)] the dark matter, dark energy/cosmological constant and
quantum gravity problems, all in one go. Extrapolating Einstein gravity beyond the solar
system is where the all problems come from.
Continuing Einstein gravity to galaxies gives the dark matter problem.

Continuing Einstein gravity to cosmology gives the dark energy/cosmological constant prob-
lem.

Quantizing Einstein gravity and continuing the theory far off the mass shell gives the renor-
malization problem.

Conclusion: With Einstein gravity we are extrapolating the wrong theory.

The cosmological constant problem is related to mass generation and thus addressed and
solved by the dynamical symmetry breaking mechanism that gets us off the light cone.
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7 INFINITE MOMENTUM FRAME

In 1966 Weinberg (Phys. Rev. 150, 1313 (1966)) showed that instant-time quantization
perturbation theory would be simplified in the frame in which an observer moved with an
infinite three-momentum with respect to the center of mass system of a scattering process,
i.e., p3 = αP where P is large and α is a constant and p0 = [(p3)2 + (p1)2 + (p2)2 +m2]1/2 →
αP + [(p1)2 + (p2)2 + m2]/2αP .

180 I'E YNMAN RULES AT INFI Ni TE MOMENTUM

A. New Rules

l.et us introduce the new variables g, s, and q defined
by

~=p'+p', s=p' p'—, «=(p', p'), (2.1)

where p& is the four-momentum of a single particle.
These new variables play an essential role in our new
rules.
Our new rules are simply the usuat Feynman rules

written in terms of the new variables (s,rt, q). The prop-
agator has the form G=ih~,

1'xo. 1. (a) and (b) Second-
order self-energy in two difer-
ent r orderings. (c) Lowest-
order vacuum diagram. v axis
points upward.

tip
plp

p+p

G(p) =i(rts q'—m—'+ie) ', (2.2)

since p"p„=r)s—q' The momentum-space integral expression for M(s) above Eq. (30) of Ref. 3, i.e.,
becomes 1

d p=a d q d'gds. (2.3) -'g'(27r) ' d'q dcrt sn(1—rr) —q'—m'+isa ' (2.8)
0

The energy-momentum conservation at each vertex
becomes the conservation of s, q, and q.
Although the new rules are identical to the old ones

except for a 45' rotation of the p' and p' axes, they make
the practical calculation very different. As a simple
example, consider the self-energy diagram shown in
Fig. 1(a).Taking p= (s,rt, 0), we have

Z(p) =i,' ( ig-)'(—2m-) ' d'q'drt'ds'G(p')G(p'+p) . (2.4)

Using (2.2), the s' integral is

——1
Pr)'(rt+r)') j ' ds' s'—(m'+q" —ie)

where n= —g'. Equation (2.8) is derived in Ref. 3 to
illustrate the advantage of the diagram rules based on
the old-fashioned perturbation theory with all particles
having infinite momenta. The variable n, which is
shown in Ref. 3 to be just the Feynman parameter of
combining denominators, may now be related directly
to r)=p'+p'. It seems a bit surprising that a simple
change of variables has the advantage, which the
infinite-momentum rules of Ref. 3 has, of bypassing some
complicated steps of combining denominators. In the
following few paragraphs, we shall show that our new
rules are already the rules at infinite momentum in the
sense that the rules derived in Ref. 3, plus some correc-
tions, follow immediately from our rules without taking
any limit of the form p' ~ eo.

——1
X s+s'——(m'+q" —ie) . (2.5)

n+~'

Suppose z&0. Clearly, if p') 0, both of the poles of the
integrand are below the real axis, and the integral
therefore vanishes. For q'& —g, both poles are above
the real axis, and the integral again vanishes. It is
nonvanishing only when

0&—~'&~, (2.6)

Xgrt'(rt+r)')s+r)(q"+m' ie)j ' (2.7—).
If we set g= 1, this expression becomes identical to the

which sets the limits for the g' integration. If g&0, the
same argument leads to 0(rt'( ~rt~. The fact that rt'
has a finite range after the s' integral is an outstanding
feature of the new rules. Performing the s' integration,
one obtains

B. Ordered Diagrams

We define the new time variable 7 conjugate to $ by

r =,' (t+s), -
and the propagator in the v. representation by

G(,n, q) =
dS
G(s ~ q)e rrs 0(~r) ~ ~ ~

—le (ss+mrr)lrls-
27r

for g/0
=—i(m'+q') '8(r), for g=0. (2 9)

Apart, from the case g=0, which will be shown later to
be important only for vacuum diagrams, (2.9) shows
that for rt) 0, G(r,rt, q) is nonzero only when r) 0, and
for &&0, only when v&0. If we call the quantity
(q'+m')/rt in (2.9) the "single-particle energy, " then
(2.9) says that positive-energy states propagate forward
in r and negative-energy states propagate backward.
The latter may also be regarded as an antiparticle
(which is the same as a particle in this case) with
energy (q'+m')/ ~rt ~

propagating forward in r
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Specifically, Graph (b) would be suppressed with respect to Graph (a). Graph (c) was not
discussed. In Weinberg’s case the x0 time axis runs up the diagram and the analysis was made
using old-fashioned perturbation theory. Old-fashioned (i.e. pre-Feynman) perturbation
theory is off the energy shell but on the mass shell. (The Feynman approach is off the mass
shell).
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8 LIGHT-FRONT VARIABLES
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In 1969 Chang and Ma (Phys. Rev. 180, 1506 (1969)) recovered Weinberg’s infinite momentum frame result

by working with the light-front variables p+ = p0 + p3, p− = p0− p3. Under a Lorentz boost in the z direction

with velocity u these variables transform as

p0 + p3 → (p0 + p3)

(
1 + u

1− u

)1/2

, p0 − p3 → (p0 − p3)

(
1− u
1 + u

)1/2

. (8.1)

Setting (1 + u)1/2/(1 − u)1/2 = 1/2P , p3 = αP , for large P and (p0)2 − (p3)2 = p+p− = m2 + (p1)2 + (p2)2

we obtain

p0 + p3 → 2αP

2P
= α, p0 − p3 → [m2 + (p1)2 + (p2)2]

2αP
2P =

[m2 + (p1)2 + (p2)2]

2α
, (8.2)

i.e., we recover the momenta used by Weinberg. With this choice a Green’s function as evaluated with a
complex plane p+ contour becomes equal to Graph (a) when Graph (a) is evaluated with a complex plane p0

contour an inifinite momentum frame with large p3.
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There is a caveat. In the infinite momentum frame case the flow of time is forward in x0, while the flow of

time in the light-front case is forward in x+ = x0 + x3. But for timelike or lightlike events (x0)2 − (x3)2 =

x+x− ≥ (x1)2 + (x2)2 is positive, where x− = x0− x3. Thus x+x− is positive. Consequently, x+ and x− have

the same sign. And thus for x0 = (x+ + x−)/2 > 0 (a Lorentz invariant for timelike or lightlike events) it

follows that x+ is positive too.
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9 THE TAKEAWAY180 I'E YNMAN RULES AT INFI Ni TE MOMENTUM

A. New Rules

l.et us introduce the new variables g, s, and q defined
by

~=p'+p', s=p' p'—, «=(p', p'), (2.1)

where p& is the four-momentum of a single particle.
These new variables play an essential role in our new
rules.
Our new rules are simply the usuat Feynman rules

written in terms of the new variables (s,rt, q). The prop-
agator has the form G=ih~,

1'xo. 1. (a) and (b) Second-
order self-energy in two difer-
ent r orderings. (c) Lowest-
order vacuum diagram. v axis
points upward.

tip
plp

p+p

G(p) =i(rts q'—m—'+ie) ', (2.2)

since p"p„=r)s—q' The momentum-space integral expression for M(s) above Eq. (30) of Ref. 3, i.e.,
becomes 1

d p=a d q d'gds. (2.3) -'g'(27r) ' d'q dcrt sn(1—rr) —q'—m'+isa ' (2.8)
0

The energy-momentum conservation at each vertex
becomes the conservation of s, q, and q.
Although the new rules are identical to the old ones

except for a 45' rotation of the p' and p' axes, they make
the practical calculation very different. As a simple
example, consider the self-energy diagram shown in
Fig. 1(a).Taking p= (s,rt, 0), we have

Z(p) =i,' ( ig-)'(—2m-) ' d'q'drt'ds'G(p')G(p'+p) . (2.4)

Using (2.2), the s' integral is

——1
Pr)'(rt+r)') j ' ds' s'—(m'+q" —ie)

where n= —g'. Equation (2.8) is derived in Ref. 3 to
illustrate the advantage of the diagram rules based on
the old-fashioned perturbation theory with all particles
having infinite momenta. The variable n, which is
shown in Ref. 3 to be just the Feynman parameter of
combining denominators, may now be related directly
to r)=p'+p'. It seems a bit surprising that a simple
change of variables has the advantage, which the
infinite-momentum rules of Ref. 3 has, of bypassing some
complicated steps of combining denominators. In the
following few paragraphs, we shall show that our new
rules are already the rules at infinite momentum in the
sense that the rules derived in Ref. 3, plus some correc-
tions, follow immediately from our rules without taking
any limit of the form p' ~ eo.

——1
X s+s'——(m'+q" —ie) . (2.5)

n+~'

Suppose z&0. Clearly, if p') 0, both of the poles of the
integrand are below the real axis, and the integral
therefore vanishes. For q'& —g, both poles are above
the real axis, and the integral again vanishes. It is
nonvanishing only when

0&—~'&~, (2.6)

Xgrt'(rt+r)')s+r)(q"+m' ie)j ' (2.7—).
If we set g= 1, this expression becomes identical to the

which sets the limits for the g' integration. If g&0, the
same argument leads to 0(rt'( ~rt~. The fact that rt'
has a finite range after the s' integral is an outstanding
feature of the new rules. Performing the s' integration,
one obtains

B. Ordered Diagrams

We define the new time variable 7 conjugate to $ by

r =,' (t+s), -
and the propagator in the v. representation by

G(,n, q) =
dS
G(s ~ q)e rrs 0(~r) ~ ~ ~

—le (ss+mrr)lrls-
27r

for g/0
=—i(m'+q') '8(r), for g=0. (2 9)

Apart, from the case g=0, which will be shown later to
be important only for vacuum diagrams, (2.9) shows
that for rt) 0, G(r,rt, q) is nonzero only when r) 0, and
for &&0, only when v&0. If we call the quantity
(q'+m')/rt in (2.9) the "single-particle energy, " then
(2.9) says that positive-energy states propagate forward
in r and negative-energy states propagate backward.
The latter may also be regarded as an antiparticle
(which is the same as a particle in this case) with
energy (q'+m')/ ~rt ~

propagating forward in r
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In their work Chang and Ma showed that
for Graph (a) x+ is positive and all the p− poles have both p− and p+ positive,
for Graph (b) x+ is negative and all the p− poles have both p− and p+ negative,
for Graph (c) x+ is zero and so is p+. But if p+ is zero then p− is infinite. Thus p+ = p−/2

is infinite too, just as it should be since it is the conjugate of x+. (∆x+∆p+ > ~).

However, and this is the key point, all of these statements are true without going to
the infinite momentum frame. They thus can define a strategy for evaluating diagrams
as diagrams are segregated by the sign of the time variable x+. And since x+ is positive for
scattering processes they only involve positive p− and p+, with the p− pole contributions
then corresponding to old-fashioned perturbation theory diagrams. Only needing positive
p− and p+ provides enormous computational benefits.
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But what about the instant-time graphs that are not at infinite momentum. Are they different from or the

same as the light-front graphs. And if they are different, then which ones describe the real world. In Mannheim,

Lowdon and Brodsky, Phys. Rep. 891, 1 (2021) they were shown to be the same. Thus Graph (a) in light front

is equivalent to Graphs (a) and (b) in instant time quantization at any momenta. Essentially in c-number

Feynman diagrams the transformation from instant-time coordinates to light-front coordinates is just a change

of variables.

The vacuum Graph (c) is expressly non-zero, something known as early as 1969. However, it involves p+ = 0

zero modes, whose evaluation is tricky. Resolved in Mannheim, Lowdon and Brodsky, Phys. Lett. B 797,

134916 (2019). The procedure is to construct the vacuum graph as the x+ = 0 limit of the time-ordered

Feynman diagram 〈Ω|[θ(x+)φ(x)φ(0) + θ(−x+)φ(0)φ(x)]|Ω〉. The x+ = 0 limit is the limit of two time

orderings (forward and backward), even though Graphs (a) and (b) only involve the forward x+ > 0. Thus the

vacuum graph cannot be evaluated using old-fashioned three dimensional on mass shell perturbation theory

(though non vacuum graphs can be). The vacuum graph must be evaluated as a four-dimensional off shell

Feynman diagram, to thus contain information that is not accessible using the three-dimensional approach. It

is then explicitly nonzero.
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10 LIGHT-FRONT QUANTIZATION – THE TIP OF THE LIGHT CONE

Instead of replacing instant-time momenta by light-front momenta in Feynman diagrams, we can obtain a

fully-fledged light-front quantum field theory by constructing equal x+ commutators rather than equal x0

commutators. For a scalar field [Neville and Rohrlich, Nuovo Cimento A 1, 625 (1971)]

Scalar field light-front commutators at equal x+

[φ(x+, x1, x2, x−), φ(x+, y1, y2, y−)] = − i
4
ε(x− − y−)δ(x1 − y1)δ(x2 − y2),

[φ(x+, x1, x2, x−), 2∂−φ(x+, y1, y2, y−)] = iδ(x1 − y1)δ(x2 − y2)δ(x− − y−). (10.1)

Scalar field instant-time commutators at equal x0

[φ(x0, x1, x2, x3), ∂0φ(x0, y1, y2, y3)] = iδ(x1 − y1)δ(x2 − y2)δ(x3 − y3),

[φ(x0, x1, x2, x3), φ(x0, y1, y2, y3)] = 0. (10.2)

Gauge field instant-time commutators at equal x0

[Aν(x
0, x1, x2, x3), ∂0Aµ(x0, y1, y2, y3)] = −igµνδ(x1 − y1)δ(x2 − y2)δ(x3 − y3),

[Aν(x
0, x1, x2, x3), Aµ(x0, y1, y2, y3)] = 0. (10.3)

Using gauge fixing, for light-front gauge fields we obtain (Mannheim, Lowdon and Brodsky 2021)

Gauge field light-front commutators at equal x+

[Aν(x
+, x1, x2, x−), 2∂−Aµ(x+, y1, y2, y−)] = −igµνδ(x1 − y1)δ(x2 − y2)δ(x− − y−),

[Aν(x
+, x1, x2, x−), Aµ(x+, y1, y2, y−)] =

i

4
gµνε(x

− − y−)δ(x1 − y1)δ(x2 − y2). (10.4)

Analogous results in the non-Abelian case.
The instant-time and light-front commutators are completely different.
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11 INSTANT-TIME AND LIGHT-FRONT ANTICOMMUTATORS

Fermion instant-time anticommutators at equal x0{
ψα(x0, x1, x2, x3), ψ†β(x0, y1, y2, y3)

}
= δαβδ(x

1 − y1)δ(x2 − y2)δ(x3 − y3). (11.1)

Fermion light-front anticommutators at equal x+{
[ψ(+)]α(x+, x1, x2, x−), [ψ†(+)]β(x+, y1, y2, y−)

}
= Λ+

αβδ(x
− − y−)δ(x1 − y1)δ(x2 − y2). (11.2)

[Chang, Root and Yan, Phys. Rev. D 7, 1133 (1973).]

Non-Invertible Projectors

Λ± = 1
2(1± γ0γ3), Λ+ + Λ− = I, (Λ+)2 = Λ+, (Λ−)2 = Λ−, Λ+Λ− = 0, γ± = γ0 ± γ3, (γ±)2 = 0,

ψ(±) = Λ±ψ, ψ(−) is a constrained variable: (11.3)

ψ(−)(x
+, x1, x2, x−) = − i

4

∫
du−ε(x− − u−)[−iγ0(γ1∂1 + γ2∂2) + mγ0]ψ(+)(x

+, x1, x2, u−).

(11.4){
[ψ(+)]ν(x), [ψ†(−)]σ(y)

}
= i

8ε(x
− − y−)[i(γ−γ1∂x1 + γ−γ2∂x2 )−mγ−]νσδ(x1 − y1)δ(x2 − y2), (11.5){

ψ(−)
µ (x+, x1, x2, x−), [ψ†(−)]ν(x

+, y1, y2, y−)
}

=
1

16
Λ−µν

[
− ∂

∂x1

∂

∂x1
− ∂

∂x2

∂

∂x2
+ m2

] ∫
du−ε(x− − u−)ε(y− − u−)δ(x1 − y1)δ(x2 − y2). (11.6)

The instant-time and light-front anticommutators are completely different and even not
invertible.
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12 WHY THEY COULD IN PRINCIPLE BE DIFFERENT

In instant time the light cone is x2
0 − x

2
1 − x

2
2 − x

2
3 = 0. Thus when x0 = 0

it follows that x1 = x2 = x3 = 0, to thus put us at the tip of the light cone.

In light front the light cone is x+x− − x2
1 − x

2
2 = 0. Thus when x+ = 0 it

follows only that x1 = x2 = 0. However x− is not constrained, to thus allow
for an ε(x−) term in equal x+ commutators.

But does this mean that equal x0 quantization and equal x+ quantization
correspond to different physical theories? So are they different not just in
principle but in practice also?

No. Since
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13 UNEQUAL TIME COMMUTATORS AND ANTICOMMUTATORS

Following Mannheim, Phys. Rev. D 102, 025020 (2020):

UNEQUAL TIME Scalar instant-time commutator

i∆(x− y) = [φ(x0, x1, x2, x3), φ(y0, y1, y2, y3)]

=

∫
d3pd3q

(2π)3(2p)1/2(2q)1/2

(
[a(~p), a†(~q)]e−ip·x+iq·y + [a†(~p), a(~q)]eip·x−iq·y

)
=

∫
d3p

(2π)32p

(
e−ip·(x−y) − eip·(x−y)

)
= − i

2π

δ(x0 − y0 − |~x− ~y|)− δ(x0 − y0 + |~x− ~y|)
2|~x− ~y|

= − i

2π
ε(x0 − y0)δ[(x0 − y0)2 − (x1 − y1)2 − (x2 − y2)2 − (x3 − y3)2]. (13.1)

Since it holds at ALL times, it also holds at EQUAL light front time.

Substitute x0 = (x+ + x−)/2, x3 = (x+ − x−)/2, y0 = (y+ + y−)/2, y3 = (y+ − y−)/2:

i∆(x− y) = − i

2π
ε[1

2(x+ + x− − y+ − y−)]δ[(x+ − y+)(x− − y−)− (x1 − y1)2 − (x2 − y2)2]. (13.2)

i∆(x− y)
∣∣
x+=y+

= [φ(x+, x1, x2, x−), φ(x+, y1, y2, y−)] = − i
4
ε(x− − y−)δ(x1 − y1)δ(x2 − y2). (13.3)

At x+ = y+ UNEQUAL instant-time commutator is EQUAL light-front time commutator

Light-front quantization is instant-time quantization, and does not need to be indepen-
dently postulated.

18



UNEQUAL TIME Abelian gauge field instant-time commutator

[Aν(x
0, x1, x2, x3), Aµ(y0, y1, y2, y3)] = igµν∆(x− y)

= − i

2π
gµνε(x

0 − y0)δ[(x0)2 − (x1)2 − (x2)2 − (x3)2]. (13.4)

Leads to

[Aν(x
+, x1, x2, x−), Aµ(x+, y1, y2, y−)] =

i

4
gµνε(x

− − y−)δ(x1 − y1)δ(x2 − y2). (13.5)

At x+ = y+ UNEQUAL instant-time commutator is EQUAL light-front time commutator

Similar result holds for non-Abelian gauge field.

14 FERMION UNEQUAL INSTANT-TIME ANTICOMMUTATOR

{
ψα(x0, x1, x2, x3), ψ†β(y0, y1, y2, y3)

}
=
[
(iγµγ0∂µ

]
αβ
i∆(x− y). (14.1)

Apply projector and set x+ = y+

Λ+
αγ

{
ψγ(x

+, x1, x2, x−), ψδ(x
+, y1, y2, y−)

}
Λ+
δβ

=
{

[ψ(+)(x
+, x1, x2, x−)]α, [ψ

†
(+)]β(x+, y1, y2, y−)

}
= Λ+

αβδ(x
− − y−)δ(x1 − y1)δ(x2 − y2). (14.2)

At x+ = y+ UNEQUAL instant-time anticommutator is EQUAL light-front time anticom-

mutator. Can also derive anticommutators involving bad fermions in the same way.

All cases discussed in Mannheim, Phys. Rev. D 102, 025020 (2020).
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15 THE TAKEAWAY

Light-front quantization is instant-time quantization, and does not need to
be independently postulated. The seemingly different structure between
EQUAL instant-time and EQUAL light-front time commutators is actually
a consequence of the structure of UNEQUAL instant-time time commuta-
tors and anticommutators as restricted to equal x0 or equal x+.

Now the transformation x+ = x0 + x3, x− = x0 − x3 is not a Lorentz trans-
formation but a translation, i.e., a general coordinate transformation. But
for theories that are Poincare invariant this is a symmetry. Thus:

GENERAL RULE: ANY TWO DIRECTIONS OF QUANTIZATION
THAT CAN BE CONNECTED BY A GENERAL COORDINATE TRANS-
FORMATION DESCRIBE THE SAME THEORY.

BUT IN THE QUANTUM THEORY TRANSLATIONS ARE UNITARY
TRANSFORMATIONS. THUS INSTANT-TIME AND LIGHT-FRONT
THEORIES ARE UNITARILY EQUIVALENT, AND ARE THUS ONE
AND THE SAME THEORY.
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16 UNITARY EQUIVALENCE VIA TRANSLATION INVARIANCE

So far the discussion has only dealt with free theory commutators, and they just happen to be c-numbers.

However, for interacting theories we can only discuss matrix elements. With

[P̂µ, φ] = −i∂µφ, [P̂µ, P̂ν] = 0 (16.1)

to all orders in perturbation theory because of Poincare invariance, we introduce

U(P̂0, P̂3) = exp(ix3P̂0) exp(ix0P̂3). (16.2)

It effects

Uφ(IT ;x0, x1, x2,−x3)U−1 = φ(IT ;x0 + x3, x1, x2, x0 − x3) = φ(LF ;x+, x1, x2, x−)

(16.3)

Then with a light-front vacuum of the form |ΩF 〉 = U |ΩI〉 we obtain

−i〈ΩI |[φ(IT ;x0, x1, x2,−x3), φ(0)]|ΩI〉 = −i〈ΩI |U †U [φ(IT ;x0, x1, x2,−x3), φ(0)]U †U |ΩI〉
= −i〈ΩF |[φ(LF ;x+, x1, x2, x−), φ(0)]|ΩF 〉, (16.4)

to all orders in perturbation theory. We thus establish the unitary equivalence of matrix elements of instant-time

and light-front commutators to all orders.
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The same equivalence holds for the all-order Lehmann representations. For the instant-time case we have

〈Ω|[φ(IT ;x), φ(IT ; y)]|Ω〉 =
1

(2π)3

∫ ∞
0

dσ2ρ(σ2, IT )

∫
d4qε(q0)δ(q2 − σ2)e−iq·(x−y)

=

∫ ∞
0

dσ2ρ(σ2, IT )i∆(IT, FREE;x− y, σ2), (16.5)

where

ρ(q2, IT )θ(q0) = (2π)3
∑
n

δ4(pnµ − qµ)|〈Ω|φ(0)|pnµ〉|2, P̂µ|pnµ〉 = pnµ|pnµ〉, (16.6)

as written in instant-time momentum eigenstates.

For the light-front case we have

〈Ω|[φ(LF ;x), φ(LF ; y)]|Ω〉 =
2

(2π)3

∫ ∞
0

dσ2ρ(σ2, LF )

∫
d4qε(q+)δ(q2 − σ2)e−iq·(x−y).

=

∫ ∞
0

dσ2ρ(σ2, LF )i∆(LF, FREE;x− y, σ2), (16.7)

where

ρ(qµ, LF ) =
(2π)3

2

∑
n

δ4(pnµ − qµ)|〈Ω|φ(0)|pnµ〉|2 = ρ(q2, LF )θ(q+), (16.8)

as written in light-front momentum eigenstates. Then with

U |pn0〉 = |pn+〉, U |pn3〉 = |pn−〉, U |pn1〉 = |pn1〉, U |pn2〉 = |pn2〉 (16.9)

we obtain the all-order

〈Ω|[φ(IT ;x), φ(IT ; y)]|Ω〉 = 〈Ω|[φ(LF ;x), φ(LF ; y)]|Ω〉. (16.10)
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With the all-order momentum operators having real and complete eigenspectra we have the all-order

P̂µ(IT ) =
∑
|pn(IT )〉pnµ(IT )〈pn(IT )|, P̂µ(LF ) =

∑
|pn(LF )〉pnµ(LF )〈pn(LF )|. (16.11)

With eigenvalues not changing under a unitary transformation, we obtain

P̂0(IT ) = UP̂0(IT )U−1 = U
∑
|pn(IT )〉pn0〈pn(IT )|U †

=
∑
|pn(LF )〉(pn+ + pn−)〈pn(LF )| = P̂+(LF ) + P̂−(LF ). (16.12)

Given (16.11) and (16.12), there initially appears to be a mismatch between the eigenstates of P̂0(IT ) and

P̂+(LF ). However, for any timelike set of instant-time momentum eigenvalues we can Lorentz boost p1, p2

and p3 to zero, to yield

p1 = 0, p2 = 0, p3 = 0, p0 = m. (16.13)

If we impose this same p1 = 0, p2 = 0, p3 = 0 condition on the light-front momentum eigenvalues we would

set p+ = p−, p2 = 4p2
+ = m2, and thus obtain

p1 = 0, p2 = 0, p+ = p−, p0 = 2p+ = m (16.14)

When written in terms of contravariant vectors with pµ = gµνpν this condition takes the form

p0 = p− = m. (16.15)

Thus in the instant-time rest frame the eigenvalues of the contra variant P̂ 0(IT ) and P̂−(LF ) coincide.
In this sense then instant-time and light-front Hamiltonians are equivalent. And non-relativistic in the light-
front case still means p3 = 0, i.e., p+ = p−, and not p− = p+/2 = 0.
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17 AdS/CFT

Work done by Guth, Kaiser, Mannheim and Nayeri, as reported in Mannheim: Brane-Localized Gravity (World

Scientific 2005).

An AdS5 geometry can be described by the flat M(4, 2) metric

ds2 = dW 2 + dX2 + dY 2 + dZ2 − dU 2 − dV 2, (17.1)

as subject to the constraint

U 2 + V 2 −W 2 −X2 − Y 2 − Z2 = `2. (17.2)

We introduce

X = R sinθ cosφ , Y = R sinθ sinφ , Z = R cosθ , (17.3)

η1 = t , η+ = ` , η− = ` +
r2 − t2

`
, η4 = r (17.4)

χ1 = −t , χ+ = −` , χ− = ` +
t2 − r2

`
, χ4 = −r . (17.5)

Then on setting

U = η1cosh
(w
`

)
+ χ1sinh

(w
`

)
, V + W = η+cosh

(w
`

)
+ χ+sinh

(w
`

)
,

V −W = η−cosh
(w
`

)
+ χ−sinh

(w
`

)
, R = η4cosh

(w
`

)
+ χ4sinh

(w
`

)
(17.6)

we obtain

ds2 = dw2 + e−2w/`
[
dr2 + r2dθ2 + r2 sin2 θdφ2 − dt2

]
. (17.7)

to thus embed a 4-dimensional Minkowski surface in a 5-dimensional AdS5 bulk. We note that the embedding
has to done with light-front variables.
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18 THE NAMBU-JONA-LASINIO CHIRAL FOUR-FERMION MODEL AS A MEAN-

FIELD THEORY

Nambu and Jona-Lasinio Phys. Rev. 122, 345 (1961).

Introduce mass term with m as a trial parameter and note m2/2g term

INJL =

∫
d4x

[
iψ̄γµ∂µψ −

g

2
[ψ̄ψ]2 − g

2
[ψ̄iγ5ψ]2

]
=

∫
d4x

[
iψ̄γµ∂µψ −mψ̄ψ +

m2

2g

]
+

∫
d4x

[
−g

2

(
ψ̄ψ − m

g

)2

− g

2

(
ψ̄iγ5ψ

)2

]
INJL = IMF + IRI, mean field plus residual interaction (18.1)

Hartree-Fock approximation

〈Ωm|
[
ψ̄ψ − m

g

]2

|Ωm〉 = 〈Ωm|
[
ψ̄ψ − m

g

]
|Ωm〉2 = 0, (18.2)

〈Ωm|ψ̄ψ|Ωm〉 = −i
∫

d4k

(2π)4
Tr

[
1

/p−m + iε

]
=
m

g
, (18.3)

Satisfied by self-consistent M , and defines g−1

−MΛ2

4π2
+
M 3

4π2
ln

(
Λ2

M 2

)
=
M

g
. (18.4)
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18.1 Vacuum Energy

ε(m) = i

∫
d4p

(2π)4
Tr ln

[
/p−m + iε

]
− i
∫

d4p

(2π)4
Tr ln

[
/p + iε

]
= −m

2Λ2

8π2
+

m4

16π2
ln

(
Λ2

m2

)
+

m4

32π2
(18.5)

is quadratically divergent.

ε̃(m) = ε(m)− m2

g

=
m4

16π2
ln

(
Λ2

m2

)
− m2M 2

8π2
ln

(
Λ2

M 2

)
+

m4

32π2
. (18.6)

is only log divergent, with double-well potential emerging, but still cutoff dependent.
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18.2 Higgs-Like Lagrangian

Vacuum to vacuum functional due to m(x)ψ̄ψ : 〈Ω(t = −∞)|Ω(t = +∞)〉 = eiW (m(x))

W (m(x)) =
∑ 1

n!

∫
d4x1...d

4xnG
n
0(x1, ..., xn)m(x1)...m(xn),

W (m(x)) =

∫
d4x

[
−ε(m(x)) +

1

2
Z(m(x))∂µm(x)∂µm(x) + .....

]
.

Figure 1: Vacuum energy density ε(m) via an infinite summation of massless graphs with zero-momentum point mψ̄ψ insertions.

Figure 2: ΠS(q2,m(x)) developed as an infinite summation of massless graphs, each with two point mψ̄ψ insertions carrying momentum qµ (shown
as external lines), with all other point mψ̄ψ insertions carrying zero momentum.

Eguchi and Sugawara (Phys. Rev. D 10, 4257 (1974)), Mannheim (Phys. Rev. D 14, 2072 (1976)):

IEFF =

∫
d4x

8π2
ln

(
Λ2

M 2

)[
1

2
∂µm(x)∂µm(x) +m2(x)M 2 − 1

2
m4(x)

]
. (18.7)

Set φ = 〈Ωm|ψ̄(1 + γ5)ψ|Ωm〉. Couple to an axial gauge field via ψ̄gAγ
µγ5Aµ5ψ. Get effective Higgs:

IEFF =

∫
d4x

8π2
ln

(
Λ2

M 2

)[
1

2
|(∂µ − 2igAAµ5)φ(x)|2 + |φ(x)|2M 2 − 1

2
|φ(x)|4 − g2A

6
Fµν5F

µν5

]
. (18.8)
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18.3 The Collective Goldstone and Higgs Modes when the Fermion is Massive

ΠS(q2,M) = −i
∫

d4p

(2π)4
Tr

[
1

/p−M + iε

1

/p + /q −M + iε

]
= − Λ2

4π2
+
M 2

4π2
ln

(
Λ2

M 2

)
+

(4M 2 − q2)

8π2
+

(4M 2 − q2)

8π2
ln

(
Λ2

M 2

)
− 1

8π2

(4M 2 − q2)3/2

(−q2)1/2
ln

(
(4M 2 − q2)1/2 + (−q2)1/2

(4M 2 − q2)1/2 − (−q2)1/2

)
. (18.9)

ΠP(q2,M) = −i
∫

d4p

(2π)4
Tr

[
iγ5

1

/p−M + iε
iγ5

1

/p + /q −M + iε

]
= − Λ2

4π2
+
M 2

4π2
ln

(
Λ2

M 2

)
− q2

8π2
ln

(
Λ2

M 2

)
+

(4M 2 − q2)

8π2

+
(8M 4 − 8M 2q2 + q4)

8π2(−q2)1/2(4M 2 − q2)1/2
ln

(
(4M 2 − q2)1/2 + (−q2)1/2

(4M 2 − q2)1/2 − (−q2)1/2

)
. (18.10)

TS(q2) =
R−1

S

(q2 − 4M 2)
, TP(q2) =

R−1
P

q2
, (18.11)

RS = RP =
1

8π2
ln

(
Λ2

M 2

)
. (18.12)

The scalar Higgs mass is finite and of order the dynamical fermion mass, and residue is

determined.
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19 ADD IN SCALE INVARIANCE

In QED at a fixed point (Johnson, Baker and Willey Phys. Rev 136, B1111 (1961); Phys. Rev. 163, 1699

(1964))) compatibility of the short-distance Wilson expansion and the propagator S−1(p) ∼ /p − (−p2)γθ(α)/2

gives γθ(α) = −1 (Mannheim Phys. Rev. D 12, 1772 (1975)). Specifically, in a scale invariant theory the

Wilson expansion is of the form

T (ψ(x)ψ̄(0)) = 〈Ω0|T (ψ(x)ψ̄(0))|Ω0〉 + (µ2x2)γθ(α)/2 : ψ(0)ψ̄(0) : (19.1)

where the normal ordering is done with respect to the unbroken massless vacuum |Ω0〉. Now take matrix

element in the spontaneously broken vacuum |Ωm〉, to obtain

S̃(p) =
1

/p
+ (−p2)(−γθ(α)/2−2), S̃−1(p) = /p− (−p2)(−γθ(α)−2)/2. (19.2)

Compatibility with S−1(p) ∼ /p− (−p2)γθ(α)/2 then gives γθ(α) = −γθ(α)− 2, i. e. γθ(α) = −1.
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20 SCALE INVARIANT QED COUPLED TO FOUR FERMI THEORY AT γθ(α) = −1

LQED−FF = −1

4
FµνF

µν + ψ̄γµ(i∂µ − eAµ)ψ − g

2
[ψ̄ψ]2 − g

2
[ψ̄iγ5ψ]2

= −1

4
FµνF

µν + ψ̄γµ(i∂µ − eAµ)ψ −mψ̄ψ +
m2

2g
− g

2

(
ψ̄ψ − m

g

)2

− g

2

(
ψ̄iγ5ψ

)2
= LQED−MF + LQED−RI. (20.1)

S̃−1(p) = /p−m
(
−p2 − iε

µ2

)−1/2
+ iε, Γ̃S(p, p, 0) =

(
−p2 − iε

µ2

)−1/2
(20.2)

as renormalized at µ2. With dimension of (ψ̄ψ)2 dropping from 6 to 4 when γθ = −1, quadratic divergences become
logarithmic, and four-fermion interaction becomes renormalizable to all orders in g (Mannheim, Phys. Lett. B 773, 604
(2017)).

〈Ωm|ψ̄ψ|Ωm〉 = −mµ
2

4π2
ln

(
Λ2

mµ

)
=
m

g
. (20.3)

− µ2

4π2
ln

(
Λ2

Mµ

)
=

1

g
, M =

Λ2

µ
exp

(
4π2

µ2g

)
. (20.4)

Gap equation gives −g ∼ 1/lnΛ2. Thus g is negative, i.e. attractive, and becomes very small as Λ→∞, with
BCS-type essential singularity in gap equation at g = 0. Hence dynamical symmetry breaking with weak
coupling.
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20.1 Vacuum Energy

ε(m) =
i

2

∫
d4p

(2π)4
Tr ln

[
1− m2

p2 + iε

(
−p2 − iε

µ2

)−1]
= −m

2µ2

8π2

[
ln

(
Λ2

mµ

)
+

1

2

]
(20.5)

and is only log divergent. Due to presence of m2/2g term we obtain the completely finite

ε̃(m) = ε(m)− m2

2g
=
m2µ2

16π2

[
ln

(
m2

M 2

)
− 1

]
, (20.6)

which we recognize as a double-well potential, dynamically induced.

We thus see the power of dynamical symmetry breaking. It reduces divergences. Moreover, since m2/2g is a cosmological
term, dynamical symmetry breaking has a control over the cosmological constant problem that an elementary Higgs field
potential does not. When coupled to conformal gravity (as needed for quartic divergence in the vacuum energy that we
ignored), the cosmological constant problem is completely solved.
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20.2 Higgs-Like Lagrangian

Figure 3: Dynamically generated double-well potential for the renormalized vacuum energy density when γθ(α) = −1.

Figure 4: ΠS(q2,m(x)) developed as an infinite summation of massless graphs, each with two dressed mψ̄ψ insertions carrying momentum qµ (shown
as external lines), with all other dressed mψ̄ψ insertions carrying zero momentum.

Mannheim Nucl. Phys. B 143, 285 (1978):

LEFF = −ε̃(m(x))− 1

2
m(x)[ΠS(−∂µ∂µ,m(x))− ΠS(0,m(x))]m(x) + ...

= −m
2(x)µ2

16π2

[
ln

(
m2(x)

M 2

)
− 1

]
+

3µ

256πm(x)
∂µm(x)∂µm(x) + .... (20.7)
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20.3 The Collective Tachyon Modes when the Fermion is Massless

ΠS(q2,m = 0) = ΠP(q2,m = 0) = − µ2

4π2

[
ln

(
Λ2

(−q2)

)
− 3 + 4 ln2

]
. (20.8)

TS(q2) =
g

1− gΠS(q2)
=

1

g−1 − ΠS(q2)
,

TP(q2) =
g

1− gΠP(q2)
=

1

g−1 − ΠP(q2)
, (20.9)

q2 = −Mµe4ln2−3 = −0.797Mµ, (20.10)

TS(q2) = TP(q2) =
31.448Mµ

(q2 + 0.797Mµ)
(20.11)
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20.4 The Collective Goldstone Mode when the Fermion is Massive

ΠP(q2 = 0,m) = −4iµ2

∫
d4p

(2π)4

(p2)(−p2)−m2µ2

((p2 + iε)2 + m2µ2)2
.

= 4iµ2

∫
d4p

(2π)4

1

(p2 + iε)2 + m2µ2
=

1

g
. (20.12)

TP(q2) =
128πM

7µq2
=

57.446M

µq2
. (20.13)

20.5 The Collective Higgs Mode when the Fermion is Massive

q0(Higgs) = (1.480− 0.017i)(Mµ)1/2, q2(Higgs) = (2.189− 0.051i)Mµ. (20.14)

q0(Higgs) = (1.480− 0.017i)M, q2(Higgs) = (2.189− 0.051i)M2, (20.15)

Higgs mass is close to dynamical fermion mass, but above threshold, and thus has a width.
In a double well elementary Higgs field theory Higgs mass is real. Width can be used to
distinguish an elementary Higgs from a dynamical one.

One thing more: We can cancel the quartic divergence in the matter sector vacuum energy
by a a quartic divergence in the gravity sector, provided the gravity sector is conformal grav-
ity. Together with dynamical mass generation this then controls the cosmological constant
(Mannheim, Prog. Part. Nucl. Phys. 94, 125 (2017)).
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21 FITTING THE ACCELERATING UNIVERSE DATA

To summarize: The vacuum energy momentum tensor of a massive free fermion has a quartic divergence, a

quadratic divergence, a logarithmic divergence, and a finite part. Conformal gravity takes care of the quartic

divergence and the finite part. Critical scaling in the matter sector and the reduction in the dimension of

dθ(α) from three to two reduces the quadratic divergence to logarithmic, and the mean field induced −m2/2g

term when mass is generated dynamically takes care of the resulting logarithmic divergence, with an associated

dynamically generated Higgs boson having no hierarchy problem.

With S now denoting the occupied positive energy state contribution 〈ΩM |bψ̄ψb†|ΩM〉− 〈ΩM |ψ̄ψ|ΩM〉, the

relevant effective conformal invariant Lagrangian is given by

LEFF =
S4

16π2
− S2

512π
Rα

α, (21.1)

It acts as an effective repulsive gravity theory with a negative cosmological GEFF = −32/S2. (Mannheim, Ap.

J. 391, 429 (1992)). However local gravity is still attractive.

T µνM is given by

T µνM = (ρM + pM)UµU ν + pM −
S2

256π

(
Rµν − gµν

2
Rα

α

)
− gµν S

4

16π2
. (21.2)

In a conformal Robertson-Walker cosmology we can show that −1 ≤ q0 ≤ 0 no matter what the value of

the parameters. The associated luminosity function is given by

dL = − c

H0

(1 + z)2

q0

(
1−

[
1 + q0 −

q0

(1 + z)2

]1/2
)
, (21.3)

with a best fit (Mannheim Prog. Part. Nucl. Phys. 56, 340 (2006)) with q0 = −0.37, a value that non-trivially

is right in the −1 ≤ q0 ≤ 0 range.
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Figure 5: Hubble plot expectations for q0 = −0.37 (highest curve) and q0 = 0 (middle curve) conformal gravity and for ΩM(t0) = 0.3, ΩΛ(t0) = 0.7
standard gravity (lowest curve).
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22 THE MORAL OF THE STORY

There is a lot of interesting physics on the light cone

and even more interesting physics off it.
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