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Emergent QCD properties

A basic understanding of fundamental features of hadron physics from first principles
QCD has remained elusive

Other important aspects of the strong interactions which were manifest in dual
models, before QCD, are also not explicit properties of the QCD Lagrangian

Emergent properties of QCD:

1 Mechanism of color confinement

2 The origin of the hadron mass scale

3 Chiral symmetry breaking and confinement

4 A massless pion vs. a massive proton in the chiral limit

5 The pattern of hadronic excitations

6 How does Regge theory emerge from QCD at large distances?

. . .

Present goal: To understand how emerging QCD properties can be incorporated
in an effective computational framework of hadron structure
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Critical role of the number of space-time dimensions

We start with the SU(N)C Lagrangian of QCD

L = ψ̄ (iγµDµ −m)ψ − 1
4
G a
µνG

aµν

where Dµ = ∂µ − igT aAa
µ and G a

µν = ∂µAa
ν − ∂νAa

µ + fabcA
b
µA

c
ν

Dimensional analysis from the QCD action

S =

∫
ddx L

in d-dimensional space-time gives

[ψ] ∼ M(d−1)/2

[A] ∼ M(d−2)/2

[g ] ∼ M(4−d)/2

QCD(1 + 1) [g ] ∼ M: Can be solved for any number of constituents and colors
(DLCQ), but no emerging phenomena

QCD(3 + 1) [g ] ∼ 1: Complex hadronic phenomena which should, in principle,
emerge from a simple Lagrangian in the nonperturbative domain
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Holographic light-front QCD (HLFQCD)

HLFQCD originates from the precise mapping of the AdS and LF expressions of FFs
for an arbitrary number of partons [S. J. Brodsky and GdT, PRL 96, 201601 (2006)]

Nonperturbative analytic approach follows from a semiclassical approximation to
light-front QCD and its holographic embedding in AdS space: It leads to relativistic
wave equations similar to the Schrödinger equation in atomic physics

Underlying superconformal algebraic structure introduces a mass scale and fix the
effective confinement potential: It is not SUSY QCD

The zero mass eigenmode is identified with the pion and is massless in the chiral limit

The new framework leads to relations between the Regge trajectories of mesons,
baryons, and tetraquarks

Holographic QCD also incorporates features of the Veneziano model as emerging
properties

Further extensions incorporate the exclusive-inclusive connection in QCD and provide
nontrivial relations between hadron form factors and quark and gluon distributions
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Semiclassical approximation to light-front QCD

Light-front (LF) quantization uses the null plane x+ = x0 + x3 = 0
tangent to the light cone as the initial surface (Dirac 1949), thus
without reference to a specific Lorentz frame
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Evolution in LF time x+ is given by the Hamiltonian equation

i
∂

∂x+
|ψ⟩ = P−|ψ⟩, P−|ψ⟩ =

P2
⊥ +M2

P+
|ψ⟩,

for a hadron with 4-momentum P = (P+,P−,P⊥), P± = P0 ± P3, where P− is a
dynamical generator and P+ and P⊥ are kinematical

Hadron mass spectra from LF invariant Hamiltonian P2 = PµPµ = P+P−− P2
⊥

P2|ψ(P)⟩ = M2|ψ(P)⟩, |ψ⟩ =
∑
n

ψn|n⟩

Simple structure of the LF vacuum allows for a quantum-mechanical probabilistic
interpretation of hadronic states in terms of invariant LF wave functions, ψn = ⟨n|ψ⟩,
written in terms of the quark and gluon degrees of freedom in the Fock expansion
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QCD(1+1)

A semiclassical LF Schrödinger equation derived from first principles QCD

G. ’t Hooft (1974), K. Hornbostel, S. J. Brodsky and H. C. Pauli (1990)

Properties of QCD(1 + 1)

• Gluons are not dynamical, no self-couplings of gluons

• quarks have chirality but no spin

• Coupling g has dimensions of mass

• Confining field theory for any coupling

Express the hadron 2-momentum generator P = (P+,P−), P± = P0 ± P3,
in the A+ = 0 gauge in terms of the fields ψ± ≡ ψR,L and A−

(1+1) Hamiltonian P− is given in terms of ψ+, only dynamical variable, from
inverting A− using the LF constraint equations

P− = 1
2

∫ ∞

−∞
dx−

(
ψ†
+

m2

i∂+
ψ+ + g2j+a 1

(i∂+)2
j+a
)

where j+a = ψ†
+T

aψ+

Interaction term

V = −g2
∫

dx−dy−j+a(x−)
∣∣x− − y−∣∣ j+a(y−)

See also: B. Ma and C. R. Ji, PRD 104, 036004 (2021)
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Mass spectrum computed from LF eigenvalue equation

P+P−|χ(P+)⟩ = M2
π |χ(P+)⟩

For the qq̄ valence state (or large NC ) it leads to the ‘t Hooft equation (1974)

(m2
q

x
+

m2
q̄

1− x

)
χ(x) +

g2NC

π
P

∫ 1

0
dx ′

χ(x)− χ(x ′)

(x − x ′)2
= M2

π χ(x)

where x is the longitudinal momentum fraction of the qq̄ state

Cancellation of singularities at x = ϵ and x = 1− ϵ for the approximate solution

χ(x) ∼ xβq (1− x)βq̄

leads for m2
q/πg

2NC ≪ 1 to βq =
(
3m2

q/πg
2NC

)1/2
and

M2
π = g

√
πNC

3
(mq +mq̄) +O

(
(mq+mq̄)

2
)

QCD(1+1): Both, the value of the CSB “condensate”

⟨ψψ⟩ = g f 2π

√
πNC

3

and the strength of linear confinement depend on the value of the coupling g in the
QCD Lagrangian, and are not emerging properties
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QCD(1+ 3)

GdT and S. J. Brodsky, PRL 102, 081601 (2009)

(3+1) Hamiltonian P− written in terms of the dynamical field ψ+

P− = 1
2

∫
dx−d2x⊥ψ̄

†
+

(i∇⊥)2 +m2

i∂+
ψ+ + interactions

We factor out the longitudinal X (x) and orbital e iLθ dependence from the LFWF ψ

ψ(x , ζ, φ) = e iLθX (x)
ϕ(ζ)
√
2πζ

x

b

(1-x)
6-2014
8851A1

where ζ2 = x(1− x)b2⊥ is the invariant transverse separation between two quarks and
L their relative LF orbital angular momentum

Mass spectrum from LF invariant Hamiltonian equation PµPµ|ψ(P)⟩ = M2|ψ(P)⟩
Ultra relativistic limit mq → 0 longitudinal modes X (x) decouple and we find(

−
d2

dζ2
−

1− 4L2

4ζ2
+ U(ζ)

)
ϕ(ζ) = M2ϕ(ζ)

• Effective potential U includes all interactions, including from higher Fock states

• Critical value L = 0 corresponds to the lowest possible stable solution

• Relativistic and frame-independent semiclassical WE

• It has identical structure of AdS WE provided that z = ζ
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Higher-spin wave equations in AdS
GdT, H. G. Dosch and S. J. Brodsky, PRD 87, 075005 (2013)

Integer spin

We start with the AdSd+1 action for a tensor-J field ΦN1...NJ
with a dilaton φ to modify the IR region of AdS space

[
−

zd−1−2J

eφ(z)
∂z
( eφ(z)

zd−1−2J
∂z
)
+

(µR)2

z2

]
ΦJ(z) = M2ΦJ(z)

S =
∫
dddx dz eφ(z)L

ds2 = R2

z2
(dx2

µ − dz2)

Upon the substitution ΦJ(z) = z(d−1)/2−Je−φ(z)/2 ϕJ(z) we find for d = 4 the
semiclassical QCD light-front wave equation (z is the fifth dimension of AdS space)(

−
d2

dζ2
−

1− 4L2

4ζ2
+ U(ζ)

)
ϕ(ζ) = M2ϕ(ζ)

where ζ2 = z2 = x(1− x)b2⊥ and

U(ζ, J) =
1

2
φ′′(ζ) +

1

4
φ′(ζ)2 +

2J − 3

2ζ
φ′(ζ)

the effective LF confinement potential with AdS mass-radius (µR)2 = −(2− J)2 + L2
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Half-integer spin

We start with the Rarita-Schwinger action in AdS for a spinor-J field ΨN1...NJ−1/2

with potential V (No dynamical dilaton for fermions)

Upon the substitution Ψ±
J (z) = z(d−1)/2−Jψ±

J (z)u± we find for the chiral

components ψ±

−
d

dz
ψ− −

ν + 1
2

z
ψ− − V (z)ψ− = Mψ+

d

dz
ψ+ −

ν + 1
2

z
ψ+ − V (z)ψ+ = Mψ−

with |µR| = ν + 1/2 and equal probability
∫
dz ψ+(z)2 =

∫
dz ψ2

−(z)

System of linear Eqs. is equivalent to second order Eqs. ( z → ζ):(
−

d2

dζ2
−

1− 4L2

4ζ2
+ U+(ζ)

)
ψ+= M2ψ+(

−
d2

dζ2
−

1− 4(L+ 1)2

4ζ2
+ U−(ζ)

)
ψ− = M2ψ−

the semiclassical LF WE with ψ+ and ψ− corresponding to LF orbital L and L+1 with

U±(ζ) = V 2(ζ)± V ′(ζ) +
1 + 2L

ζ
V (ζ), L = ν,

a J-independent potential in agreement with the observed degeneracy in the baryon
spectrum
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Superconformal QM: Emergence of a mass scale and confinement

de Alfaro, Fubini and Furlan, (1976), Witten (1981) and Fubini and Rabinovici (1984)

Embedding LF physics in AdS leads to important insights on the
nonperturbative structure of bound state equations for any spin, but
the effective confinement potential is not determined

The potential V (ζ) in the baryon equations plays the role of the
superpotential in SUSY QM

SUSY QM is based on a graded Lie algebra consisting of two
anticommuting supercharges Q and Q† which commute with the
Hamiltonian H

H = 1
2
{Q,Q†}, {Q,Q} = {Q†,Q†} = 0, [Q,H] = [Q†,H] = 0

If |E⟩ is an eigenstate with energy E , H|E⟩ = E |E⟩, then Q†|E⟩ is degenerate with
the state |E⟩ for E ̸= 0, but for E = 0 we have Q†|E = 0⟩ = 0: zero mode has no
SUSY partner

Key result for the supermultiplet structure and the pattern of the hadron spectrum

Following F&R we consider the scale-deformed supercharge operator Rλ = Q + λS ,
where S is the generator of special conformal transformations.

The generator Rλ gives rise to a new scale-dependent Hamiltonian G which also closes
under the graded algebra

G = 1
2
{Rλ,R

†
λ}, {Rλ,Rλ} = {R†

λ,R
†
λ} = 0, [Rλ,G ] = [R†

λ,H] = 0
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The new supercharge Rλ has the matrix representation

Rλ =

(
0 rλ
0 0

)
, R†

λ =

(
0 0

r†λ 0

)
with

rλ = −∂x +
f

x
+ λx , r†λ = ∂x +

f

x
+ λx

The parameter f is dimensionless and λ has the dimension [M2]

A mass scale is introduced in the Hamiltonian without leaving the conformal group !

The Hamiltonian equation G |E⟩ = E |E⟩ leads to the wave equations:(
−

d2

dx2
+

4(f + 1
2
)2 − 1

4x2
+ λ2 x2 + 2λ f − λ

)
ϕ1 = E ϕ1(

−
d2

dx2
+

4(f − 1
2
)2 − 1

4x2
+ λ2 x2 + 2λ f + λ

)
ϕ2 = E ϕ2

thus to harmonic confinement, Regge trajectories, and a massless pion !
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Light-front mapping and baryons

GdT, H. G. Dosch, S. J. Brodsky, PRD 91, 045040 (2015)

Upon the substitution in the superconformal
equations

x 7→ ζ, E 7→ M2, f 7→ L+ 1
2

ϕ1 7→ ψ−, ϕ2 7→ ψ+

we recover the LF/AdS nucleon bound-state
equations

(
−

d2

dζ2
−

1− 4L2

4ζ2
+ λ2ζ2 + 2λ(L+ 1)

)
ψ+ = M2ψ+(

−
d2

dζ2
−

1− 4(L+ 1)2

4ζ2
+ λ2ζ2 + 2λL

)
ψ− = M2ψ−

Eigenvalues

M2 = 4λ(n + L+ 1)

Eigenfunctions

ψ+(ζ) ∼ ζ
1
2
+Le−λζ2/2LLn(λζ

2)

ψ−(ζ) ∼ ζ
3
2
+Le−λζ2/2LL+1

n (λζ2)

λ  0.485 GeVN(939)

N(1440)

N(1710)

N(1900)

N(1720)

N(1680)

N(2220)

n  0n  1n  2n  3

0 1 2 3 4
0

1

2

3

4

5

6

L

M
2
G
eV

2


●●

●
●

●

●

n  0n  1

Δ(1600)

Δ(1900)

Δ(1930)

Δ(1232)

Δ(1700)

Δ(1620)

Δ(1950)

Δ(1920)
Δ(1910)
Δ(1905)

Δ(2200)

Δ(2420)

λ  0.498 GeV

0 1 2 3 4
0

1

2

3

4

5

6

7

L
M
2
G
eV

2


See also: Abidin and Carlson (2009) and Gutsche, Lyubovitskij, Schmidt and Vega (2012)
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Superconformal meson-baryon-tetraquark symmetry

H. G. Dosch, GdT, S. J. Brodsky, PRD 91, 085016 (2015)

Upon the substitution in the superconformal equations

x 7→ ζ, E 7→ M2,

λ 7→ λB = λM , f 7→ LM − 1
2
= LB + 1

2

ϕ1 7→ ϕM , ϕ2 7→ ϕB

we find the LF meson/baryon bound-state equations(
−

d2

dζ2
+

4L2M − 1

4ζ2
+ λ2M ζ2 + 2λM(LM − 1)

)
ϕM = M2 ϕM(

−
d2

dζ2
+

4L2B − 1

4ζ2
+ λ2B ζ

2 + 2λB(LN + 1)

)
ϕB = M2 ϕB

π

π2

π4

b1

b3

b5
�2 4λ

�
1
2
+

�
3
2
-

�
5
2
+

�
9
2
+

�
3
2
-

Φ =

(
ϕM ϕ−B
ϕ+B ϕT

)

Superconformal QM imposes the condition λ = λM = λB (equality of Regge slopes)

and the remarkable relation LM = LB + 1

LM is the LF angular momentum between the quark and antiquark in the meson and
LB between the active quark and spectator diquark cluster in the baryon

Full hadron 4-plet: meson-baryon-tetraquark

S. J. Brodsky, GdT, H. G. Dosch and C. Lorce, PLB 759, 171 (2016)
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Special role of the pion as a unique state of zero
energy Q†|M, L⟩ = |B, L− 1⟩, Q†|M, L = 0⟩ = 0

Zero mode invariant under deformations of scale λ

Spin-dependent Hamiltonian

H = {Q†
λ,Qλ}+ 2λ s

s internal spin of the meson, or the spin of the
diquark cluster of the baryon partner

Supersymmetric 4-plet

M2
M = 4λ (n + LM) + 2λS

M2
B = 4λ (n + LB + 1) + 2λS

M2
T = 4λ (n + LT + 1) + 2λS

Quark masses and CSB from longitudinal dynamics(
− σ2∂x (x(1− x) ∂x ) +

m2
q

x
+

m2
q̄

1− x

)
χ(x) = ∆M2 χ(x)

M2
π = ∆M2 = σ(mq+mq̄) +O

(
(mq+mq̄)

2
)

0

2

4

6

ρ,ω

a2,f2

ρ3,ω3

a4,f4

0 2 4

LM = LB + 1
1-2015
8872A3

M
2
 (

G
e

V
2
)

Δ
3
–
2

+

Δ
1
–
2

-

,Δ
3
–
2

-

Δ
1
–
2

+

Δ
11
–
2

+

,Δ
3
–
2

+

,Δ
5
–
2

+

,Δ
7
–
2

+

3̄ → 3⊗ 3 3 → 3̄⊗ 3̄

Recent work: Li and Vary (2021), GdT and Brodsky (2021), Ahmady et al. (2021), Shuryak and

Zahed (2021), Weller and Miller (2021), Lyubovitskij and Schmidt (2022), Rinaldi et al. (2022)
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HLFQCD predictions for the K∗ and Σ∗

trajectories with
√
λ = 0.51 GeV and

quark mass corrections (H. G. Dosch, GdT

and S. J. Brodsky (2015)

Predictions for double-heavy tetraquarks

  

quark JP predicted strong threshold
content Mass [MeV] decay [MeV]
cqcq 0+ 3660 ηcππ 3270
ccqq(!) 1+ 3870 D∗D 3880

bqbq 0+ 10020 ηbππ 9680
bbqq(!) 1+ 10230 B∗B 10800

bcqq(!) 0+ 6810 BD 7150

Predicted double heavy tetraquarks in HLFQCD. Exotics stable under strong interactions (!)

(H. G. Dosch, S. J. Brodsky, GdT, M. Nielsen and L. Zou (2020)

The doubly charmed stable boson Tcc with mass 3875 MeV was observed at LHCb a year later !

It completes the 4-plet with constituents cc̄, ccq, ccq̄q̄:

17 / 30



  

A) B)

A) Light hadrons (Tetraquark mixes with conventional hadrons)

Example: 2++, 3
2

+
, 1+ 4-plet f2(1270), ∆(1232), a1(1260)

B) Double-heavy hadrons (Tetraquarks do not mix with conventional hadrons)

Example: 2++, 3
2

+
, 1+ 4-plet χc2(3565), Ξcc (3770), Tcc (3875)

From: H. G. Dosch, S. J. Brodsky, GdT, M. Nielsen and L. Zou (2020)
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Veneziano amplitudes and holographic QCD

Veneziano 4-point amplitude amplitude (1968)

A(s, t) ∼ B(1− α(s), 1− α(t))

where α(t) = α0 + α′t is the linear Regge trajectory

Sum of poles in the direct s or crossed t-channels: Accounts
for duality in strong interactions (Dolen-Horn-Schmid (1967))

For fixed t and large s the result A(s, t) ∼ sα(t)−1 is found

Scattering is exponentially suppressed with increasing t: It
cannot produce collisions at large angles (soft scattering)

Veneziano model can be extended to N-particle amplitudes
and/or external currents

Pole structure and high-energy Regge behavior at tree level
(nonperturbative mathematical structure)

Features of Regge theory and the Veneziano model as
emerging properties of holographic QCD

Σ s Σ t
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Hadron form factors

Form Factor as a 3-point Veneziano amplitude

Ademollo and Del Giudice (1969), Landshoff and Polkinghorne (1970)

GdT, Liu, Sufian, Dosch, Brodsky and Deur (HLFHS 2018)

s-channel dependence is replaced by a fixed pole allowed by unitarity

F (t) ∼ B(γ, 1− α(t)) → Q−2γ for large Q2 = −t > 0

t

Compare with Brodsky-Farrar (B-F) hard counting rules (1973) for large Q2

Fτ (Q
2) ∼

(
1

Q2

)τ−1

where the twist τ is the number of constituents in a given Fock component: γ = τ − 1

The B-F asymptotic counting rules allow us to incorporate the underlying (hard)
constituent pointlike structure of hadrons into the (soft) Veneziano amplitudes with
external currents

Fτ (t) =
1

Nτ
B(τ − 1, 1− α(t))

α(t) is the Regge trajectory of the VM which couples to the quarks in the hadron
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For τ = N, the number of constituents, the FF is an N − 1 product of poles

Fτ (Q
2) =

1(
1 + Q2

M2
n=0

)(
1 + Q2

M2
n=1

)
· · ·
(
1 + Q2

M2
n=τ−2

)
located at

−Q2 = M2
n =

1

α′
(
n + 1− α(0)

)
It generates the radial spectrum of the exchanged t-channel vector mesons

For the ρ trajectory α0 = 1/2 and α′ = 1/4λ, thus

M2
n = 4λ

(
n + 1

2

)
which exactly matches the HLFQCD result for the ρ
VM and its radial excitations for n = 0, 1, 2, . . . , τ − 2
(The “Regge daughter trajectories”)

ρ(770)

a2(1320)

ρ3(1690)

a4(2040)

ϕ(1020)

f '2 (1525)

ϕ3(1850)

0 1 2 3 4 5
0

1

2

3

4

5

t GeV2

α
(t
)

Note: The holographic SWM model, however, leads to leads to M2
n = 4λ(n + 1), thus to linear

Regge trajectories with the same slope, but with the wrong intercept α0 = 0

Karch, Katz, Son, and Stephanov (2006)
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Nucleon isospin form factors F I=0,1(t) = Fp(t)± Fn(t)

�  �

�  �

���� ���� ���� � � ��
�����

�����

�����

�����

�����

�����

�

��

�
�
�
(
�
�
)

F (t) =
∑

τ cτFτ (t)

HLFHS (2020): —— Valence contribution only

HLFHS (2020): —— Including uū and dd̄

Ye et al. (2018): —— z-expansion data analysis
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Quark distribution functions
GdT, T. Liu, R. S. Sufian, H. G. Dosch, S. J. Brodsky, A. Deur (HLFHS) PRL 120, 182001 (2018)

T. Liu, R. S. Sufian, GdT, H. G. Dosch, S. J. Brodsky, A. Deur (HLFHS) PRL 124, 082003 (2020)

Using the integral representation of the Beta function the FF is expressed in a
reparametrization invariant form

F (t)τ =
1

Nτ

∫ 1

0
dx w ′(x)w(x)−α(t) [1− w(x)]τ−2

with w(0) = 0, w(1) = 1, w ′(x) ≥ 0

Flavor FF is given in terms of the valence GPD Hq
τ (x , ξ = 0, t) at zero skewness

F q
τ (t) =

∫ 1

0
dx Hq

τ (x , t) =

∫ 1

0
dx qτ (x) exp[tf (x)]

with the profile function f (x) and PDF q(x) determined by w(x)

f (x) =
1

4λ
log
( 1

w(x)

)
qτ (x) =

1

Nτ
[1− w(x)]τ−2w(x)−α(0)w ′(x)

At x ∼ 0, w(x) ∼ x from Regge behavior, and w ′(1) = 0 to recover the counting rules

at x → 1, qτ (x) ∼ (1− x)2τ−3 (inclusive-exclusive connection)

If w(x) fixed by nucleon PDFs: w(x) = x1−x e−a(1−x)2 , the pion PDF is a prediction

23 / 30



Effective LFWFs

Effective LFWFs which incorporate the correct pole structure follow from

Hq
τ (x , t) =

∫ 1

0
dx qτ (x) exp[tf (x)]

= 2π

∫ ∞

0
db b J0

(
bQ(1− x)

)
|ψeff(x , b)|2

We find

ψτ
eff(x , b⊥) =

1

2
√
π

√
qτ (x)

f (x)
(1− x) exp

[
−
(1− x)2

8f (x)
b2⊥

]
in the transverse impact space representation and

ψτ
eff(x , k⊥) = 8π

√
qτ (x)f (x)

1− x
exp

[
−

2f (x)

(1− x)2
k2⊥

]
in transverse momentum space
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Unpolarized and polarized GPDs and PDFs HLFHS Collaboration (2018, 2020)
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This work (I)
This work (II)
This work (III)
E06-014/EG1
E99-117/EG1
EG1b
HERMES

Separation of chiralities from the axial current
Coefficients cτ are fixed from the vector current

Regge trajectory from HLFQCD

αA(t) =
t

4λ

lim
x→1

∆q(x)

q(x)
= 1, lim

x→0

∆q(x)

q(x)
= 0

DGLAP NNLO evolution from initial scale µ ≃ 1 GeV from soft-hard matching in αs
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Infrared behavior of the strong coupling

A. Deur, S. J. Brodsky and GdT (2010, 2015, 2016, 2017)

Initial DGLAP evolution scale from IR-UV
matching of QCD coupling

IR behavior of strong coupling in HLFQCD for

the HLFQCD dilaton eλz
2

αIR
s (Q2) ∼

∫ ∞

0
zdzJ0(zQ)e−λz2

∼ e−Q2/4λ,

with αIR
g1
(Q2) = π

ΛQCD and transition scale Q0 from matching
perturbative and nonperturbative regimes
for

√
λ = 0.534± 0.05 GeV

Transition scale: Q2
0 ≃ 1 GeV2

Connection between proton mass, M2
p = 4λ,

the ρ mass, M2
p = 2λ, and the perturbative

QCD scale ΛQCD in any RS !

Comparison of QCD strong coupling data
from Bjorken sum with holographic and
pQCD predictions matched at the IR-UV
transition scale Q0 (red)

Similar behavior of the IR coupling was obtained from the DSE

D. Binosi et al. (2017) and Z. F. Cui, et al. Chin. Phys. C 44, 083102 (2020)
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Intrinsic charm-anticharm asymmetry in the proton

Sufian, T. Liu, Alexandru, Brodsky, GdT, Dosch, Draper, K. F. Liu and Y. B. Yang (2020)

Intrinsic charm in the proton introduced by Brodsky, Hoyer, Peterson and Sakai (1980)

Charm FF normalization computed with with three gauge ensembles in LGTH

(one at the physical pion mass) and charm distribution from HLFQCD

Intrinsic charm asymmetry c(x)− c̄(x),

c(x)− c̄(x) =
∑
τ

cτ
(
qτ (x)− qτ+1(x)

)
with

∫ 1
0 dx[c(x)− c̄(x)] = 0

J/Ψ Regge trajectory

α(t)J/Ψ = −2.066 +
t

4λc
, λc = 0.874 GeV2

from HLFQCD and HQET

10-2 10-1 100

 x
0.002

0.001

0.000

0.001

0.002

0.003

 x
[c

(x
)
−
c̄(
x
)]

LFHQCD

Nielsen, Brodsky, GdT, Dosch, Navarra and Zou (2018)
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Gravitational form factors and gluon distribution functions

GdT, H. G. Dosch, T. Liu, R. S. Sufian, S. J. Brodsky, A. Deur (HLFHS) PRD 104, 114005 (2021)

Spin-2 gluon gravitational FF A(t) from the coupling of the metric fluctuations
induced by the spin-two Pomeron with the energy momentum tensor in AdS∫

d4x dz
√
ghMNT

MN

Ag
τ (t) ∼ B(τ − 1, 2− αP(t))

with Pomeron Regge trajectory

αP(t) = αP(0) + α′
P t

where αP(0) ≃ 1.08 and α′ = 0.25 GeV−2

Radial spectrum from t-channel poles in
the 2++ trajectory

−Q2 = M2
n =

1

α′
(
n + 2− α(0)

)
with M0 ≃ 1.92 GeV

0 1 2 3

Q2 (GeV2)

0.0

0.2

0.4

0.6

A
g
(Q

2 )

proton

pion

µ = 2 GeV

Lattice 2019
Lattice 2021
This work

Lattice data from Shanahan et al. (2018) and

Pefkou et al. (2021)
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Intrinsic gluon distribution in the proton and pion

Gluon GPD Hg
τ (x , t) = gτ (x)etf (x)

f (x) = α′
P log

( 1

w(x)

)
,

gτ (x) =
1

Nτ

w ′(x)

x
[1− w(x)]τ−2w(x)1−αP (0)

Normalization of Ag (0) determined from
the sum rule:∑

q

⟨x⟩q +
∑
q̄

⟨x⟩q̄ + ⟨x⟩g = 1

Basic parameters fixed in quark sector:
No adjustable parameters

Single Pomeron (HLFHS 2022))

Hard Pomeron from the evolution of the
nonperturbative gluon distribution function
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This work
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This work
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x

Gluon PDF: Proton upper figure and

pion lower figure
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Thank you !
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