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Quantum Computers: the era of rapid progress
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✓ Prototypes
✓ Supremacy
✗ Advantage
✓ “Quantum” > “Nano”



Quantum Computers: why care?
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Quantum Computer:
A highly controllable quantum system, which 
naturally stores superpositions of quantum states.

Basic example:

|Ψphys⟩ = 𝛼𝛼 ↑↑↓↑↓ ⋯ + 𝛽𝛽 ↑↓↓↑↑ ⋯ + ⋯
|Ψqubit⟩ = α 11010 … + 𝛽𝛽 10011 … + ⋯

|Ψphys⟩ — state of a spin chain, state of a 
molecule in the second-quantized formalism, ect.

|Ψqubit⟩ — state in the quantum computer.

Quantum Computers and Quantum Computation
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Depending on hardware, one can implement 1-, 2-, or 
many-qubit gates, which are used to manipulate 
|Ψqubit⟩ with local or non-local elementary operations.

Efficient quantum simulation:

• N physical DOFs ↦≲ poly(N) qubits.

• Number of gates ≲ poly(N, t, 𝜖𝜖).

• Number of circuit runs ≲ poly N, t, 𝜖𝜖 .



Quantum Simulation: recap
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Preliminary steps, which determine the type of quantum simulation:
• Choice the physical system.

• Choice of observables : Spectroscopy? Real-time dynamics? Thermalization?

• Choice of the physical model: Ab initio? Effective?

• Discretizing the model: Spatial coordinates? Field variables? Gauge DOFs?

Intermediate step:
• Mapping physical DOFs onto qubits: various ways of encoding fermions and bosons in the QC.

Quantum simulation!



Quantum Simulation of LF QFT
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For several reasons LF QFT is highly appealing as starting point for quantum simulation:

A number of complications exist as well:

LF QFT Features Advantages for Quantum Simulation
Linear EoM → few DOFs Lower qubit count*
LF momentum > 0 → few DOFs are occupied Lower qubit count**
Efficient basis choice → early truncation Lower qubit count
Observables are easy to extract from the LFWF Measurements are easy to design
Trivial vacuum Good initial state is readily available,
Valence sector calculations give good results and this state is easy to prepare

LF QFT Features Issues / open questions for Quantum Simulation
Bases with non-local interactions are typically used # of Hamiltonian terms increases; non-local gates
The renormalized many-body formulations
of 3 + 1𝐷𝐷 gauge theories are under development

Starting point not defined yet. QCs are likely to only 
be useful for simulating many-body problems

HEP scattering applications are under development Harder to advertise



Quantum Simulation of LF QFT: why many-body

Quantum simulation: Cracking the exponential wall | BERKELEY LAB 7

Quantum Simulation is likely to only become useful if the full many-body setting is considered:

In fact, limiting the calculation to sectors of a fixed number of particles on a QC comes with an 
additional cost — many-body simulation is a natural application of QCs.

# of single-particle 
states (“modes”)

# of occupied 
states

Hilbert space 
dimension

Sparse # of qubits # gates

Valence
𝑁𝑁 = 𝐾𝐾Λ⊥2

~2,3, … 𝑁𝑁
2,3 = poly(𝑁𝑁) ✗ ~𝑁𝑁 or ~𝐾𝐾 poly(𝑁𝑁)

Full ~𝐾𝐾 exp(𝑁𝑁) ✓ ~𝑁𝑁 or ~𝐾𝐾 poly(𝑁𝑁)

LF many-body formulations Comments
Sector-dependent renormalization Hard to adopt to QC, as modes in all states are treated uniformly
Pauli-Villars Quantum Simulation of non-Hermitian Hamiltonians is in its infancy
RGPEP 𝑎𝑎𝑡𝑡 = 𝑈𝑈𝑠𝑠𝑎𝑎𝑈𝑈𝑠𝑠

† may be naturally implemented on a QC



Quantum Simulation of LF QFT: compact encoding
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Consider DLCQ in 3 + 1𝐷𝐷. While 𝑁𝑁 = 𝐾𝐾Λ⊥2 , the number of occupied modes in a Fock state ~𝐾𝐾.
𝑛𝑛1
𝑚𝑚1 ,𝑛𝑛2

𝑚𝑚2 , … ,𝑛𝑛𝑁𝑁
𝑚𝑚𝑁𝑁

Since 𝑛𝑛𝑗𝑗 > 0 and ∑𝑗𝑗 𝑛𝑛𝑗𝑗𝑚𝑚𝑗𝑗 = 𝐾𝐾, at most 𝐾𝐾 occupancies can be nonzero.

In the direct encoding schemes, one uses ~𝑁𝑁 = 𝐾𝐾Λ⊥2 qubits to store occupancies of all modes:

01010101010101011010101 …
Fermions — one qubit per mode

1110 … 0011 … 1010 … 0100 … 0001 … ...
Bosons — several qubits per mode

𝐾𝐾Λ⊥
2 modes total

In the compact encoding scheme, ones uses ~𝐾𝐾 log(𝐾𝐾 + Λ⊥) qubits to store momenta and 
occupancies of occupied modes only:

110110 …
𝑛𝑛1

00110 …
𝑚𝑚1

1𝑠𝑠𝑠𝑠 occupied mode

110110 …
𝑛𝑛2

00110 …
𝑚𝑚2

2𝑛𝑛𝑛𝑛 occupied mode

…

𝐾𝐾 occupied modes



Quantum Simulation of LF QFT: price for non-locality
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The position representation is unique in the sense that it preserves locality of operators:

Each term in the Hamiltonian is represented by a constant number of elementary operators,
therefore the total number of terms is proportional to the lattice size 𝑵𝑵.
However, switching to any other basis, such as

immediately increases the number of terms to 𝑁𝑁3 (momentum basis) or 𝑁𝑁4 (other bases),
and also requires one to do a lot of non-local quantum operations.



Quantum Simulation of LF QFT: initial state
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Knowledge of a state having 1/poly(𝑁𝑁)
overlap with the true GS would be a huge 
advantage!

Note that Theorem 8 does not require the 
knowledge of the energy gap!

Since the valence sector Hilbert space has 
dimension polynomial in the problem size, 
even the basis vector with largest amplitude 
would suffice as an initial state for an efficient 
quantum GS preparation algorithm.



Quantum Simulation of LF QFT: Developments
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• Ab initio simulation of QFT:

• Effective field theories, benchmarking existing QCs:



How does one simulate scattering events within the LF framework?

• Light-heavy particle scattering / scattering in strong background fields: tBLFQ.

Similar idea, but in application to nuclear physics:

• What about the HEP scattering of particles of comparable sizes?

Conventional approach in quantum simulation: represent particles by wave packets.

Can we instead use the fact that within the LF formalism we actually use the most fundamental 
definition of a particle in QFT — the eigenstate of 𝐻𝐻𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓? 

Quantum Simulation of LF QFT: Ongoing Work
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• Inspiration #0, free theory:

𝑝𝑝1,𝑝𝑝2 = 𝑎𝑎𝑝𝑝1
† 𝑎𝑎𝑝𝑝2

† |0⟩

• Inspiration #1:

Unlike the free case, while the incoming 
particles are the eigenstates of the 
theories with corresponding cutoffs, the 
combined state is not an eigenstate. 

Quantum Simulation of LF QFT:
Eigenstate-based scattering
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• Promoting this idea to the full many-body setting:

Here        is the adiabatic interaction turn-on operator,
with modes only up to K included.



Quantum Simulation of LF QFT:
Eigenstate-based scattering
• At any fixed K, the adiabatic turn-on operator        can be found via the “Full Unitary Couple 

Cluster” procedure, i.e. by seeking for it in the form

and demanding that

where         is the matrix relating the free (Fock states) and interacting eigenbases at      .

In other words, we require that        acts as the adiabatic interaction turn-on operator in
sectors of harmonic resolution up to      .
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Quantum Simulation of LF QFT:
Eigenstate-based scattering
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• If a quantum circuit for adiabatic interaction turn-on can be implemented efficiently,
then implementing                                    is easily doable.

• In all of the above not renormalization was assumed.



Summary
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• Quantum Simulation motivates the development of the full many-body formulations of LF QFT.
– Which one is more suitable for QCs?
– Toy examples!

• LF formulation allows for efficient basis choices, which also complicates the Hamiltonian 
operator.
– Compare with lattice ET?
– Align with projected capabilities of future QCs.

• Scattering:
– Examples of tBLFQ, eigenstate-based.
– Relation to renormalized theories?



Thank You!
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