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Quantum Computers: the era of rapid progress
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Quantum Computers: why care?

QUANTUM COMPUTING
Quantum computational advantage using photons

Han-Sen Zhong'?*, Hui Wang?#, Yu-Hao Deng"?*, Ming-Cheng Chen'?#, Li-Chao Peng'?,

Yi-Han Luo™?, Jian Qinl'z. Dian Wu'?, Xing Dingl'z. Yi Hu'?, Peng Hu®, Xiao-Yan Yang3, Wei-Jun Zhang3,
Hao Li3, Yuxuan Li*, Xiao Jiangl'z, Lin Gan®, Guangwen Yang4. Lixing You®, Zhen Wang3. Li Li*2,
Nai-Le Liu'?, Chao-Yang Lu'?t, Jian-Wei Pan*?+
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Quantum Computers and Quantum Computation

Quantum Computer: Depending on hardware, one can implement 1-, 2-, or
A highly controllable quantum system, which many-qubit gates, which are used to manipulate
naturally stores superpositions of quantum states. |1Pqubit> with local or non-local elementary operations.
Basic example:
single-qubit gate '
[Wphys) = @lTTUTL ) + BITLTT ) + - T mea“i“rmem
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% qubit) = €11010 ..) + BI10011 ...) + - el e = -

)
) —{ H i ®
)

oo

|Lpphys> — state of a spin chain, state of a input

D

molecule in the second-quantized formalism, ect.
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|quubit> — state in the quantum computer. two-qubit gate

Efficient quantum simulation:
* N physical DOFs — < poly(N) qubits.
* Number of gates < poly(N, t, €).

* Number of circuit runs < poly(N, t, €).
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Quantum Simulation: recap

Preliminary steps, which determine the type of quantum simulation:

« Choice the physical system.

« Choice of observables : Spectroscopy? Real-time dynamics? Thermalization?

 Choice of the physical model: Ab initio? Effective?

» Discretizing the model: Spatial coordinates? Field variables? Gauge DOFs?

Intermediate step:

« Mapping physical DOFs onto qubits: various ways of encoding fermions and bosons in the QC.

Quantum simulation!

e 5
¢lolf>

—————
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Quantum Simulation of LF QFT

For several reasons LF QFT is highly appealing as starting point for guantum simulation:

LF QFT Features Advantages for Quantum Simulation

Linear EOM — few DOFs Lower qubit count®

LF momentum > 0 — few DOFs are occupied Lower qubit count™*

Efficient basis choice — early truncation Lower qubit count

Observables are easy to extract from the LFWF Measurements are easy to design
Trivial vacuum Good initial state is readily available,
Valence sector calculations give good results and this state is easy to prepare

A number of complications exist as well:

LF QFT Features Issues / open questions for Quantum Simulation

Bases with non-local interactions are typically used # of Hamiltonian terms increases; non-local gates

The renormalized many-body formulations Starting point not defined yet. QCs are likely to only
of 3 + 1D gauge theories are under development be useful for simulating many-body problems

HEP scattering applications are under development Harder to advertise
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Quantum Simulation of LF QFT: why many-body

Quantum Simulation is likely to only become useful if the full many-body setting is considered:

# of single-particle | # of occupied | Hilbert space Sparse # of qubits # gates
states (“modes”) states dimension

Valence ( ) — bolv(N ~N or ~K poly(N)
N = K2 2.3) = Poly(V)
Full ~K exp(N) v ~N or ~K poly(N)

In fact, limiting the calculation to sectors of a fixed number of particles on a QC comes with an
additional cost — many-body simulation is a natural application of QCs.

LF many-body formulations

Sector-dependent renormalization Hard to adopt to QC, as modes in all states are treated uniformly

Pauli-Villars Quantum Simulation of non-Hermitian Hamiltonians is in its infancy

RGPEP ar = USaUSJr may be naturally implemented on a QC
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Quantum Simulation of LF QFT: compact encoding

Consider DLCQ in 3 + 1D. While N = KA3, the number of occupied modes in a Fock state ~K.
|Tlm1 nmz TlmN>
1 272 ety
Since n; > 0 and Zj nym; = K, at most K occupancies can be nonzero.
In the direct encoding schemes, one uses ~N = KA% qubits to store occupancies of all modes:
01010101010101011010101...1110...0011...1010...0100...0001 ... ...

Fermions — one qubit per mode ~ g3 s several qubits per mode

N —

kA2 modes total

In the compact encoding scheme, ones uses ~K log(K + A ;) qubits to store momenta and
occupancies of occupied modes only:

110110..,00110...110110..,00110 ... ...

g

nq m4q np mj

N T

15t occupied mode 274 occupied mode

k occupied modes
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Quantum Simulation of LF QFT: price for non-locality

The position representation is unique in the sense that it preserves locality of operators:

= 3 [0+ 5 (a0)" 00 + o) + ot

(vagb)z (X) = Z P

j=1
Each term in the Hamiltonian is represented by a constant number of elementary operators,
therefore the total number of terms is proportional to the lattice size N.

. (cb(x + arj) = @(x>)2

However, switching to any other basis, such as

O(x) = Z%eip'x 2w1(p) (aeraT_p)

pel’

immediately increases the number of terms to N3 (momentum basis) or N* (other bases),
and also requires one to do a lot of non-local quantum operations.
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Quantum Simulation of LF QFT: initial state

Knowledge of a state having 1/poly(N)
overlap with the true GS would be a huge
advantage!

Note that Theorem 8 does not require the
knowledge of the energy gap!

Since the valence sector Hilbert space has
dimension polynomial in the problem size,
even the basis vector with largest amplitude
would suffice as an initial state for an efficient
quantum GS preparation algorithm.
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Near-optimal ground state preparation

Lin Lin®? and Yu Tong!

3 Algorithm with a priori ground energy bound

With the approximate projector developed in the previous section we can readily design
an algorithm to prepare the ground state. We assume we have the Hamiltonian H given
through its block-encoding as in the last section. If we are further given an initial state
|po) prepared by a unitary Uy, i.e. Ur|0™) = |¢o), and the promises that for some known
v >0, i, and A, we have

[(Pl) Lower bound for the overlap: | (¢o|to) | > %]

Theorem 8 (Ground energy). Suppose we have Hamiltonian H = ;. A\, [Vr) (Vk| €
CNXN " where A\, < A1, given through its (o, m,0)-block-encoding Uy . Also suppose we
have an initial state |¢o) prepared by circuit Uy, as well as the promise . Then the
ground energy can be estimated to precision h with probability 1 — v with the following
COStS:

1. Query complexity: O (% log (%) log (%) log (M)) queries to Uy and
O (% log (%) log <%)) queries to Uy,

2. Number of qubits: O(n+m + log(%)),

3. Other one- and two- qubit gates: O (% log (%) log (%) log (%))
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Quantum Simulation of LF QFT: Developments

n/K)frs(n/K, Q%

0.30
= ngcr . . f : 0 n — QP = Q2 = 40.2, fermions
* Ab initio simulation of QFT: o I\ o e
fermion/antifermion modes | Q* =17, fermions
A 0.15 II I - Q%= Q% = 40.2%, bosons
’e e ) . ) N Q” = 207, bosons
Q < 2K |[logy K|+ 2[logy AL ]+ 1 + [logyns|+ [log, ncﬂ 1\ 017 b
~ —~ —— N—— I \
e“c‘oél\“% number of momentum helicity favors colors \ L
occupied T2 s i 5ot s o wnnen, M
fermion/antifermion boson modes 4 14 14 14 14 14 14 14 14 14 14 14 14
modes e ——
- . e . . e . 2
+ K |[logy K|+ 2[logy A |+ [logy K|+ 1 +[logy(ng —1)]
number of momentum occupancy helicity colors
occupied
boson modes
i —— Classical sampling; Dircct enc.
. _5x10° == IBM Vigo; Dircct enc.
IStI n Q‘ :S — - IBM Vigo (err. mit.); Direct enc.
- Classical sampling; Compact enc.
----- IBM Vigo; Compact enc.
—== IBM Vigo (err. mit.); Compact enc.
N o Updated
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A Classical
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Quantum Simulation of LF QFT: Ongoing Work

How does one simulate scattering events within the LF framework?

* Light-heavy particle scattering / scattering in strong background fields: tBLFQ.

- — + + ., 1
PQCD B) = Pﬁ 5) X" = Z cp(x™) B) gryn s X7, = EVI(X+)|¢; X7y
B

Quantum simulation of nuclear inelastic scattering

Similar idea, but in application to nuclear physics: Weijie Du®, % James P, Vary®.2 Xingbo Zhao®, " and Wei Zuo'"

- What about the HEP scattering of particles of comparable sizes?
Conventional approach in quantum simulation: represent particles by wave packets.

Can we instead use the fact that within the LF formalism we actually use the most fundamental
definition of a particle in QFT — the eigenstate of Hf,;;?
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Quantum Simulation of LF QFT:
Eigenstate-based scattering

* Inspiration #0, free theory: * Inspiration #1:

Ip1,p2) = al al |0)

All-charm tetraquark in front form dynamics

Zhongkui Kuang (}“I'SEF'i?),l’z‘l* Kamil Serafin®,"*" Xingbo Zhao S

"//M> - /12 PIJSIQ.PMWM(12)b-i-d£’0>

and James P. Vary

Wag) = [3 P}815p,wa(13)b]d]
3 Unlike the free case, while the incoming
X / P04 p,w5(24)b3d}|0) particles are the eigenstates of the
24 theories with corresponding cutoffs, the
combined state is not an eigenstate.
» Promoting this idea to the full many-body setting:

A_];{ = (UK)(G’J}()(Z/{K)T }Kl,K2> X
H_ere U is the adiabatic irjteraction turn-on operator, — (A}Q) (A}Q) }V&C)
with modes only up to K included.
= U, a%lu}} U, a}(ZZ/{}L(Q }Vac>
= U, &Klu ?/lKch}(2 }V&C)
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Quantum Simulation of LF QFT:
Eigenstate-based scattering

At any fixed K, the adiabatic turn-on operator U can be found via the “Full Unitary Couple
Cluster” procedure, i.e. by seeking for it in the form

K
_; _ E § . o . T
MK — s ZVK VK T 9'19"'3'?‘;]11"'5J5ai1 e alrajl e CL_JS
7‘,821 iljig...,ir,
J1s)2.--4]s

and demanding that
U FIEY = U | FIEY for K< K

where U, is the matrix relating the free (Fock states) and interacting eigenbases at K.

In other words, we require that /- acts as the adiabatic interaction turn-on operator in
sectors of harmonic resolution up to K.
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Quantum Simulation of LF QFT:
Eigenstate-based scattering

* If a quantum circuit for adiabatic interaction turn-on can be implemented efficiently,
then implementing A% = (¢4, (a;) (L{K)T is easily doable.

* |In all of the above not renormalization was assumed.

(Af)?[vac) e~ M (Af)? vac)

1.75
1.4
1.2
1.50 'é 10
5 08 1
1.25 4 = 06
~ 04
< 1.00 A 0.2
E’f, 0.0 0.0
& 0.75 ]
0.50 A
0.25 5 17,5
20.0
0.00 A
16 2/6 3)56_'1 /:/6 >/6 1 Figure 7. Time-dependent parton distribution func-
B tion PDF(x = n/K,t) for the state |i) = HK =3,0]%)
Figure 6. Parton distribution function PDF(z — from (594). Shown is the exact result obtained by classi-
n/K,t _ 0), as defined in (G1), for the initial tate cal simulation and usage of the Full UCC method. The
1) :’HK _ 310}2> from (G33). Shc;wn is the exact result plot illustrates how the higher-LF-momentum modes

obtained by classical simulation and usage of the Full

(n =4.5) participate in the time evolution of the state
UCC method.

l2) = |[K = 3,()]2>7 in which only the n=1,2,3 modes
were initially occupied.
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Summary

* Quantum Simulation motivates the development of the full many-body formulations of LF QFT.
— Which one is more suitable for QCs?
— Toy examples!

« LF formulation allows for efficient basis choices, which also complicates the Hamiltonian
operator.
— Compare with lattice ET?
— Align with projected capabilities of future QCs.

 Scattering:
— Examples of tBLFQ, eigenstate-based.
— Relation to renormalized theories?
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